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We compare the Lyapunov exponents for nonautonomous and au-
tonomous versions of the same dynamical system governed by a set of
ordinary differential equations (ODE), for a large class of physical sys-
tems admitting of the extraction of explicitly time-dependent terms in
ODE. We have found some advantages of the Lyapunov analysis in the
nonautonomous version. The main advantage is that we are able to solve
the problem of Lyapunov exponents even though the time-dependent ex-
ternal force is nondifferentiable. Optical Kerr effect in a cavity with an
external time-dependent field is considered numerically as an example.

PACS numbers: 05.45. +b, 42.50. Tj

1. Introduction

Interest in the general theory of stability [1-2] and in particular that of
Lyapunov stability [3-4) has a long and illustrious history. The spectrum
of Lyapunov exponents has proved to be a most useful diagnostic providing
a qualitative characterisation of the dynamical behavior of systems. There
are several methods of calculating Lyapunov exponents for discrete maps
as well as for continuous flow [5-9]. A comparison of the different methods
for computing Lyapunov exponents has been performed in Ref. [7]. The
methods have been tested with respect to their accuracy and efficiency.

In this paper we carry out a Lyapunov analysis of non-Hamiltonian
systems with explicitly time-dependent parameters. Physically this means,
for example, dissipative systems with time-dependent external forces. The
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dynamics of such systems are governed by a nonautonomous set of ordi-
nary differential equations (NODE). Contrary to NODE, an autonomous
set of ordinary differential equations (AODE) describes dynamical systems
without explicitly time-dependent parameters. However, it is always possi-
ble formally to autonomize NODE into AODE. Therefore, a given nonau-
tonomous dynamical system can be studied by using the above two cases of
ODE. The main aim of this paper is to compare the Lyapunov exponents
analysis for NODE and AODE within the same dynamical model.

In Section 2 we consider the maximal Lyapunov exponent method as
well as Wolf’s et al procedure [9] for the calculation of the whole spectrum
of exponents for a continuous flow. We find some advantages in the case
of NODE analysis leading to certain theoretical predictions. The latter are
tested numerically in Section 3 for the dynamical system of an anharmonic
oscillator with external modulated field in a cavity (optical Kerr effect).
Finally, Section 4 contains some concluding remarks.

2. Lyapunov Exponents for NODE and AODE

We consider an arbitrary dynamical system. If we have a time-dependent
external force, or time-dependent damping, etc., we can write a set of ordi-
nary differential equations (ODE) in non-autonomous version (NODE)

&; = FN(z1,...,8nyt), i=1,...,n, (1)
or the respective autonomized version (AODE)

j;i:ff(:cl,...,a:n,:cn+1), i=1,...,n,
Enpy1=1. (2)

Here z; is a coordinate in the i-th direction of some point on the trajec-
tory {z;(t)} in n-dimensional phase space. Obviously, the dimension of the
phase space in the case of AODE is increased by one due to the formal
elimination of the independent variable ¢ by putting t — z,41. The two
cases (1) and (2) are physically equivalent and lead to analogous results.
The evolution governed by (1) in n-dimensional space is the same as the
evolution governed by (2) in the n-subspace of the (n + 1)-dimensional com-
plete space. The coordinate 2,41 is a “dummy” variable and is sometimes
referred to as the non-chaotic variable. Although the difference in nonau-
tonomous and autonomous notation of the same dynamical system is but
formal, the Lyapunov analysis in these two cases exhibits some advantages
of the nonautonomous approach which, according to our knowledge, have
as yet not been disclosed.
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To calculate the spectrum of Lyapunov exponents we have to linearize
the set of equations (1) or (2) in so-called tangent space [5-9]:
(NODE)

n
: zzafN :
623,;: a 6:0] 6:13], z:l,...,n. (3)
(AODE)
n+1 A
. 0F; .
6%—-2 8%6%, i=1,...,n+1. (4)

In other words, we linearize the system (1) or (2) along the trajectory
{zi(t)}. The variable éz; is the principal axis of the n-dimensional (or
(n + 1)-dimensional for AODE) ellipsoid attached to the trajectory in the
point z;(t) and describes the expanding or contracting nature of the system
in phase space.

