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The electric charge is a Lorentz invariant quantity. Its canonically
conjugate partner, however, called phase, cannot be Lorentz invariant.
We calculate explicitly the Lorentz transformation of the phase.

PACS numbers: 12.20. Ds

“This is the simplest ezample of a pathological representation of the
Lorentz group. It may very well be that this pathological representation is
essential for the physics of the future.”

P.A.M. Dirac

1. Introduction

The quantum theory of the electric charge described in [1] has as dy-
namical variables the electric charge Q, the phase Sy which is the canonically
conjugate partner of the electric charge,

[Q)SO]:ie (hzl:c)v

e being the elementary charge, and the amplitudes of transversal zero-
frequency waves ¢;,,;! = 1,2,...and m = —1,...,! are quantum numbers
known from the theory of angular momentum. The remaining canonical
commutation relations are

[Q, Cim] =0, (So, Clm] =0, [sza c;‘;ml] = 47r€2611’6mm’ .
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The theory is Lorentz invariant which means that there are six genera-
tors of the Lorentz group M,, with the usual Lie algebra

{M‘w,M(,,gJ = i(guﬂMva + guaMuB - g.uaMVB - guBMua)-

Physically the generators M, are constants of motion which must exist in
a Lorentz invariant theory because of the first Noether theorem. Ma3, M31,
and M, are components of the angular momentum; My, My2 and Myp3 do
not have a good name and are sometimes called “boosts”.

(The habit of giving common names to scientific concepts is most unfor-
tunate and reveals an alarming state of mind. Julian Schwinger evidently
did not like the term “boost” [2]. Having this in mind I would propose
to use the term “hyperbolic momentum”. Thus the constants of motion
associated with the full symmetry of space-time would have the names

~~ energy

— linear momentum

— angular momentum
— hyperbolic momentum

I hope that the logic and simplicity of this scheme will appeal to the reader.)
The electric charge @ is a Lorentz invariant quantity:

M,,,Q=0.

On the other hand, the phase Sy cannot be a Lorentz invariant quantity;
this reflects the well known fact that a charged state cannot be Lorentz
invariant. We shall calculate in this paper the commutators [M,,, So] and
[Muy,cim], revealing in this way the full Lorentz symmetry of the quantum
theory of the electric charge.

2. The spherical functions

The Lorentz transformation transforms a quantum state with a given
quantum number [ into a linear combination of such states with all kine-
matically possible values of [. This makes it necessary to fix in advance the
relative phases of spherical functions for all values of /. We shall use in this
paper the spherical functions given by Landau and Lifshitz in the second
Polish edition of their book “Quantum Mechanics” [3] which is a translation
of the third Russian edition. The first Polish edition, which is a translation
of the first Russian edition, uses the spherical functions defined by Con-
don and Shortley [4]; they are convenient in the nonrelativistic quantum
mechanics but less convenient in the relativistic one.
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The spherical functions we shall use are given explicitly by the expression

20+ 1 (= m)? i im
T (igmy] B (cos®eT

Vi (9, ) = (—1)(mHimD/2 [

and differ from those given by Condon and Shortley by the factor i'. Using
the formulae given by Condon and Shortley on page 53 one finds easily

(I+1)2-m? 12 —m?
Y, 14+ 1)4) ¥} s
(20 + 1)(20 + 3) m+(141) (20-1)(21+1) "0

, l+1)2 —m? 12 - m?
9Y,,, = / ( ; — _ .
HeosT¥im =\ (ol < 1)l + 3) A \/(21 Tl )

isinﬂ—?-Y;m =l

09

3. The Lorentz transformation of the phase

The electric charge Q “lives” at the spatial infinity. The electromagnetic
field at the spatial infinity is described completely by a single scalar function

S(z) = —ex" A,u(2),

where A, is the electromagnetic potential [5]. This function, called phase
for reasons explained in Refs [1] and [5], has the following properties.
S(z) is homogeneous of degree zero:

S(Az) = S(z) forall A>0.

S(z) is gauge invariant .
S(z) satisfies the equation

US(z)=0.

Because of the homogeneity property it is convenient to describe the phase
S(z) in the spherical coordinates

2% = Rsinhv,

2! = Rcoshysindcos g,

z? = Rcoshysindsing,

2® = Rcoshcos?,

0<R<oo, —0<P<+oo, 0<3<7, 0< < 2T,
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Note that R, ¥ and ¢ are space-like coordinates while ¢ is a time-like
coordinate. Moreover

from the Euler theorem on homogeneous functions. Thus S(z) “lives” effec-
tively on the three-dimensional hyperboloid (2°)?—(2!)? —(22)? —(23)?=-1
which forms the spatial infinity of space-time.

