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0Odd-dimensional Riemannian spaces that are non-orientable, but have
a pin structure, require the consideration of the twisted adjoint represen-
tation of the corresponding pin group. It is shown here how the Dirac
operator should be modified, also on even-dimensional spaces, to make
it equivariant with respect to the action of that group when the twisted
adjoint representation is used in the definition of the pin structure. An
explicit description of a pin structure on a hypersurface, defined by its im-
mersion in a Euclidean space, is used to derive a Schrédinger transform
of the Dirac operator in that case. This is then applied to obtain —in a
simple manner — the spectrum and eigenfunctions of the Dirac operator
on spheres and real projective spaces.
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1. Introduction

Most of the research on the Dirac operator on Riemannian spaces is re-
stricted to the case of orientable manifolds. It is of some interest to treat also
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the non-orientable case that requires the introduction of pin structures. In
physics, even in the orientable case, one considers spinor fields transforming
under space and time reflections, which are covered by elements of a suitable
pin group. The generalization to the non-orientable case involves interest-
ing subtleties. First of all, for a real vector space with a quadratic form
of signature (k,!), the Clifford construction yields two groups, Ping; and
Pin; j, which need not be isomorphic; see (1] and Sec. 3.1 for a precise state-
ment. This fact is of interest also to physics [2]. There are non-orientable
spaces with a metric tensor field of signature (k, ) admitting either a Piny, ;-
structure or a Pin; j-structure. If a space admits a Spiny, ;-structure, then
it is orientable and admits both these structures. Real projective spaces
and quadrics provide the simplest examples of such situations [3-5]. If the
dimension k + [ is even, then one can use either the adjoint or the twisted
adjoint representation of Piny ;. If one uses the twisted adjoint representa-
tion, as one has to do when k + [ is odd, then the classical Dirac operator
(see, e.g., [6-8]) needs to be modified to make it equivariant with respect to
the action of the pin group |5, 9]. In this paper, the relation between the
adjoint and the twisted adjoint representation of the pin group is considered
in some detail (Section 3). In Section 4, the definition of spin and pin struc-
tures is illustrated on the example of spheres and real projective spaces. The
form of the modified Dirac operator is recalled in Section 5. A canonical pin
structure on a hypersurface immersed in a Euclidean space is described in
Section 6 and shown to have a trivial associated bundle of ‘Dirac’ or ‘Pauli’
spinors . A convenient formula for the ‘Schrédinger transform’ of the mod-
ified Dirac operator on such hypersurfaces is derived in Section 7. As an
illustration, the spectrum and the eigenfunctions of the Dirac operator on
real projective spaces are found on the basis of the corresponding results for
spheres (Section 8).

2. Notation and preliminaries

This paper is a continuation of [5] and [9]; it uses the notation and
terminology introduced there. To make the paper self-contained, some of
the notation is summarized below.

2.1. Clifford algebras and pin groups

Throughout this paper, by an algebra I mean an associative algebra
with a unit element. A homomorphism of algebras is understood to map
one unit into another. A representation of an algebra is a homomorphism
of the algebra into the algebra End S of all endomorphisms of a vector
space S. If V is a finite-dimensional vector space, then V* denotes its dual
and the value f(v) of the l-form f € V* on v € V is often denoted by
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(v,f). fh: V — W is a linear map (homomorphism of vector spaces),
then its transpose *h : W™ — V* is defined by (v,*h(f)) = (h(v), f) for
every v € V and f € W*. Let V be a real, m-dimensional vector space
with an isomorphism h : V — V* which is symmetric, h = *h, and such
that the quadratic form V — R, given by v — (v, h(v)) is of signature
(k,1), £ +1 = m. One says that the pair (V,h) is a quadratic space of
dimension m and signature (k,[). The corresponding Clifford algebra (see,
e.g., [1, 8, 10))
Cl(h) = C1°(h) ® CI*(h),

contains R@V and is Z;-graded by the main automorphism a characterized
by a(1) = 1 and a(v) = —v for every v € V. Every a € Cl(h) is decomposed
into its even and odd components, ag and aq, respectively, such that a, €
CI*(h) and a = ag + a1 = a(ag — a1). For every v € V, its Clifford square
is v2 = (v,h(v)). Assume V to be oriented and let (ej,...,em) be an
orthonormal frame in V of the preferred orientation. The square of the
volume element vol(h) = ey ...€ep, is

vol(h)? = i(h)?, where i(h)€ {1,i}.

For every v € V omne has vol(hjv = (—1)™%1vvol(h). Therefore, if m is
even, then a is an inner automorphism, a(a) = vol(h) a vol(h)~1.
It follows from the universality of Clifford algebras that the Clifford
map
V — Cl(h), v+ vol(h)v,

extends to the homomorphism of algebras,
3 CY(-1)"™TYi(h)?R) — Cl(h), (1)

such that j(1) = 1 and j(v) = vol(h)v for v € V. For m even, this ho-
momorphism is bijective and respects the Z-grading of the algebras. If
m is even and vol(h)? = 1, then j : Cl(-h) — Cl(h) is an isomorphism
of algebras. If m is even and vol(h)? = —1, then the algebras Cl(h) and
Cl(—h) are not isomorphic and j is an inner automorphism of Cl(h) given
by j(a) = %(1 + vol(h))a(l - vol(h)). If m is odd, then the homomorphism
(1) is onto the even subalgebra CI°(h). In this case, the volume element
corresponding to vol(h)?h has a positive square. Therefore, if m is odd
and h is such that vol(h)? = 1, then j(vol(h)) = 1 and there is the exact
sequence of homomorphisms of algebras,

0 — Cl™(h) — CI(h) & CI°(h) — 0,

where C17(h) = {a € Cl(h) : vol(h)a = —a} is the subalgebra of anti-
-selfdual elements of Cl(h). There is no analogous sequence for m odd and
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h such that vol(h)? = —1. For m odd, the algebras Cl(h) and Cl(-h)
are never isomorphic. The algebras C1°(h) and C1°(—h) are isomorphic
irrespective of m and h. An element u € V is said to be a unit vector
if either u? = 1 or u* = —1. The group Pin(h) is defined as the subset
of Cl(h) consisting of products of all finite sequences of unit vectors; the
group multiplication is induced by the Clifford product.! The spin group
is Spin(h) = Pin(h) N C1°(k). The Lie algebra spin(h) of Spin(h) can be
identified with the subspace of C1°(h) spanned by all elements of the form
uv — vu, where u,v € V. The Lie bracket in spin(h) coincides with the
commutator induced by the Clifford product.

If V = R**! and one wants to specify the signature (k,1) of h, then one
writes voly ;, Cly;, Ping; and Spin, ; instead of vol(h), Cl(h), Pin(h) and
Spin(h), respectively; a similar notation is used for the orthogonal groups
O(h) and SO(h). Since the groups Spin(h) and Spin(—h) are isomorphic,
one writes Spin,, instead of Spin,, ¢ = Sping ,,. Since vol%n‘o = volgﬂn
one can also write volz, instead of voly, ¢ or volg 2n.