We restrict ourselves to the case when we can extract from f{N those
terms which are only time-dependent (they may be referred to as a force”).
Thus, we can re-write the sets (1) and (2) as follows:

(NODE)
i’i = Filv(xl,--wzn) + fi(t)) (5)
(AODE)
Z; = F{q(mli'“amn) + fi(zn+l)’
i:n+l =1 and $n+1(0) =0. (6)

From (5) and (6) one easily obtains the set of linearized ODE for §2; in
tangent space. Remembering that now we have

FN = FA = F;, (7)

we get from Eqs (3) and (4) the following set of linearized equations:
(NODE)

n

Z OF; dz; , (8)
Oz;
j=1
(AODE)
51.7:,' = %5.@]‘ + —y—i—&cn+1 s
= Oz; Oz n41

6.1:‘n+1 =0. (9)
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The term %1{1—1 dz,+1 with the additional equation 6.:cn+1 == 0 occurs only

in the autonomous case, Eq. (9). Here appears the first disadvantage of
the autonomous approach. The function f; must possess its first derivative
at any point. This requirement is not satisfied in the case when the force
fi is, for example, in the form of sharp pulses. The existence of the first
derivative, however, is not necessary in the nonautonomous case, Eq. (8).

The linearized equations (8) involved no term similar to 3 ;9 511 02,41 due

to the differentiation by #; (i = 1...n) performed above, and because t is
an independent variable. The set (8) for NODE is the same as the linearized
equations in the absence of the force f;.

Since §z 41 is constant in time, we can write (9) in the following form:

(AODE)

. = OF; ofi
i= = s 1(0). 1
oz 2 32, dz; + T2 dzn1(0) (10)

Generally, the maximal Lyapunov exponent (MLE) for a continuous
flow is defined in the form:

Amax = tlim sup-} In||éz||, (11)

where || .. .|| is the norm (any norm) of the vector éz(t) = {6z;(t)}. It seems
that the Euclidean norm is the most popular one.

The MLE characterizes a system from the stability point of view. Chaos
involves the existence of a positive Lyapunov exponent.

A more detailed analysis is given by the whole spectrum of Lyapunov
exponents [5-9]. On writing (8) and (9) in matrix form we obtain the Jacobi
matrix of linearized equations in tangent space:

(NODE)
OF OFy 8F
=y °* Ber ' B
OF; OF; OF;
JN, = Bor vt Bs cc Bar | o (12)
8F, 8F, 8F,
GESY e 8::]' . Bz
(AODE)
i N by
1) x(nt1) = ( nxn) ( 8?'.“_‘1 . (13)
0...... 0

The Jacobi matrices are used to calculate the spectrum of Lyapunov expo-
nents A; in the following way:

Ai= lim Fin | x:(t) |, (14)
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where the x;(t) are the eigenvalues of the matrix
t
I'(t) = Exp /dt' TN | . (15)
0

In consequence, our eigenvalue problem leads to the solution of the equation

det[FN(A) —xI] = 0.

There are two essential differences between NODE and AODE. For
the autonomous system (9) the Jacobi matrix (13) possesses all the n + 1
eigenvalues and at least one of them is always equal to zero. Therefore,
the spectrum of Lyapunov exponents is given by (A1, Az,...,An,0). For
the nonautonomous system (8) the Jacobi matrix is given by (12) and in
consequence the spectrum has the form (A1, A, ..., Ap).

