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The concise discussion of various aspects of dissipative quantum hy-
drodynamics is given. Particular attention is paid to the Gisin formulation
of dissipative quantum mechanics.
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The concept of quantum hydrodynamics is used to describe various for-
mulations of very different physical systems. The common features of all
of them is that the equations of motion, describing time evolution of the
relevant degrees of freedom of the system, have the form similar to the hy-
drodynamic formulation of the Schrodinger equation proposed back in 1926
by Madelung [1]. Thus we talk about quantum hydrodynamics in context
of simple quantum mechanics, as proposed by its founding father, and we
talk about it discussing dynamics of superfluid helium isotopes [2, 3, 4].
Somehow unexpected is that the dynamics of purely classical one dimen-
sional magnetic systems can also be cast into the quantum hydrodynamic
form [5].

Consider simple quantum mechanical system described by means of the
Schrédinger equation:

2
ihO(r,t) = —%v%(r,t) + V(r, t)h(r,t), (1)

where m is the particle mass, and V (r, t) is an external potential of the forces
influencing the particle motion. Following Madelung substitute ¥(r,t) —
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v p(r,t)exp(ig(r,t)) and then separate Eq. (1) into its real and imaginary
part. Resulting equations read:

Op(r,t) = =V - p(r,)u(r,t),
dyu(r,t) + u(r,t)- Vu(r,t) = —~Vug(p, Vp) — LVV(r,t), (2)

where u(r,t) = h/mV¢(r,t) is the (potential) velocity field of the “quan-
tum” fluid and pg is the quantum chemical potential. It is this last term
which distinguish the Madelung fluid dynamic equations from the usual
Euler equations of hydrodynamics. Indeed pg = —(R?/2m)p~Y(V?p —
1/2p(Vp)?) is the only quantity in Eq. (1) containing Planck constant, and
it measures the “internal quantum pressure” responsible for wave packet
spreading. Alternatively the gradient of the quantum chemical potential can
be written as derivative of the quantum stress tensor 03 = h?/4md;0; In(p).
Note also that the dependence of the quantum chemical potential ug on
density, and its gradients, is essentially different than in generalization of
conventional hydrodynamics often used in the theory of phase transitions,
where the inhomogeneity of the order parameter (density in the van der
Waals like theories) are of importance [6, 7, 8]. The other important differ-
ence between the Madelung and Euler hydrodynamics is that the value of
circulation

F:fu-dr:nﬁ, (3)
m

is quantized. The benefits and/or shortcomings of the Madelung formula-
tion of quantum mechanics are discussed by Bialynicki—Birula et al., viz.
Ref. [1].

The technically almost trivial, but physically deep and far-reaching, is
the generalization of the Madelung formulation proposed by Gross in con-
nection with the mean field description of interacting many-boson systems
[3]. The easiest way of deriving this quantum hydrodynamic is to consider
second-quantization equation of motion for the boson field operators 9(r, t)
stemming from the second-quantization Hamiltonian

. h® . .
H ::?-;L—/drVdJT(r,t)-VdJ(r,t)

+ %‘ / / d’r‘dr”lﬁf(r,t)ﬁf(r" HU(r — T')IZ)(T, t)’(&(?’",t), (4)

where U(r — 7') is the interparticle interaction potential. Evaluating then
the coherent states |a) mean value of that equation’, and splitting resulting

! Coherent states are defined as right eigenstates of the field operator 1/3, that 1s
P(r,1)|a) = a(r, t)]|a).
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equation into real and imaginary parts, we obtain equation analogous to the
Madelung equations (2) with density p given as the absolute value of a and
velocity as the gradient of its phase [4]. The main difference between the
Madelung equation and the Gross equation (being bosonic field version of
the Ginzburg-Landau equation, known from superconductivity and phase
transition physics) is in the replacement of the external potential V' by the
self-consistent potential V(p) = V(r,t) + [drU(r — r')p(r',¢).

Another formulation of the quantum hydrodynamics can be obtain by
considering the Schrédinger and Gross equation as “classical” field equations
of motion for fields described by the Hamiltonians:

2
H{a,a"} = /dr (%Waiz + V(T)Ia(r)!2> (5)

2
H{a,a"} = /dr (%lv(xlz +3U(r - r’)la(r)l""la(r’)lz) (6)

for Schrodinger and Gross equations, respectively.

The equations of motion can be obtained from the above Hamiltonian con-
sidering field a(r), and its complex conjugate a*(r), as classical field with
the Lie-Poisson bracket

{a(r),a™(r")} = Fb(r —r'). (7)

It is relatively straightforward to rewrite the above formal setup, of
either Madelung or Gross hydrodynamics, in terms of density and velocity
fields [4].