2.2. Notation concerning smooth manifolds and bundles

All manifolds, maps and bundles are assumed to be smooth; manifolds
are paracompact and bundles are locally trivial. f » : £ — M and o :
F — N are two bundles , then the pair (f, f') of maps f : M — N and
f' 1 E — F is a morphism of bundles if o o f' = f ow. A bundle is trivial
if it is isomorphic to a Cartesian product of its base by the typical fiber. A
map s : M — FE is a section of = if m 0 8 = id py. For every manifold M,
there is the tangent bundle TM — M. If f : M — N is a map of manifolds,
then Tf : TM — TN is the derived map of their tangent bundles and
(f,Tf) is a morphism of bundles. For z € M, there is the linear map
T.f : T, M — Tf(z)N of the fiber T, M of the bundle TM - M into the
corresponding fiber of the other bundle. Given a bundle o : F — N and a
map f: M — N, one defines the bundle = : E — M induced by f from
o as follows: F = {(z,9) ¢ M x F : 0(q) = f(z)} and w(z,q) = =. There
is then also a canonical map, f' : E — F, given by f'(z,q) = ¢ and the
pair (f, f') is a morphism of bundles. A Riemannian space is a connected
manifold M with a metric tensor field g which need not be definite; if it
is, then one refers to M as a proper Riemannian space. For every ¢ € M,
the metric tensor defines a symmetric isomorphism g, : To M — To*M. If
M is a Riemannian space, then there is a quadratic space (V, h) such that,

! This definition of the pin group follows [5, 8, 11] and can be traced to Cartan,
see Sections 12, 97 and 127 in {12]. An equivalent definition, using the notion
of spinor norm, and based on the (semi-)simplicity of the Clifford algebras, is
in [13, 14).
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for every z € M, there is a linear isometry p : V — T, M, i.e. a linear
isomorphism such that 'po g, o p = h. One says that (V,h) is local model
of the Riemannian space and that p is an orthonormal frame at z. If (e, )
is an orthonormal frame in V', then p can be identified with the collection
of vectors (p, ), where p, = p(e,), p=1,...,m =dimV = dim M.

I w is a differential form on a manifold, then dw is its exterior derivative.
Wedge denotes the exterior product of forms. If X is a vector field on M and
wisa (p+1)-form, then X ;w is the p-form such that (X tw)(X1,...,Xp) =
w(X, Xy,..., Xp) for every collection (X1, ..., X,) of vector fields on M. In
particular, if f : M — R and X is a vector field, then X ,df = (X,df) =
X (f)is the derivative of the function f in the direction of the vector field X.

By a group is meant here a Lie group; a subgroup is a closed Lie sub-

group. An exact sequence of group homomorphisms 1 — K el H -1
s : . 1
is said to define G as an eztension of H by K. Two extensions, K et H

and K 5 g' & H, of the group H by the group K, are equivalent if there
is an isomorphism of groups f: G — G’ such that fok =k'and l'o f = L.
Given a representation v : G — GL(S) of the group G in a vector space §
and a homomorphism ¢ : ¢ — G' of groups, one says that a representation
7'+ G' — GL(S) extends v (relative to ¢) if Yot = 7.

A principal bundle with structure group G (‘principal G-bundle’) and
projection 7 of its total space P to the base manifold M is sometimes
represented, symbolically, by the sequence G — P 5> M. The group G is
assumed to act on P to the right: there is a map é : P X G — P such
that, if §(a)(p) = é(p,a), then 7o d(a) = =, é&(a) o §(b) = 8(ba) and
4(1g) = idp, where p € P, a.b € G and 1g is the unit of G. One writes
pa instead of §(p,a). A principal bundle admitting a section f is trivial,
t.e. isomorphic (in the category of principal bundles) to the product bundle
M x G — M; a trivializing map (isomorphism of principal bundles) is given
by (z,a) — f(z)a, where 2 ¢ M and a € G. Let there be given a left
action of the group G on the manifold S, 1.e. amapv: G x § — § such
that, if y(a)(¢) = 7(a,¢), then y(a) o y(b) = y(ab) and y(1g) = ids for
every a,b € G and ¢ € 5. OUune then defines the bundle =g : E — M,
associated with P by ~. Its typical fiber is § and its total space E, often
denoted by P x §, is the set of all equivalence classes of the form [(p, )],
where (p,¢) € P x § and (¢, ¢')] = [(p,¥)] if, and only if, there exists
a € G such that p' = pa and ¢ = vy(a)¢'. The projection is given by
T5([(p, ¢)]) = 7(p). If § is a vector space, then the associated bundle is a
vector bundle. A homomorphism ¢ : G — G' of groups defines a left action
of G on G', viz. (a,b) — t(a)b, where a € G and b € G'; the corresponding
bundle P x, G' — M, associated with P — M, is a principal G'-bundle.
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3. Representations of the pin groups

3.1. The vector representations

For every invertible v € V, the map v — —uvu~! is a reflection in

the hyperplane orthogonal to the vector u; this observation leads to the
definition of the twisted adjoint vector representation p of the group Pin(h)
in V: for every a € Pin(h) the map p(a):V — V, given by

p(a)v = a(a)va™ (2)

is orthogonal,
*p(a)o hopla) = h, (3)

and there is the exact sequence of group homomorphisms
1 — {1,-1} — Pin(h) 5 O(h) — 1.

Replacing in (2) the vector v by the uth vector e, of an orthonormal frame
in V, one obtains

evp” , (a) = ala)ea™t. (4)
In this equation, and elsewhere in this paper, there is tacitly assumed a sum-
mation (the Einstein convention) over the range of tensor indices appearing

in contragredient pairs.
The adjoint vector representation Ad is defined by

Ad(a)v=ava™?

and leads to the exact sequences of group homomorphisms

{1, -1} . Ad | O(h) for m even,
1- {{1,-1,v01(h),—vol(h)}} — Pin(h) — {so(h)} -1 {for m odd.

The homomorphisms p and Ad coincide when restricted to Spin(h). For
every quadratic space (V,h), irrespective of the parity of m, there is the
exact sequence

1 — Zy — Spin(h) & SO(h) — 1, (5)

where Z; = {1, -1}.

For every even-dimensional quadratic space (V,h), one can consider
four central extensions of O(h) by Zz, associated with the groups Pin(+h),
namely

p and Ad:Pin(h) — O(h), and p and Ad:Pin(-h) — O(h),
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but, in each case, only two among the four are inequivalent. Indeed, if m is
even, then

p=Adoj (6)

as may be seen by checking that both sides of (6) coincide on the generating
subset V. More precisely:

(i) if vol(h)? = 1, then the extensions

Zy — Pin(+h) 2% O(h)

are equivalent to the corresponding extensions
Z; — Pin(xh) 5 O(h);

(ii) if vol(h)? = —1, then the extensions
Zy — Pin(+h) 2% O(h)
are equivalent to the corresponding extensions
Zy — Pin(+h) & O(h).

To summarize, we have
Proposition 1. For every real quadratic space (V,h), there are two in-
equivalent central extensions of O(h) by Z;, given by

Zy — Pin(h) 5 O(h) and Z, — Pin(—h) 5 O(h), (7)

where p is as in (2). By restriction to Spin(h) each of these extensions
reduces to the one given by (5).

Note that for k£ = [ (neutral signature) the groups Pin(h) and Pin(—h)
are isomorphic, but the extensions (7) are not. There are also extensions
of O(h) by Z; that do not come from the Clifford construction {15]. The
(untwisted) adjoint representation seems to be the first to have attracted
attention. It has been much used by physicists in the theory of the Dirac
equation of the electron; see, e.g., [6,16]. The twisted representation is im-
plicit in E. Cartan’s approach to spinors, see §58 and §97 in [12]. Explicitly,
it has been defined by Atiyah et al. in [17]. It follows from the preceding
remarks that, for even-dimensional spaces, one can use either of the two
representations, but in the case of odd dimensions, only p provides a cover
of the full orthogonal group. For this reason and for uniformity, from now
on, only p is used in the definition of pin structures.
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3.2. The spinor representations

In this paper, by a spinor representation of a group Pin(h) or Spin(h) is
understood a representation obtained by restriction, to the group, of a rep-
resentation of the algebra Cl(%) in a finite-dimensional complez vector space
S, the space of spinors. If v : Cl(h) — EndS is any representation of the
algebra, then the group representation, obtained by restriction to Pin(h),
is denoted by the same letter v; similar abuses of notation and terminology
are made throughout the paper. Given an orthonormal frame (e,) in V,
one defines the ‘Dirac matrices’ (automorphisms of §) by v, = v(e,). The
following Proposition summarizes well known facts about complex repre-
sentations of real Clifford algebras {5, 8, 10, 17].