Moreover, we wish to stress that for nonautonomous (in contradistinc-
tion to autonomous) systems we cannot construct a solution of (8) in the
form [10]:

b, = &;. (16)

This is due to the presence of a force f;(t) in (5). The solution (16), however,
is necessary to the proof that for each trajectory which does not terminate
at a fixed point at least one Lyapunov exponent vanishes [10]. This causes
that for AODE Apax > 0. However, for a nonautonomous system, where
the identity (16) is not valid, the maximal Lyapunov exponent can be neg-
ative, even if its trajectory does not terminate at a fixed point. Negativity
of the MLE by no means constitutes a drawback but is rather natural con-
sequence of our nonautonomous approach. On the other hand, the NODE
case of nonlinear systems (5) provides an important advantage: namely, for
the NODE case, one is able to calculate the spectrum of Lyapunov expo-
nents even if the force f; is no longer differentiable. This is so becouse the
Jacobi matrix “loses” the f; term due to its independence of the dynamical
variables.

In the next Section, we show numerically the possibilities of the exis-
tence of a negative maximal Lyapunov exponent in the analysis of a nonau-
tonomous ODE for a physical situation with trajectory in the form of a limit
cycle.
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3. Numerical example

In this Section, we shall consider in more detail a continuous flow de-
scribed by the following set of equations:

(NODE)

d .

K Th g6+ 6+ Al sin(ut)],

dé. Y

d_: = “552 - & -68. (17)
The AODE version has the form:

d

o et gle 6+ 01+ sin(uss),

d§ Y

— = 56— & - a8,

d

é“‘- =1 and £3(0)=0. (18)

This is the well known case of a nonlinear oscillator in an external field
and describes Kerr oscillations in nonlinear medium in a cavity [11-13].
The external electromagnetic field has a time-dependent (modulated with
sin(wt)) amplitude, and a frequency equal to that of the basic field in the
cavity. The field intensity in the cavity is given by |£|?, where £ = £; + i&s.

To calculate the spectrum of Lyapunov exponents and the MLE we need
the linearized equations of motion. The Eqgs (8) and (9) lead immediately
to the following sets of equations:

(NODE)
% = “%561 + 1862 + 26162661 + 363662,
d%? = '%552 - 3¢1861 - 26162062 - 3861, (19)
(AODE)
%% = —;1561 + E2663 + 26162661 + 3E3665 + Agw cos(w £3) 663,
%f—z- = — 286 — 361861 — 2162862 — E3661,
dogs

5 =0 (20)
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Wolf et al. method

We have calculated the spectrum of Lyapunov exponents of the above
Kerr model for fixed parameters values A¢g = 3 (amplitude modulation) and
7 = 0.1 (loss in the cavity). We have employed the algorithm outlined in
[9] together with a standard fourth-order Runge-Kutta integration scheme.
For the initial condition £;(0) = £2(0) = 1.0 we have numerically solved
the Eqs (17) together with (19) for NODE and Eqs (18) together with (20)
for AODE. As a “knob” parameter we used the frequency of modulation w,
varying w in steps of Aw = 0.01 in the range 0 < w < 4.5. The step length
used in the integration was At = 0.01 throughout which, for our purposes,
it gave sufficiently accurate results.

A
03

0.1

-03

00 1.0 20 30 “w w
Fig. 1. The Lyapunov spectrum A,, A, A3 for AODE (Eqs (18) and (20)).

05 ——
A —— (NODE)
1 _._. (AODE)
03
01}
-0.1

0.0 1.0 20 3.0 40 W

Fig. 2. Lyapunov exponents A; for NODE and AODE (Aw = 0.03).

Our results are displayed in Fig. 1, where we plot the spectrum of
Lyapunov exponents (A, Az, A3) for AODE. The numerical analysis of the
spectrum for NODE exhibits a lack of A;. The detailed comparison of the
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NODE and AODE cases is displayed in Fig. 2. We note very good agreement
between the nonautonomous and autonomous case of the ODE solutions.
Some differences appear due to numerical errors, mainly in regions where
the Lyapunov exponents change rapidly. We observe a similar behavior of
the second Lyapunov exponents A, for both cases.

M — (NODE)
o3 ---. (AODE)

0.1

01
0.0 10 20 30 40

Fig. 3. Maximal Lyapunov exponents A4, for NODE and AODE.

