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applied and approximate higher order corrections to the cross section of
large Pr hadronic production of two photons collision are derived.
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1. Introduction

During the past few years, phenomenologists were very interested in
the calculation of higher order corrections (HOC) in Perturbative Quan-
tum Chromodynamics (PQCD), in studying particular various problems
and ambiguities related to the choice of the renormalization and factoriza-
tion scales [1-6]. In many cases the next-to-leading order terms with respect
to the strong coupling constant a, are comparable (or larger) to the sup-
posed leading order ones. As a good example, the PQCD calculation up
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to the 3-loop order of the ratio R .+.- by the Russian group, has shown
that the perturbative series diverge, in the sense that the a? order terms
are bigger than the a, order ones. This suggests that more tests of PQCD
are needed. To do so, and to overcome the difficulties and problems of the
HOC, one has to look for the simplest and fastest method to determine at
least the magnitude and the sign of the corrections [5, 8].

Recently, we have shown [5] that in order to determine the dominant
contribution (in hadronic processes) of HOC, one has to calculate the con-
tribution coming from the Born and virtual diagrams. Following our pre-
scription and rules (given in Rev. [5]), the Bremsstrahlung contribution is
easily obtained, since its dominant part results from the soft and/or collinear
configuration of the particles at the initial and/or final state.

The purpose of this work is to determine the contribution of HOC in the
inclusive large Pr hadronic production from two photons collisions (yy —
hX, where h is a hadron) by applying the Mebarki—Abbes prescription.

It is worth mentioning that the photon-photon reactions represent an
important class of scattering processes which allow fundamental tests of
QCD. In fact, they can provide important constraints on the validity of
the standard model of strong interactions through the study of inclusive
hadron production [9]. Exact higher order corrections to ¥ collisions had
already been considered in Refs [9] and [10]. In contrast (and it is the goal
of this work) we determine the dominant part of this (HOC) by applying
our prescription derived and described in Ref. [5].

In Section 2, we give a brief review of our prescription. In Section 3,
we determine the full approximate corrections to the cross section of the
process vy — hX and finally, in Section 4, we draw our conclusions.

2. Formalism and prescription

We have shown in [5] that for hadronic process of the form: A + B —
C + D, where A, B, C and D are hadrons (in general), the cross section can
be written as [5, 11, 12}:

o= Z ////d:cad:cbd:ccdzdFa/A(za,M)Fb/B(:cb,M)

a,b,c,d
X Dgjc(2e, M')Dpg(za, M')
s t+ 2 i+
X {Mﬁ)&(l n iu) + a’(”)fe(l + +”)} (2.1)

T T ]

where Fy /4, Fy/B (respectively Doy Dp /d) are structure (respectively
fragmentation) functions; a, b, ¢,d are massless protons, fo the Born term
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and f the HOC, (3,f and 4 are the usual Mandelstam variables at the
partons sub process). Moreover, the dominant contribution of HOC “f”
has the following form [5]:

fsing(wca Ld, vV, w)

[c1+clh1( )+clln(M)+C11n(M )]5(1—10)
o ain () +2n () | g+ o[22

(1—w)+ 1—w

where the dimensionless variables v and w are defined as:

]
t+3’
and y, M and M' are the renormalization and factorization points of
the structure and fragmentation functions, respectively. The distribution

and [h‘(l""’)] are defined as:
+

(2.3)

v=1+ - w= —
8

1—w

1
(1-w)y

/dw g(’w) /d g(w) g(l) (]-_Wmin)g(l)a

(T-w) (1-w)

and

1 1
Jawsw) P2 = [autg(u)-g) B i (- Woinla(0),
Whin + Winin

(2.4)
where g(w) is some regular function. It is to be noted that fing is gauge
invariant and receives contributions from soft and/or collinear gluon and/or
quark Bremsstrahlung. Now, in order to determine the various terms ¢4, €1,
é2 etc., it is shown that one has to use the following prescription [5]:

1. Calculate the Born term in d = 4 — 2¢ dimension.

2. Determine éq, &1, é1, é2 and & from the expression of the running cou-
pling constant around the renormalization point, the factorization of the
structure function at the scale M and the factorization of the fragmen-
tation function at scale M' (see Egs (4.1), (4.2) and (4.3) of Ref. [5]).