Proposition 2. Let (V,h) be a quadratic space of dimension m and let v
denote a positive integer.

(i) If m is even, m = 2v, then the algebra Cl(h) is central simple and,
as such, has only one, up to equivalence, faithful and irreducible Dirac
representation vy in a vector space S, which turns out to be of complex
dimension 2”. The restriction of ¥ to C1°(h) decomposes into the direct
sum 4+ @ y— of two complex-inequivalent Weyl representations. In a
notation adapted to the decomposition § = §, @ S_ of the space of
Dirac spinors into the direct sum of the spaces Sy and S_ of Weyl
spinors, the Dirac matrices are of the form

(0 v
7“*(7;’“’ 0>'

(ii) If m is odd, m = 2v — 1, then the algebra C1°(h) is central simple and
has a faithful and irreducible Pauli representation in a space of complex
dimension 2. This representation extends to two representations,
o and o o a, of the full algebra Cl(R) in the same space, by putting
ag(vol(h)) = i(h)id. These representation, also referred to as Pauli
representations of Cl(h), are complex-inequivalent and irreducible, but
faithful only when i(h) = i. A faithful, but reducible, Cartan represen-
tation ¥ of Cl(h) is defined asy = o ® (g o). Therefore, ifo, = o(e,),

then
_f{ou 0
= ( 0 “‘7#) '

The commutant of the Cartan representation v is generated by y(vol(h)).
The elements of the carrier spaces of the representations ¥ and o are
now called Cartan and Pauli spinors, respectively.
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The names of Dirac, Weyl and Pauli are used by physicists mainly in
connection with spinors associated with vector spaces of low dimension. In
mathematics, the Weyl representations 4 are usually denoted by A¥ and
sometimes referred to as half-spinor representations [8, 13]. The Cartan
representation seldom appears because it is decomposable. In this paper, 1
identify the representations by using one of the above names; thus the letters
v and 7' can denote any one of the spinor representations, depending on
the context.

If v : Ci(h) — EndS is as in Prop. 2, then the helicity automorphism
of the representation v in § is 7(vol(h)) = 71...7m so that Weyl (resp.,
Pauli) spinors are its eigenvectors for m even (resp., odd). The foregoing
remarks can be supplemented by
Proposition 3. Let (V, k) be a quadratic space of dimension m = 2v (resp.,
2v —1). There is a faithful representation vy of the Clifford algebra Cl(h) in a
complex vector space S of dimension 2¥ such that the representations vy and
v o a are complex-equivalent. The representation is unique, up to complex
equivalence, and irreducible (resp., decomposable into two irreducibles). By
restriction to the even subalgebra CI°(h), the representation ¥ decomposes
into the direct sum of two irreducible representations, each defined in a
complex space of dimension 2¥~!. The isomorphism 7,4 intertwining the
representations 4 and y o a can be taken to act on the Dirac (resp., Cartan)

spinor (¢, ¥) so that v +1(p, ¥) = (ip, —i¢) (resp., Ym+1(9, ¥) = (=¥, 9))-
Irrespective of the parity of m, one has

Vot1 = —ids and Ymi17e + VeYmi1 = 0, (8)

foru=1,...,m.

The intertwining isomorphism is not unique; see [5] for a precise state-
ment on the ‘Dirac intertwiner’ iy,,43. By applying a spinor representation
¥ to both sides of (4), one obtains

Vv P¥ u(a) = 7y o a(a) v, 7(a). (9)

3.3. Extension of a spinor representation from dimension m to m+ 1

For every pair (k,!) of non-negative integers, there is the isomorphism
of algebras,

t:Clg,; — Cl?c,l+1 given by «(ag + a1) = ap + a1€4+i41 -

Proposition 4. If4' is a representation of Cly ;.1 in a complex vector
space (of spinors), then ¥ = y'o ¢ is a representation of Cli; in the same
space. In particular:
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(i) If k + | is even and 4' is a Pauli representation, then 7 is the Dirac
representation.

() If k + | is odd and v' is the Dirac representation, then v is the Car-
tan representation. Moreover, if 4!, are the Weyl components of v', i.e.
7’|Cl?c’l+1 =7\ ®vL, then y4+ = v} o are the Pauli components of v, i.e.
Y=Y+ 07—

Proof. Since ¢ is injective, if ' is faithful, then so is 4. In case (i), the
Pauli representation v’ is faithful unless V°1¥c,l+1 =11f VOIi,H—l = 1, then

the kernel of 4’ is either the subalgebra Cl;: 141 of selfdual elements or the

subalgebra Cl;,l+1 of anti-selfdual elements of Cly ;1,, see Sec. 2.1. Since
CI;:H_I N Cl(l::,l+1 = {0}, the representation v = v'o ¢+ is faithful in every
case when m = k + [ is even. In case (7)), the Dirac representation y' of
Clg,;141 in § is faithful. Therefore, the representation v is also faithful.
Let v; = v'(ei), ¢ = 1,...,m+ 1 = k 4+ | + 1, be the Dirac matrices.
Then v o a(ae) = 7m+17(a)7;1+1 for every a € Cl;; and, by Prop. 3, v
is the Cartan representation. Since y(e;) = y'(eiem+1) = YiYm+1 for
t = 1,...,m, the helicity automorphisms of 4’ and ¥ = ¥'o ¢ are equal.
Therefore, the decompositions of § into spaces of Weyl and Pauli spinors
coincide. U

By iteration of the above, one can obtain, for k +1 odd, two Pauli repre-
sentations of Cl, ;. extending the Cartan representation of Clg,;. Similarly,
for k + | even, there are two Weyl representations of Clz‘ 1+2 extending the
Dirac representation of Cly ;. One cannot, however, go beyond that without
changing the dimension of the space of spinors underlying the representa-
tions.

By restriction, the isomorphism of algebras ¢ gives rise to the monomor-
phism of groups

¢:Ping ; — Sping 14 ;. (10)

The corresponding monomorphism of the (pseudo-)orthogonal groups,
k:0Opg i — SO 141 suchthat kop=pour, (11)

satisfies k(A) e, = Aey, p=1,...,k+l,and K(A4) egq 141 = (det A) egp 141
for every A € Oy ;.

By restricting the representations 4’ and v, referred to in Prop. 4, to
the groups Ping ;1 and Pin ; one obtains representations of pin and spin
groups; there are statements about extensions of spinor representations of
these groups analogous to those appearing in the Proposition.
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4. Pin structures and bundles of spinors
4.1. Definitions

Let (V, h) be a local model of an m-dimensional Riemannian manifold
M and let # : P — M be the bundle of all orthonormal frames of M. A
Pin(h)-structure on M is a principal Pin(h)-bundle w : Q — M, together
with a morphism x : @ — P of principal bundles over M associated with the
epimorphism p : Pin(k) — O(h). The morphism condition means that w =
7 o x and that, for every ¢ € Q and a € Pin(h), one has x(ga) = x(q)p(a).
The expression Piny ;-structure is used when one wants the signature of &
to appear explicitly. For brevity, we shall describe a Pin(h)-structure by
the sequence

Pin(h) - Q 5P 5 M. (13)

t

Another pin structure over the same manifold M, Pin(h) — Q' XpAiM
is said to be equivalent to the structure (13) if there is a diffeomorphism
f:Q — Q' such that x' o f = x and f(ga) = f(¢)a for every ¢ € Q and
a € Pin(h).

If M is orientable and admits a Pin(h)-structure, then it has a spin
structure. In an abbreviated style, similar to that of (13), it may be de-
scribed by the sequence of maps

Spin(h) —» SQ — SP - M, (14)

where SP is now an SO(h)-bundle. One often abbreviates the expression
‘M has a spin structure’ to ‘M is spin’. Equivalence of spin structures is
defined similarly to that of pin structures.