Hoow) = [dripu + V(o) + o [ar(vVyp), (8)

where V(p) is the interaction part of the Hamiltonrian. The Lie-Poisson
brackets for these fields are formally equivalent to original Landau proposal
(2], and have been thoroughly discussed in [9]. Quite remarkable is the fact
that one encounters similar construction in purely classical models of one
dimensional magnetism theory [5]. Indeed, the one dimensional Heisenberg
ferromagnet, described by the spin Hamiltonian:

H:—JZSi'SH_l, (9)

where summation is over the lattice sites, can be converted, in the continuum
limit, into nonlinear Schrédinger equation, which in turn can be cast into
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fluid form with the Hamiltonian written below, where the density p equals to
the magnetic chain energy density (per unit chain length) and the velocity
field 7 equals to the energy density current divided by p.

H(p,7) = 3p7° — §p* + 3(0r/P)?, (10)

where R is the continuous position along the chain. Note that in addition to
the “quantum pressure” term the Hamiltonian density contains quadratic
in density contribution which leads to a negative pressure term in fluid
dynamic interpretation. Existence of that term is responsible for many un-
usual properties of the Heisenberg chain dynamic, for example its complete
integrability, existence of solitons etc. [5].

There are many applications of the above outlined quantum hydrody-
namics. Its main shortcomings, when applied to the many body systems
rather than considered as “fundamental” theory, is that it describes sym-
plectic — dissipation free — dynamics. While it is not obvious why we
should add a dissipative term to the Schrédinger equation (1), it is clear
that terms like that should show up in the description of even superfluid
liquid.

In spite of many efforts the theory of quantum dissipative systems is
far from being completely understood [10, 11]. Recently Enz [12] has given
comprehensive review of the possible quantization procedures for dissipative
systems. Particularly interesting proposal for description of the quantum
dissipative systems was given by Gisin [13]. In order to describe the evo-
lution of the quantum state |} of a dissipative system Gisin introduced a
phenomenological equation

»0l) (vlH]v)
inpet = Hlv) + A(ww}) );w, (11)

in which H is the system Hamiltonian and X > 0 is the dimensionless damp-
ing constant. The structure of the bracketed term on the rhs of the Gisin
equation ensures that the norm of the state vector is preserved during the
system evolution. That property distinguishes Gisin equation from several
other dissipative quantum mechanical “generalizations” of the Schrédinger
equation [14] and permits for retaining most of the conventional interpreta-
tion of the quantum mechanics. Other interesting property of the equation
(11) is that the time evolution of the original Hamiltonian eigenstates is
conservative (no damping). When the initial wave packed, consisting of
several of those eigenstates, evolves in time then it will eventually reach the
final state which will be the lowest eigenstate present in the initial wave
packet. That implies that when one considers the evolution of a coherent
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state [15, 16, 17] then the system is always proceeding towards the ground
state.

Now, the damping, nonlinear term in Eq.(11) can be obtained following
the rules of the metriplectic formulation of classical dynamics {9, 12] by
supplementing the antisymmetric Lie-Poisson bracket (7) by a symmetric
part

R (R e R

The resulting metriplectic bracket [a, 8] = {a, 8} + {{a,8}} is the sum of
expressions (7) and (12). The Gisin equation (11) is now easily obtained on
evaluation of the metriplectic bracket of the a(r,t) with the Hamiltonian
(5).

As stated before the standing of the Gisin generalization of the
Schrédinger wave mechanics as a fundamental theory is not free from se-
rious difficulties and is open for criticism. As seen from more applied view
point it appears as a coarse grained description of many body system in
which many irrelevant degrees of freedom were “averaged” over to provide
dissipation accounted for by the damping constant A [11]. This later inter-
pretation of the Gisin equations works well in the magnetism theory. Indeed,
the Gisin description is equivalent to the Gilbert-Landau-Lifshitz one for
damped magnetic system. We shall illustrate that analyzing dynamics of
an anisotropic quantum spin chain {16, 18, 19].

Consider collection of N spins S located on a one-dimensional chain
and described by the Heisenberg Hamiltonian

N
A=Y [75.5.0: + BS, + C(5))7], (13)
n=1

where J(> 0) is a ferromagnetic exchange constant, B(> 0) is an exter-
nal magnetic field, (C' > 0) is the value of the local magnetic anisotropy.
Summation in Eq. (13) runs over all chain sites.

We begin by assuming that the quantum state |¢) of the whole chain
is a direct product of spin coherent states |p,) for each spin in the chain

N
%) = @) lun) - (14)

The coherent state of each individual spin is defined, using the conven-
tional polar angles representation of spins, as follows [20]:

!l‘n) = Wm%) = (1 + {ﬂn’z)_sexp(ﬂnsu)mn% (15)
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where g, = tan(6,/2)exp(idn), ST = §X +i8Y and |0,,) is the ground
state of a single n-th spin, i.e. §7]0,) = §|0,). From equation (11) it
follows [18] that the time evolution of the mean value for any operator A
obeys (the generalized Ehrenfest equation of motion)

FWi) = <¢i8tA{¢> (I, A)l)
7 ((z/)I{H, Al1l¢) - 2(¢IH[¢)(¢]A}¢)) . (16)

where [e, o] and [e,e] denote commutator and anticommutator, respec-
tively, and we have assumed that (y|¢) = 1.