&

-2
-3.0 -2.0 -1.0 &2 0.0

Fig. 4. A limit cycle for NODE (the time 150 < ¢ < 170 and « = 1.0). The value
of the MLE equals Apax = —0.0513. The respective Lyapunov spectrum is given
by (—0.0718, —0.0724).

Maximal Lyapunov exponent method

We have used the sets for NODE and AODE to calculate the MLE
directly from Eq. (11). Fig. 3 shows the results and one immediately notes
the good agreement between the two cases of the solution of ODE for Apax >
0. However, in the AODE case, we lose all information about the rate at
which the perturbed system becomes indistinguishable from the attractor
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(fixed point or limit cycle). This information is given by negative exponents,
but in the kind of systems considered here the minimal value of MLE in the
autonomized version of ODE is zero. For example, a limit cycle for negative
Lyapunov exponents in the NODE case is plotted in Fig. 4.

05
A —— 1, (spegtrum)
..... A (MLE)

KY) 10 20 3.0 0wy

Fig. 5. Comparison of the first (biggest} Lyapunov exponent A; from the spectrum
and the maximal Lyapunov exponent A, calculated directly from Eq. (11) (both
for NODE).

In contrast, Fig. 5 shows the biggest Lyapunov exponent A; in the
spectrum and the MLE —— both obtained for NODE. Differerences appear
due to the different methods of calculation. Precisely, in the calculation of
the whole spectrum of Lyapunov exponents we used Gram—-Schmidt method
of reorthonormalization [9]. These differences were expected but it is easy
seen from Fig. 5 that both methods lead to exactly the same regions of
chaos. The behaviour of both A; and Ap,ax versus the parameter w is the
same (with a small scaling factor).

4. Concluding remarks

The main aim of this paper was to compare two approaches (autonomous
and nonautonomous version of ODE) for the computation of the spectrum of
Lyapunov exponents as well as the MLE for a given continuous flow. As an
example, we have considered a system well known in nonlinear optics with
Kerr nonlinearity pumped by an external, time-dependent field. We are
well aware that AODE is much more popular in theoretical and numerical
investigations of dynamical systems. However, on performing calculations
for the NODE and AODE we have found certain advantages of the NODE
approach. We close with the following remarks:
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The computation procedure of the Lyapunov exponent is simpler for
the NODE case [Eqgs (5) and (8)] than for the AODE case [Eqs (6) and
(9)). The NODE approach involves two equations less and no terms of

the form Fg%f b2n41.
n

To calculate the Lyapunov exponents in the case of AODE one needs
the derivate of the function f;(t) in Eq. (9). If f;(t) is nondifferentiable
in certain points, the calculation procedure of Lyapunov exponents for
the AODE case cannot be used. However, we are able to solve the
problem in the NODE case. For example, we have recently investigated
a system generating the second-harmonic of light with an external field
of rectangular pulses [14, 15].

For the autonomous equations and the autonomized version of nonau-
tonomous equations the maximal Lyapunov exponent A, always sat-
isfies the condition Apmqz > 0. This condition is not satisfied for nonau-
tonomous system. As we mentioned earlier, the magnitude of the MLE
provides information about the dynamics of the attractors. The MLE
is a measure of the rate at which the system provides or refuses to pro-
vide information in the course of its evolution [9]. The average rate at
which information contained in the transients is lost can be determined
from the negative exponent and is only possible to obtain by NODE
calculation of the MLE. Of course, there are no such problems when
considering the whole spectrum of the system.

Fig. 3 shows that for NODE, in chaotic regions, MLE is less that A;
(the biggest exponent from the spectrum) whereas in regions of order
MLE is greater that A\;. However, both methods lead to exactly the
same regions of chaos and order.

The comparison of the differences between the NODE and AODE ver-
sions of Lyapunov analysis for the same system can be a very useful
tool for checking numerical algorithms and procedures.
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