Let M be a Riemannian space with a Pin(h)-structure (13) and let ¥
be a spinor representation of the group Pin(h) in S, as described in Prop. 2.
The complex vector bundle 75 : E — M, with typical fiber §, associated
with Q by «, is the bundle of spinors of type y. If the dimension m of
M is even (resp., odd), then E is called a bundle of Dirac (resp., Cartan)
spinors. For m odd, m = 2v — 1, one can also take the representation
o : Pin(h) — GL(2Y7!,C) to define the bundle of Pauli spinors over M.
Similarly, if m is even and M has a spin structure, then there are two
bundles of Weyl spinors over M.

Let M be a Riemannian manifold with a pin structure (13). A spinor
field (some authors say: a ‘pinor’ field) of type v on M is a section of 7.
The (vector) space of such sections is known to be in a natural and bijective
correspondence with the set of all maps ¥ : @ — S equivariant with respect
to the action of Pin(h), % o 6(a) = y(a™1)y, for every a € Pin(h). It is
convenient to refer to v itself as a spinor field of type v on M. Depending
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on whether F is a bundle of Dirac, Weyl, Cartan or Pauli spinors, one refers
to its sections as Dirac, Weyl, Cartan or Pauli spinor fields, respectively.

The existence of a pin (or spin) structure on a Riemannian manifold M
imposes topological conditions on M. They are expressed in terms of the
Stiefel-Whitney classes w; € H*(M,Z;) associated with the tangent bundle
of the manifold; see, e.g. [1] and the applications of the Karoubi theorem
given in [3-5].

4.2. Remarks on the triviality of associated bundles

Proposition 5. The vector bundle E — M, associated with the prin-
cipal G-bundle Q — M by a representation v of G in S, is trivial if, and
only if, there exists a group G', a homomorphism + : G — G', and an ex-
tension ' : G' — GL(S) of v, such that the associated principal G'-bundle
Q x,G" - M is trivial.

Proof. Indeed, if E is trivial as a vector bundle, then there is a trivializing
map E — M x S, [(¢,¢)] = (7(q),9(q)p), such that g : @ — GL(S5)
and g(ga) = g(q) o y(a) for every ¢ € Q, ¢ € § and a € G. Taking
G' = GL(S) and ¢ = v one sees that v' = id extends y. The principal
bundle @ x, G' — M is trivial because it has a global section corresponding
to the equivariant map e : Q — G', where e(g) = ¢(g)~! for every ¢ € Q.
Conversely, given an extension 7' of ¥ and a homomorphism ¢ : G — G’
such that Q x, G' — M is trivial, there is a map e : Q — G' such that
e(ga) = t(a 1)e(q) for every g € Q and a € G. If g : @ — GL(S) is
given by g(¢) = 7'(e(q) ™), then the map [(g,¢)] — (7(q),9(q)y), which is
well-defined because of ¥’ 0 ¢ = 7, trivializes the vector bundle E — M. [J

If G is a subgroup of G', then there is the principal G-bundle 7 : G' —
G'/G. The action of G on G' given by the left translations defines the
associated principal G'-bundle G' xyG' — G'/G that is trivial: a trivializing
map is given by [(a, b)] — (n(a),ab), where a,b € G'.

Corollary. If there is a representation 4’ of G’ in § extending the represen-
tation 7 : G — GL(S), then the bundle G' x, § — G'/G, associated with
7 :G' — G'/G by 7, is trivial.

Indeed, a trivializing isomorphism is given by [(a, ¢)] — (7(a), v'(a)¥),

where a € G' and p € §.

4.8. Ezamples

A. The spheres. For every m > 1, the unit sphere S, C R™*! has a
unique spin structure described by

Spin,,, — Spin,, 11 = SOm41 — Sme. (15)
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Its bundle of Dirac (m even) or Pauli (m odd) spinors is trivial [18] by
virtue of Prop. 5 and its Corollary. The projection @ : Spin,,; — Sm is
given by w(a) = aentya !, where (e1,...,em+1) is the canonical frame
in R™*!. Consider a Dirac or a Pauli representation of Spin,, in GL(S)
and let 7' be one of its extensions to Spin,, ;. For every ¥ : §,, — § the
map ¥ : Spin,,,  ; — § given by ¥(a) = y'(a™!) ¥(w(a)) is a spinor field on
the sphere; every such field can be so obtained. This observation is implicit
in the work of Schrédinger [19] on the Dirac equation on low-dimensional
spheres; see also [20].

Remark 1. Consider the group Spin,,,, as a subgroup of Ping,m41 or

Piny,43,0. The map ¢ : Spin,,,,; — Spin,, ., given by ¢(a) = e i3 ae;il
is an involutive automorphism of Spin,,, , ;, preserving the subgroup Spin,,.

If r: S, — S, is the symmetry z +— epnq4a zemil, then wo¢ = Tow.
Since ¢(ab) = ¢(a)b for every b € Spin,,,, the pair (7,¢) is an automorphism
of the spin structure of the sphere and if v is a spinor field, then so is
e = og. If mis even and b is an odd element of Ping m, or Ping, ¢, then
w(abvol,,y1) = —w(a); if m is odd, then w(avol,41) = —w(a).

Remark 2. The case of m odd, m = 2v — 1, deserves an additional com-
ment. There are two Weyl representations y4 and y_ of Spin,, in St
and §_, respectively. By restriction to Spin,,_;, they give two equiva-
lent Pauli representations: there is an isomorphism § : Sy — S_ such
that 6 o y4+(b) = 7—(4) o 8 for every b € Spin,, ;. For every a € Spin,,,
the linear map y_(a) o 8 0 y4(a7!) is an isomorphism of 4 on S_; as
a function of a it is constant on the fibers of w; therefore, it defines a
map 0 : Sz,_1 — Iso(S4+,5_) such that O(w(a)) o y4(a) = y-(a) o @ for
every a € Spin,,. Since w(avoly,) = —w(a), one has O(—z) = —O(z)
for every ¢ € S3,1. The representations vy give rise to the associated
bundles Spin,, X, S+ of Pauli spinors ever S;,.31. According to the
Corollary, the trivializing isomorphisms Sping, X, S+ — S2,-1 X §%
are given by [(a,¢1)]+ — (w(a),y+(a)p+), where a € Spin,,, p+ € 54
and [(a,p+)]+ = [(a', ¢} )]+ if, and only if, there is b € Spin,, _; such
that @' = ab and ¢+ = v4(b)¢’.. The two bundles of Pauli spinors are
isomorphic: an isomorphism Spin,, %, §; — Spin,, x,_ §- is given
by [(a, ¢+)]+ — [(a,8(¢+)]- and the corresponding isomorphism Sy, 1 X
S+ — S2p-1 X 8- by (w(a), p+) — (w(a), O(w(a)py).

B. Real projective spaces. Recall that the real, m-dimensional projec-
tive space P, is orientable if, and only if, m is odd. There is the canonical
map S, — P, z — [2] = {z,—z}. The symmetry 7 of S,,, defined in
Remark 1, descends to a symmetry 7' of Pp,, 7'([2]) = [r(2)] for z € Sip,. If
k is a positive integer, then

vol2, =1, but VO}.EIH_Z =-1,
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2 _ 2 _ 2 — 2 —
and V014k+1,0 e v010‘4k+3 — 1 3 but V014k+3’0 —_ V010’4k+1 . “‘]. .

To treat simultaneously the spaces Pyy and P4y o, define

Pinj, = Pinyr o and volj,,; = volyky1,0 for k even,
and Pinj, = Ping 5, and volj;,; = voly zk41 for k odd.