Using expression (16) for operators § and the Hamiltonian (13), taking
into account the parametrization (15) and going over to the continuum limit
we obtain two nonlinear partial differential equations [18] for the evolution
of parameters 8(R,t) and ¢(R,t) (here R is the spatial variable along the
chain). The surprising result is that this system of equations is equivalent to
system of classical equations arising from Gilbert-Landau-Lifshitz theory
[18], when one writes these equations with the help of standard spherical
parametrization (6, @) of spin vectors. The only difference is that one needs
to replace in quantum equation the factors C(5 — 1) by C'S.

The equivalence of the Gilbert-Landau-Lifshitz description of damped
Heisenberg model with the Gisin formulation of dissipative quantum me-
chanics follows from the use of the coherent states representation. Although
this procedure has been widely used in the field of magnetism following its
successful application in quantum optics, recent results shed some doubts
on its limits of validity in description of magnetic systems [21].

It interesting to see how the Gisin equation looks like in the Madelung
representation. Using again the hydrodynamic representation of the wave
function ¥(r,t) — /p(r,t)exp(i¢(r,t)) we can obtain from Eq. (11) the hy-
drodynamic equations of quite unusual form. First the continuity equation
(¢f. Eq. (2a) reads now:

Oep(r,t) + V- p(r,t)u(r,t) = 2,;\ [p(fﬂ - {%puz + %(Vx/ﬁ)z + pVH -

(17)
where (H) = (¢|H|)/([4). Although this is rather odd looking equation
it still describes conservation of probability, for the integral of the right hand
side of it vanishes identically for each wave function 1 on virtue of Eq. (8).
For A — 0 we recover the Madelung continuity equation. The classical limit
(R — 0) is a bit more tricky. It is easier to discuss it in “many body”
interpretation of the Gisin equation where the damping coefficient X is a
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quantity which one should have derived from the complete theory, and,
therefore, it is given as a an averaged over those system degrees of freedom
which are assumed to be less relevant than these described by the wave
function . In this case the value of A will be “generically” proportional to
h?. The ths of Eq. (17) will then vanish in classical limit.

The Madelung fluid Euler equation is now, of course, dissipative, and
again one finds here difference as compared with, what one has in mind talk-
ing about dissipative fluid dynamics, namely the Navier-Stokes equation.
Indeed we have

dyu(r,t)+u(r,t)-Vu(r,t) = ——1-VV~—V;¢Q+ gi\—vzu+ gfi\.v [u-Vin(p)] . (18)
m m m

The rhs of this equation contains two terms familiar from the Madelung
formulation which survive the limit A — 0. Two last terms describe quan-
tum dissipation. The first term (hA/2m)VZ?u looks like the usual viscous
damping term known from the Navier-Stokes theory. One is tempted there-
fore to call the coefficient ng = hA/2m the quantum kinematic viscosity.
The physical interpretation of that term is quite similar to that in classical
theory as it describes the transfer of momentum from faster moving parcel of
the “fluid” into those moving less rapidly. The second term « V|u-V In(p)]
is this one which has no classical analogy. It describes damping of momen-
tum which gets stronger the higher are the gradients of the density field.

Eqs (17), (18) form the set of dissipative quantum hydrodynamics equa-
tions which are essentially different from the Madelung theory and also from
these one would obtain from the theory proposed by Kostin [14]. The dif-
ference stem from broken Galilean and gauge invariance of the Kostin for-
mulation, in which the dissipation is constructed such as to reproduce the
linear velocity damping on the level of the Ehrenfest equations. This is
not the case in our model for the rhs of Eq. (18) is just the full gradient,
thus the momentum is conserved in our model. Kostin formulation shares
some similarity with Galilean noninvariant mesoscopic level hydrodynam-
ics proposed for description of two dimensional fluid adsorbates in order to
produce finite values of two dimensional transport coefficients [22].

As shown above one can reformulate recent theory of quantum dissi-
pative systems following the hydrodynamic, or fluid like, picture proposed
almost 70 years ago by Madelung. As with many of these formal proce-
dures they usefulness for solving, or even elucidate, fundamental problems
can be questioned. For variety of applications they may be more useful, as
shown by example from magnetism theory [18] (¢f. also [11]). There are
several new areas of the many body physics where the Gisin formulation,
and its hydrodynamic interpretation given here, might be useful. Some of
them were mentioned in [12], other include the few boson systems in an
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atomic trap. Objects like that are recently of great interest in view of their
potential role in explaining the physics of the Bose-Einstein condensation
in weakly interacting systems.
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