The general solution of the wave equation satisfied by S(z) can be
written in the form {1]

oo !
S(2) = 5(4,9,) = So —eQtanhyp+ 3 3" {e,, f(4,9,90) +he )

l=1 m== -1

was calculated

f(+)

Here S is a constant operator, ) is the total charge,
in [1] as

(+) _ L[ rerae+y 1
2000 Vo005 | rrrs sz )

[(/2+1/2)0(1/2 + 3/2)] '/
[ F{ij2)1(i/2 + 1) ] f’(”’)}’

L 1+1 3
fi(¥) = tanhy - 2F1( 3 —2— o tanhzw),
I+1 11,
91(¢)—2Fl( 2 153 o) ; tanh w)

fl(;:) is a positive frequency solution of the d’Alembert equation in the usual
sense of this term i.e. its Fourier transform vanishes on the lower half of the
light-cone in the momentum space.

Let M,, denote the generators of the Lorentz group. [M,,, Q] = 0
from the Lorentz invariance of the total charge Q. Hence

o0 { R
My S(2)) = My 5] 43 3 {Mw,c,m]ff“H ,w,c;tn]fl‘,:t)}

=1 mz=x

On the other hand
My, $(2)] = H2,0, — 2,0,)S(2).

To compare these two equations one has to use the formulae given at the

end of the second section and, additionally, the following formulae which

can be obtained from the explicit expression for f; (+)
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Fori>1
[a:061 — 2180 + 1 (3082 - :cgao)] g

l+m+1 l+m+42
\/z(1+z\/ LA

(2 + 1) (2 + 3)

N ) l— =1) (4
+/( -1 l+1\/ @+ 1) filime1 -

Forl=1
{wgal — x100 + i(moaz — .’Egao)} (+)

(+m+1)(I+m+2) 4+
= VI +2\/ fl(+1)m+1

20+ 1)(20 + 3)
(I—m){l —m-1)
fﬁ ’"‘“\/ I-1nEI+1)

2081 — 2180 — @08y — z39)] 1(1::)

~—\/i—(_l__+—2—)\/(l_(m+1)(l—m+2)f,(:1)m .

21+ 1)(20 + 3)

(+m-1)
ey l+1\/ TmoDErm) e

(21 - 1)(21 + 1)

Fori>1

Forl=1

[:z:081 R 1:180 - ’l 113062 - 3260)] (+)

l— m+1 l—m+2) +
+2\/( fl(+1)m1

(2 + 1)(21 + 3)
\[Y [+ m—1)(1 +m)
N TV TS VI
Fori>1

l+ 1 — m? (+)
(z063 —~ z30q) ftm = \/l(l + 2) @+ 1) (21 n 3) fl+1,m

2-m? )
+V/(=-1)(1+1) TR e
For | =

W~ T2 [ 1+1)? —m? (l+1) —m? )

2 __m?

(21—1(21+1

)fllm
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In the result one obtains

1
IMgy + 1Moy, Sl = —=(c; _, —¢iy),
1Moy 02+ So] z1r\/§( 1,-1 1)

[Moy — iMooz, So} = ),

! (
C -
‘)Tf 1,-1 11
i .
[Mos, Sol =——=(c;q +¢t,).
(4¥403, 0] “r\/g( 10 10)

These equations express the fact, well known from the classical electrody-
namics, that a moving charge can be regarded as a charge at rest accompa-
nied by transversal zero-frequency waves.

For completeness we give also the Lorentz transformation of the ampli-
tudes of transversal zero-frequency waves.

. e [+ m+ 1)+ m+2)
(Mor + iMox, ] = /U1 + 2)\/ RNt

. (-m-1)(i-m Lo
+iy/(1 - 1)(l+1)\/( G- 1)2;§+1)) Gy mait ~—\;—§eQ6, 6t

[Mo; — iMoa, ¢ Z—z\/l(l+2\/(l m+1)(i~m-§-2)+
o (

A+ 1) (2 +3)  Hm-

. — ((L+m - 1)l +m)
i/ ”V/ T s + TEeQE S,
T
{M03,C;:n} = =1 Z(l + 2)\/5‘:‘1})(—21’:—3—54{;&;7“

m? 8
PN /T R T S IY Btcim _\/- 150
TN @ G em | 3590 6

It is instructive to compare these formulae with those given by Gelfand,
Minlos and Shapiro [6]. Let us imagine that the vacuum state i.e. the state
|0) such that

Ql0) =0, cim [0) = 0, M, 10) =0

is acted upon by both sides of the above equations. One obtains then the
formulae identical with those given by Gelfand, Minlos and Shapiro (Ref. [6],
page 199, Eqs (13), (14), (15) and (16)) in the special case lp = 1,11 =0, [p
and I; being the parameters of an irreducible representation of the proper,
orthochronous Lorentz group introduced by Gelfand, Minlos and Shapiro.
One sees thus that for Q = 0 our states ¢}’ |0) are identical with the states
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of Gelfand, Minlos and Shapiro i.e. they span an irreducible representation
of the proper, orthochronous Lorentz group corresponding to the special
choice of parameters [y = 1 and {; = 0. In general, however, Q # 0 and our
formulae describe the kinematical content of the case Q # 0. Dirac, who
seems to have discovered much of the present theory 7], describes the case
Q # 0 as “pathological” although there is nothing pathological in it: it is
Jjust the kinematics of the electric charge implicit in the Maxwell equations!
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