For m even there is the monomorphism of groups [ : O,, — SO, 41 given by
[(A)e, = (det A)de, for p = 1,...,m and I(A)e+1 = (det A)epny1. By
an argument similar to the one used in [5] to determine the spin structures
on real projective quadrics it follows that:

(i) The space P41 has no spin structure.
(i) The space Py has two inequivalent Pinj,-structures (+) and (-),

a3k .
Pingy — Spinggiy — SO2p41 = Pak, (16)
corresponding to the two monomorphisms of groups i and i_ given by

, _fa for a € Spinyy ,
ix(a) = { tavoly, ., for a = —a(a)€ Pinjy ,

so that poiy = lop. The bundle of Dirac spinors associated with each of
the pin structures on Py, is trivial: this follows from the Corollary and
the observation that the Dirac representation of Pin}, extends to the
Pauli representation of Spin, ;. The projection w' : Spin, gy — Pog
is given by w'(a) = [w(a)]. The pair (7',<) is now an isomorphism
of one pin structure on P,; onto the other, as may be seen from the
easy-to-check equality ¢(aii (b)) = ¢(a)i_(b) for every a € Spingjyy
and b € Pinj,.
(#ii) The space P45 1 has two inequivalent spin structures,

Spingg_q — Spings/ZE — SO4r/Z2 — Paj—1, (17)

where Z.fzt = {1,+voly} and Z; is the center of SO4;. The bundle
of Pauli spinors associated with each of these structures is trivial [18].
To see this in detail, let @ — [a]y = {a, tavoly;} be the canonical
homomorphisms of Sping;, onto Sping;/ Z;t. The Pauli representation
of Spiny;_; extends to representations 7!, of Spin,;/ Zz,i, descending
from the Weyl representation v4 of Spingy, in S such that y4(volys) =
ﬁ:idsi , namely 721:([0‘]:12) = 7:h(a)'
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The automorphism ¢ descends to an isomorphism of groups,
¢' : Sping,/ZF — Sping,/Z;, such that ¢'([a]+) = [¢(a)]—. The pair
(t',¢') is now an isomorphism of one spin structure on P,_; onto the
other, but not an equivalence of spin structures. The inequivalence of the
two structures described in (i) and (%) is proved in [3].

5. The Dirac operator
5.1. Couvariant differentiation of spinor fields

Let again (13) be a pin structure on an m-dimensional Riemannian
space M. The Levi-Civita connection form on P lifts to a spin (h)-valued
spin connection 1-form w on Q. For every ¢ € @, there is the orthonormal
frame x(q) = (xu(q)) € P, where x,(q) € Tp()M for p = 1,...,m. The
spin connection defines on @ the collection (V) of m basic horizontal vector
fields such that, for u = 1,...,m and every ¢ € @,

Viysw=0 and Toaw(V,(q)) = xulq)-
For every a € Pin(h) they transform according to
V“(qa) = Tqé(a)vu(Q)va,(a)' (18)

Let (e,) be a frame in V and let 4 be a spinor representation of Pin(h) in §.
Defining v# = h*¥v,, where (h*¥) is the inverse of the matrix ({e,, h(ey))),
and using Eqs (3) and (4), one obtains

voa(a)y* = p*,(a”)y" v(a). (19)

Let ¢ : Q — § be a spinor field of type v. Its covariant derivative is a
map V¢ : Q — Hom(V,§) such that, for every v = vte, € V, one has
(v, Vo) = v#V 1), where

V=V, dd.

5.2. The classical and the modified Dirac operators

In the notation of the preceding paragraph, the classical Dirac operator
D! is given by
DY = yHV 9. (20)

According to (18) and (19), the classical Dirac operator maps a spinor field
of type v into a spinor field of type 7y o a.
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Let 94,,4+1 be the isomorphism intertwining the representations v and
v o a, as described in Prop. 2. The modified Dirac operator,

D= ’)’m+1Dd, (21)

preserves the type of the spinor field and the corresponding eigenvalue equa-
tion Dy = Ay is meaningful on non-orientable pin manifolds [5, 9]. To
summarize, one has

Proposition 6. The classical Dirac operator (20) maps a spinor field of
type v into a spinor field of type v o a; the modified Dirac operator (21)
preserves the type of spinor fields.

If the dimension m of M is even, then one can use the vector represen-
tation Ad in the definition of the pin structure on M. The classical Dirac
operator preserves then the type of spinor fields and there is no need for
its modification. Using the decomposition of the space of Dirac spinors into
the sum of spaces of Weyl spinors and the form of the Dirac matrices given
in part (i) of Prop. 2, one can represent the classical and the modified Dirac
operators as

a_{ 0 D~ _({ 0 iD-
D __(D+ 0) and Dw(_iD_,}_ 0 )7

where D¥ are the Weyl operators: they act on Weyl spinor fields and change
their helicity. For an even-dimensional spin manifold, if ¢ is a Dirac spinor
field, then so is ¥,,41%. Therefore, the operators D and —D are equivalent,
-D = ’7m+1D7,.,—11+1, and the spectra of both D and D! are symmetric.

If M is an odd-dimensional spin manifold, then the interesting object
is the Pauli operator Dy = 0%V, acting on Pauli spinor fields. According
to Prop. 2 and 3, one can write

cl _ Dy 0 _ 0 Dy
D ﬁ(O -Do) and D__(DO 0).

In this case, however, the operators Dy and — Dy are not equivalent and
the spectrum of Dy need not be symmetric. Each of the operators Dy and
— Dy is ‘equally good’. In other words, the spectrum of an odd-dimensional
spin manifold is defined only up to ‘mirror symmetry’, A — —A.
Irrespective of the parity of m, if M is a spin manifold and ¢ is a Dirac
or Cartan spinor field, then v,,+1% is a spinor field of the same type. From
(8) one obtains (1 + ¥m+1)"! = 3(1 — Ym+1) and D = (1 + Yma1) D1+
Ym+1)"1 so that if D4 = Ay then Dy’ = Ay', where ¢’ = (1 + Ym+1)¥-
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6. Pin structures on hypersurfaces
6.1. Ezxistence

Let M be a hypersurface in a proper Riemannian spin (m + 1)-manifold
N, defined by an isometric immersion f : M — N. The hypersurface
need not be orientable. The normal bundle T+ M is a line bundle and the
Whitney sum TM @ T M is isomorphic to the pullback of TN to M by
T f. Since N is spin, its first and second Stiefel-Whitney classes vanish and
the Whitney theorem gives

wi(TM)+ wy(T*M)=0 and wy(TM)+wi(TM)w(T+M)=0.

Therefore, according to the Karoubi theorem [1], the hypersurface M has a
Ping, n-structure. For example, since P, is a spin manifold for n = 3 mod
4, and the real projective quadric Q ; = (Si x S;)/Z2 is orientable for k +1
even, the natural immersion Q; — Pry4q gives, for k + 1= 2 mod 4, a
spin structure on the quadric with a proper Riemannian metric, see [4].

According to general theory (8], two immersions of M into N, which are
homotopic one to another, give rise to isomorphic pin structures on M. The
circle S; is known to have two inequivalent spin structures: the trivial one,
Spiny = Zz —» Z2 x U; — U = SOz — S; and the non-trivial structure,
corresponding to the ‘squaring’ map, Spin, = U, 24, U, = S0, Up
to homotopy, all immersions of S; into R? are classified by integers: with
n € Z, n # 0, there is associated the class represented by the immersion
U, — C = R? given by z — z". One can easily verify that the spin
structures on the circle corresponding to immersions with n even (resp.,
odd) are trivial (resp., non-trivial).

6.2. Construction
Let ,
'
Spin,,; - Q@ 5P LN (22)

be a spin structure on N and let # : P — M be the O,,-bundle of all
orthonormal frames on the hypersurface M immersed by f isometrically in
N. Define the map f': P — P' so that if p = (p,) € P and z = 7(p), then
the frame f'(p) = (f!(p)) at f(z) € N (i=1,...,m+ 1) is given by

fu@) = (T f)(pu) for p=1,...,m

and f! . (p) is a unit vector at f(z), orthogonal to T, f(T> M) and oriented
in such a way that f'(p) € P'. It is clear that f' is an injection. Let
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¢ : Ping ;m — Spin,,,; be asin (10) for k =0 and [ =m and let x : O, —
S50 4+1 be the corresponding monomorphism of the orthogonal groups, x o
p =pot Forevery A € O, and p € P, one has f'(pA) = f'(p)r(A4).
Therefore, the pair (f, f') is a morphism of principal bundles. The ping , -
structure on M is now given as a bundle x : @ — P induced from the
bundle x' : Q' — P' by the map f'. Explicitly,

Q={pd)ePxQ :f(p)=x(d")}, x(pd)=p.

The action of Ping,, on Q is given by
(p,q')a = (pp(a), ¢'(a)) (23)

so that x((p,¢')a) = x(p, ¢')p(a) for every a € Ping .

The pin structure on a hypersurface M, constructed in this manner, is
said to be induced by the immersion f: M — N.

Let 4’ : Spin,,, . ; — GL(S) be a spinor representation and let ¢' : Q' —
S be a spinor field on N of type y'. It follows from (23) that its restriction

¥ to Q, ¥(p,¢') = ¥'(¢'), is a spinor field on M of type vy =7y o ¢.
6.3. Spinors on hypersurfaces in Euclidean spaces

As an important special case, consider a hypersurface M immersed in
the Euclidean space R™%? with its standard flat proper-Riemannian metric.
Proposition 7. Let f be an isometric immersion of a hypersurface M
in the Euclidean space R™%1. The pin-structure on M, induced by the
immersion,

Ping,m - Q 3 PS5 M,

is such that the bundle of Dirac (m even) or Pauli (m odd) spinors on M
is trivial.
Since the spin structure (22) of the ambient space reads now

the map f': P — R™*1 x S0,,41, defined in the preceding paragraph, can
be written as f' = (f o w, F'), where

F:P — 80,41 (24)

satisfies F(pA) = F(p)x(A) for every p € P and A € O,,. Let k: P —
M x SO.,41 be the map k = («, F). The definition of @ can be simplified
to read

Q = {(z,a) € M x Spinp 4, : (2, p(a)) € k(P)}.
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Since k is injective, the projection x : @ — P is well-defined. If p = x(z, a),
then the definition of Q implies

F(p) = p(a). (25)

The action of Ping ,, on Q is now given by (z, a)b = (z, ai(b)), where (z,a) €
Q and b € Ping . The bundle @ x, Spin,,,; — M, obtained by extending
the structure group Ping ., of Q to Spin,, , , is isomorphic with the trivial
bundle M x Spin,,,; — M: an isomorphism is given by [((z, a),a')] —
(z,aa'), where (z,a) € Q and a' € Spin,, ;. The spinor representation
y' : Spin,,,; — GL(S) extends vy = 4’ o «. For m even (resp., odd), one
takes 7' to be a Pauli (resp., Weyl) representation, so that v is the Dirac
(resp., Pauli) representation. Applying Prop. 4 to the present case, with
G = Ping,, and G' = Spin,, ., one obtains that the bundle of spinors
@ XS — M is trivial. Let ¥ : @ — S be a spinor field of type y on M, i.e.
Y(z, a(d)) = v(b~)¢(z, a) for every (z,a) € Q and b € Ping,,. The map
Q — S, given by (z,a) — v'(a)¥(z, a), is constant on the fibers of @ — M.
There thus exists a map

vy: M-S (26)

such that
?(z) = 7'(a)d(z,a) (27)

for every (z,a) € Q. Conversely, for every map (26), the Schridinger
transformation (27) defines a spinor field ¥ of type v = ¥' o¢ on M.
An equivalent way of defining the map ¥ associated with the spinor field
¥ of type v is to consider the latter’s extension v’ to the trivial bundle
M x Spin,, ; — M such that ¥'(z,a) = ¥(z,a) for every (z,a) € @
and y¢'(z,ab) = v'(b71)y'(z, a) for every z € M and a,b € Spin,, ;. If
s§: M — M x Spin,, , is the standard section s(z) = (z, 1), then

U=vy'os.

7. A formula for the Dirac operator on orientable hypersurfaces
7.1. The general case

Assume, for simplicity, that the hypersurface M, immersed isometri-
cally in R™%1, is connected, orientable and has been oriented by distin-
guishing a connected component SP of its bundle P of all orthonormal
frames. The pin structure on M, induced by the immersion f, can be now
restricted to the group Spin,, by taking SQ = x~1(§P), see (13) and (14).
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The map (24) restricted to SP defines the Gauss map n: M — S,, C
R™*! of unit normals to M. It is given by n(m(p)) = F(p)em+1 and, by
virtue of (25), for every (z,a) € Q, one has

n(z) =aemira?, (28)
where the product on the right is given by multiplication in Ping ;1. Let

7 be a spinor representation of Ping,m41 in §; by restriction, it gives rise
to representations of its subgroups,

Spin,,, — Spin,,;; — Ping,m+1 X GL(S).

Since the first two arrows are standard injections, there is now no need to
introduce a separate notation for the restrictions and to distinguish v and
7' as in Prop. 4. In particular, for every ¢ = 1,...,m + 1, one has the Dirac
matrix y; = y(e;) and

if oy =vivj+ 65, then o4 +0j; =0 (29)

fori,j=1,...m+ 1.
The following identities are useful:

ViGik = VY57k) + SikY5 — 6ijves (30)
0Tkt = ViV VkVY + Gik0i1 — 8600 + 8510ik — 610k + Sk — Gikbjt»
(31)

where it is understood that there is antisymmetrization over the indices
included in square brackets. By applying v to both sides of (28), one obtains,
for every (z,a) € Q,

n(z) = y(a)Ym+17(a™!), where n=yon= Zni%‘- (32)

K1

According to Prop. 6, the modified Dirac operator D maps a spinor
field 7 of type v into a spinor field of the same type. There thus exists a
linear differential operator D, the Schrodinger transform of D, acting on
maps from M to §, such that

v(a)(D¥)(z,a) = (D¥)(<), (33)
where (z,a) € Q and ¥ is given by (27). Symbolically,

D = y(a)Dy(a”Y).
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Since D anticommutes with v,,.1, one obtains from (32)
Dn+nD=0. (34)

Let 9; denote the (constant) vector field on R™"! given by differentiation
with respect to the ith Cartesian coordinate z;, i.e. ;¢ = e; s dy for every
function ¢ on R™*!. The field of unit normals, n = > ;n; 0;, defines a
collection of %m(m + 1) vector fields n;0; — n;0; (1 <i<j<m+1)
tangent to the hypersurface.

To determine explicitly the Schrédinger transform D of the modified
Dirac operator, consider the extension 3’ of a spinor field of type v on
M defined at the end of Sec. 6.3. The connection form on §Q extends
to a spin,, ; -valued connection form (w;;) on M X Spin,, ;. With the
conventions of Eq. (29), the covariant exterior derivative of ¢’ is

hor d¢p' = dy' — %Zaij ng P,
tyJ

The connection form pulled back to M by the standard section s is

, .

o— * e . . s .
wij = 8 wi; =Ny dn; — n; dn;.

Let ¢ = dzy A...Adz,;,11 denote the canonical volume form on R™*! and
let ¢; = e; se so that dy Ae; = € 8;9 and wyy A g; = (nding —n0ing) € on
M. Noting that the m-form n se is the volume form of the hypersurface,
using an expression of the Dirac operator with the help of differential forms
[9, 24] and pulling it back to M by the section s, one obtains

(n1e)D¥ = Zﬂij n;n ((d!P - %Zaklwklg’) /\sj) .

5 k.l
With the help of Eqs (30) and (31) one finds

'D:Zaijniaj+%divn, (35)
i

where the ‘intrinsic divergence’ div is given by

divn = z(éij —n;n;)oin;.

iJj

The differential operator Zi, j ijni 0j has been studied by Delanghe
and Sommen [21] who refer it to an unpublished thesis by Lounesto; see



1304 A. TRAUTMAN

also {22, 23] and the bibliography given there. The divergence term in (35)
is essential for D to correspond to the intrinsic (modified) Dirac operator
on M. In the special case when M is the hyperplane given by z,,4+1 = 0,
one has n; = §; m41 and D reduces to Y41 ZT:I YOy

7.2. The case of odd-dimensional hypersurfaces

If the hypersurface M is odd-dimensional, m = 2v — 1, and orientable,
then it is enough to consider its bundle of Pauli spinors, which is of fiber
dimension 27!, Let v;, i = 1,...,2v, be the Dirac matrices associated
with the ambient space R% and put 2,41 = 71 .. .72,- The matrix y2,41
is unchanged by the Schrédinger transformation; its eigenvectors are Pauli
spinors and the space of Cartan spinors S, associated with M, decomposes
into the sum S, @ S of spaces of Pauli spinors. Since y2,41 commutes
with the operator D (and also with D), it suffices to consider eigenfunctions
of D with values in one or the other space of Pauli spinors; see Remark 2 in
Sec. 4.3; it applies, mutatis mutandis, to all odd-dimensional hypersurfaces
in R™*1. Taking the Dirac matrices +; in the form described in part (i) of

Prop. 2 one can write
n— 0 n—
“A\nt 0 )

where, for every z ¢ R™11, nﬂ:(:c) : 54+ — S%. The matrices o;;, corre-
sponding to even elements of the Clifford algebra, preserve the helicity,

+
oo [T O
Y 0 o)

The same is true of the Dirac operator,
Dt 0
b= ( 0 D‘) ’

DERF £ nFDF = 9.

If #: M — Sy is an eigenfunction of Dt with eigenvalue )\, then n*& :
M — S_ is an eigenfunction of D~ with eigenvalue —A.

and (34) gives

7.8. The case of a foliation of R™*! by hypersurfaces

Consider an open subset U of R™*! foliated by a family of hypersur-
faces. The Gauss map defines now a field n on U. Let 8/9r = ), n;0; be

the derivative along n. Define the classical Dirac operator in R™*! as

8 = Z’yiai.



The Dirac Operator on Hypersurfaces 1305

A simple computation, based on (29) gives

nG:Dw(—(‘?—-}—%djvn) . (36)
or
Similar formulae, expressing the split of the Dirac operator D on a manifold
with boundary into parts tangential and transversal to the boundary, are
used in the index theory of D [7, 25].

For m odd, in the notation of Sec. 7.2, one has

(0 &
o= (8 7).

nTot = pt (g— + —lz—divn) .
or

Eq. (36) gives now

8. Applications
8.1. The spectrum of the sphere Sy,

Let the integer m be > 1. The set U = {z = (:c ) e R™H 1z £ 0} is
foliated by the spheres » = const. > 0, where r = ( +.. +mm+1)1/2 Since
now n; = z;/r, one has divn = m/r. The diﬁ'erentlal operators r(n;0; —

n;0;) generalize the operator L = 7 x § of ‘orbital angular momentum’ and
the operator r ; Oij n;0; corresponds to the ‘s in-orbit coupling’ term
P j P p pung

&L of quantum mechamcs in R3. If » = 1, then, by virtue of (31),
2
(Zdijz‘iaj) + (m — 1)Zﬂijziaj +A=0,
i,J i,J

where A is the Laplace operator on S,,. Together with (35), this gives
(D-3m)(D+3m—-1)+A=0.

If¥ :S,, — § is an eigenfunction of D, then it is also an eigenfunction of A.
Every eigenvalue of A on S,, is known to be of the form —[(/4+-m~—1) for some
1=0,1,.... Therefore, if D¥ = AW, then (A~ 1m)(A+Fm— 1) = [(I4+m~-1),

i.e. elther}\'- 1+ 2mor)\ = ] - §m+1 If DY = (- m—{-l)![’ then
A¥ = 0; therefore, ¥ is a constant and (35) gives D¥ = im@. Since
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m # 1, the equality (—%m + 1) = %m!? implies ¥ = 0 and so the number
-%m + 1 is not an eigenvalue: the spectrum of D on S,, is contained in the

set {+(I+1m):1=0,1,...}.

(i) m even. To show that every element of this set is an eigenvalue and
to compute its multiplicity, assume first that m is even, m = 2v and let
S be the 2¥-dimensional space of spinors. Consider the space H,, ;(5) of

S-valued harmonic polynomials on R™1, homogeneous of degree I. Since
H,, (5)=H,,(C)® S, one has

dim H,, 1(S) = (8m,1 + 8m,1+1) dim 5, (37)

where
Sm,l = (m+zl_l)-

Let @ be the linear map of multiplication of a function ¢ : R™*! - S by
> ivizi, te. (& €)(2) = Y, vizi $(z). The validity of the following identity
is easy to check:

oz’ —2°9=2e. (38)

If $ is a harmonic polynomial of degree I, then the functions 8(z #) and
x (O @) are also such polynomials.
Lemma 1. For every ¢ € H,, ;(5) one has

(Bx+28)d=—-(21+m+1)&, (39)
88z +2)$=0. (40)

Proof. Since ¢ is homogeneous of degree [, the Euler identity reads
3., 2:0;¢ = I$. Using Eq. (29), one obtains

Z‘yi v;(0iz; + 2;0;)P = Z(G,’j ~ 83;)(6i5 + z;0; +2,0;)P
i3 ¥
=—(2l+m+1)$.

Since & is harmonic, 8¢ = 0, and

& () = - Zﬁf (z;7;®) = -2 Z7,~8i¢ = -28¢. g
,J i

Lemma 2. The sequence

e B Hp 11 (S) 2 Hyp t(5) D Hpy1(8) 2 ... 28520 (41)



The Dirac Operator on Hypersurfaces 1307
is exact and there is a decomposition
Heyo=H,, (S)® H,, ((S), (42)

where

' (8) = {F € Hyp y(S): 8 = 0}

m,l
is the kernel of 8 and
Hy, (S)={z®:8€ H, , ,(5)}.

Proof. To show that the sequence is exact, one notices that 8 H,, ;,1(5) C
H, (S); if & ¢ H (S), then, by (39), & = —(21 + m + 1)"18(=#),
ie. Hl (S) C 8Hp41(5). By virtue of Eq. (40), the vector space
HJ (S) is a subspace of H, ;(5) and the map z : Hl 1 ,(5)— Hp ()
is an isomorphism of vector spaces. The sum (42) is direct because if
¢ € H, (S)nH], (), then Eqs (38) and (39) give 2¢ = —(2/+ m + 1),
thus ¢ = 0. To show that H,,; C H, ,(S)® H,, ,(§) one writes, as a
consequence of (39),

(Ox +2)¢+ 288 =—-(21+m—-1)P.

According to (40), (8= + 2)® € H, ,(S5). Since # is harmonic, £ 8¢ is in
H:,',L‘I(S). Moreover, m > 1 and [ > 0 imply 2! +m — 1 > 0. 1

By virtue of (36), if #' € H, ,(5), then the restriction ¥' of &' to the
unit sphere is an eigenfunction of D,

DY' = (I+im)¥' and ¥'(-z)=(-1)'¥'(z).

forl=0,1,...
Similarly, if " € Hgm,H—l(S) then, by virtue of (39), the restriction ¥"
of " to the unit sphere satisfies

DY — -(l—i— %m)?" and W"(—z) — (~1)1+1g;ll(z)

for [ =0,1,....
According to Lemma 2 the vector spaces H, ,(5) and H;’l’l‘H(S) are
isomorphic and

dim Hom 1 11(8) = dim B, o(5) + dim Bl 11(5). (43)
Writing dim H], ,(S) = p,,,1dim § and using (37) and (43), one obtains

Pm,t Pm,l+1 = Sm,l + Sm i+1 -
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Since pm,0 = $m,0 = 1, one has p,,, ; = s,,, ; for every [ = 0,1,....

(i) modd. f m = 2v+1, then § = S & S_ and the spaces of Pauli spinors
S+ are 2”-dimensional. Spinor fields on S, 1 can be identified with maps
from S;,_1 to one of the spaces of Pauli spinors, say § = 54, but it is
convenient to consider sequences such as

8~ ot
. .*'?Hm,[+1(s~) — Hm,l(5+) — Hm,l._l(s._) - ..

They are used to prove suitable modifications of Lemmas 1 and 2. For
example, H, ,(5) is now defined as the kernel of 8" and H) (5+) as the

image of H, , ,(5-)by «~.

Irrespective of the parity of m, every eigenfunction of A on S,, is known
to be the restriction of a harmonic polynomial in R™1?!; therefore, every

eigenfunction of D on Sy, belongs to the restriction of either H, ,(5) or

"
m,l

Proposition 8. Let m = 2v (resp., m = 2v + 1), where v is a positive
integer. The spectrum of the Dirac (resp., Pauli) operator on S, is the set
{£(I+ im):1=0,1,...}. Each of the eigenvalues | + im and -1 - 3m
occurs with the multiplicity 2”(m+ll“1). Let S be the 2" -dimensional space
of Dirac (resp., Pauli) spinors and let ¥ : S,, — § be an eigenfunction of the
Schrédinger transform of the modified Dirac operator. If D¥ = (1 + m)¥,
then ¥ is the restriction of d(x®) to S,,, where ¢ is an §-valued harmonic
polynomial on R™1!, homogeneous of degree l. If D¥ = —(l + 3m)¥, then
¥ is the restriction of #(8%®), where & is a similar polynomial of degree [ +1.

The same result on the spectrum and its multiplicity is quoted in [26]
and derived in [27], by a method different from the one presented here; see
also [28].

(S) for some !l = 0,1,.... To summarize, one has

8.2. Application to real projective spaces

The simple description of the spectrum of the Dirac operator on spheres,
given in the preceding paragraph, can be used to find the corresponding
results for real projective spaces. Since a real projective space is locally
isometric to its covering sphere, a spinor field on P,, is an eigenfunction
of the Dirac operator D if, and only if, it descends from a corresponding
eigenfunction on S,,. Therefore, the spectrum of D on Py, is contained in

that of D on S,,.

By comparing (15) with (16), one sees that the total space Sping, ;1
defining the pin structures on Py, is the same as the total space defining
the spin structure on Sz,. Let 7 : Spiny, ; — GL(S) be the Pauli rep-
resentation and let @' : Spiny, | ; — P2, be the projection defined in part
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B (i) of Sec. 4.3. If & : P;, — S, then 9 : Spiny,,; — S defined by
Y(a) = 7(a~1)#(w'(a)) is a spinor field of type 7y o i4. Referring to the
last sentence of Remark 1, one sees that every spinor field on P, can be so
obtained. Therefore, every spinor field on P,, comes from an even function
¥ : Sz, — §. A similar analysis applies to the case m = 3 mod 4.

Proposition 9. Let m = 2v, where v is a positive integer (resp.,m = 2v+1,
where v is a positive odd integer). The spectrum of the Dirac (resp., Pauli)
operator on [P, is the set

{(-1+x@+im+1):1=0,1,..}.

The eigenvalue A occurs in the spectrum with the multiplicity

()

Note that, in this case, the spectrum is asymmetric.

Most of the work reported in this paper was done during my numerous
visits to Trieste and Brussels. I thank Paolo Budinich, Pawel Nurowski,
Michel Cahen, and Simone Gutt for their interest and helpful discussions.

6] J. Rzewuski, Field Theory, Part I and II, PWN, Warszawa 1958 and 1969.

7] M.F. Atiyah, R. Bott, V. K. Patodi, Invent. Math. 19, 278 (1973).

8] H.B. Lawson, Jr., M.L. Michelsohn, Spin Geometry, Princeton University Press,

Princeton 1989.

[9] A. Trautman, J. Math. Phys. 33, 4011 (1992).

[10] P. Budinich, A. Trautman, The spinorial chessboard, Trieste Notes in Physics,
Springer—Verlag, Berlin 1988.

[11] H. Baum, Spin-Strukturen und Dirac-Operatoren tber pseudoriemannschen
Mannigfaltigkeiten, Teubner-Texte zur Mathematik, Teubner, Leipzig 1981.

[12] E. Cartan, Lecons sur la théorie des spineurs, Hermann, Paris 1938.

[13] R. Brauer, H. Weyl, Amer. J. Math. 57, 425 (1935).

[14] C. Chevalley, The algebraic theory of spinors, Columbia University Press, New
York 1954.

[15] L. Dgbrowski, Group Actions on Spinors, Bibliopolis, Naples 1988.

REFERENCES
(1] M. Karoubi, Ann. Sci. Ec. Norm. Sup. 1, 161 (1968).
[2] S. Carlip, C. DeWitt-Morette, Phys. Rev. Lett. 60, 1599 (1988).
[3] L. Dgbrowski, A. Trautman, J. Math. Phys. 27, 2022 (1986).
[4] M. Cahen, S. Gutt, A. Trautman, J. Geom. Phys. 10, 127 (1993).
[5] M. Cahen, S. Gutt, A. Trautman, paper submitted to J. Geom. Phys. (1995).
(6]
[7] M.
(8]



1310 A. TRAUTMAN

(16]
(17]
(18]

(22]

(23]

W. Pauli, Ann. Inst. Henri Poincaré 6, 109 (1936).

M.F. Atiyah, R. Bott, A. Shapiro, Topology 3 Suppl. 1, 3 (1964).

S. Gutt, in: Spinors in Physics and Geometry, Eds A. Trautman and G. Furlan,
World Scientific, Singapore 1988, p. 238.

E. Schrodinger, Acta Pontif. Acad. Sci. 2, 321 (1937).

W. Pauli, Helv. Phys. Acta 12, 147 (1939).

R. Delanghe, F. Sommen, in: Clifford Algebras and Their Applications in Math-
ematical Physics, Eds J. S. R. Chisholm and A. K. Common, Reidel, Dordrecht
1986, p. 115.

R. Delanghe, F. Sommen, V. Soucek, Clifford Algebras and Spinor- Valued
Functions, Kluwer, Dordrecht 1992.

J. Cnops, Hurwitz pairs and applications of Mébius transformations, Habilita-
tion Thesis, Ghent University, Ghent 1994.

A. Trautman, Symp. Math. 12, 139 (1973).

B. Boof-Bavnbek, K. Wojciechowski, Elliptic Boundary Problems for Dirac
Operators, Birkhauser, Basel 1993.

P. Van Nieuwenhuizen, in: Relativity, Groups and Topology II, Eds B. S. De-
Witt and R. Stora, North-Holland, Amsterdam 1984, p. 823.

S. Sulanke, Berechnung des Spektrums des Quadrates des Dirac- Operators auf
der Sphdre, Ph. D. thesis, Humboldt-Universitat, Berlin 1978.

A. Trautman, in: Spinors, Twistors, Clifford Algebras and Quantum Deforma-
tions, Eds Z. Oziewicz et al., Kluwer, Dordrecht 1993, p. 25.