3. Write two and three bodies phase space in d dimension.

4. Calculate the virtual contribution and write it in the form:

! [
F‘[A + B~+C']5(1—w)
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5. Set the Bremsstrahlung contribution in the form:
A
D [; +B+ 20](1 )

where
A=aA
and ;
B=-a(Ci-B'-A'Inf)-Aln D.

6. Calculate the Bremsstrahlung contribution coming from soft and/or
collinear configuration and which is proportional to the Born term times
8(1 — w). . .

7. Add the singular parts F:Lng and DZ’;‘ € coming from the universal phys-
ical definition of the corrections [5, 13], and pick up the terms propor-

In(1—w)
1—w
+

tional to §(1 — w), ﬁ—:lm and
8. Determine Cy, C and Cj.

3. Application to the inelastic process yv - h + X

In what follows, we consider the sub process yy — ¢§ which contribute
to the physical hadronic process vy — h + X (h hadron). We work in
the Feynmann gauge, and to regulate the singularities, we use dimensional
regularization with d = 4 — 2¢. For the corrections, we use the universal def-
inition [13]. Our results refer to the M § renormalization scheme. Of course,
the divergent pieces appearing in the perturbative calculation are as usual
eliminated with the help of the factorization theorem by the introduction
of scale violating fragmentation function.

For the two photons collision of the hadronic inelastic process vy —
h + X the expression (2.1) can be rewritten as:

]
(3.1)

Now, following our prescription, the Born term coming from the dia-
grams of Fig. 1 has an expression (9, 10]:

deo YY—99 1 4y’ €1 2 4
df (3, v) Born —F(l - E) (3‘0(1 - ’U)) ‘].—6_;(47"&) eq

x(2~e)(1-5)§15{(1-e)(1fv+1“”) —25].
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AAANNNANN,

PNEVANIVAVV VAV VY

Fig. 1. Feynmann diagrams for the Born term of the subprocess vy — ¢§.

Notice that in this case, the Born term is not of order a,. Thus, the
term (proportiona.l to In (;"2—))&1 = 0. Moreover, for the process vy —

h + X there are no structure functions, thus the terms (proportional to

In (—M‘Lg))él and é; are equal to zero (&é; = é; = 0).
In what follows and to keep our results transparent, we take as a com-
3 2 > . -
mon factor between the various terms:%lc rNg. Now, to determine &;

and &, (terms proportional to ln( 2 ) one uses Eq. (4) of Ref. [5] to get:

M2

1
- - d d Born R a1 R X )
&1+ & o 3 / jypqq(i)s' 7 (s', —u—)é(s' +a' +t'), (3.3)

XC dv 8!
Xc
where
dePom ds
dv " di’
Alzs,ﬂ:ch’a AI:ZCE, (3.4)
y y
and 5
142 3 ,
= —_ 4 —8(1 - . 3.5
paals) = Cr| 12+ 2501 - ) (35)
After straightforward calculation and using the fact that,
1 1 1 1
== ~ - 3.6
(v—vw)y v (1_w)++v]_nv6(1 w) (3.6)
one can write: 1 1
- v - U
B o o 3) (5 ) (3.7)

and

ézocg( v +1“”). (3.7)
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Regarding the coefficients c3 and c3 which are proportional to (-1——11;)—; and
[ln(l—w)

1—w

Ref. [5]). They can be calculated easily and have the form:

] , respectively, they appear in the corrections of fsrf;;ms (see

ccx AlnD + B,

and
c3 x —aAd.

It is to be noted that the Block—Nordsieck mechanism guaranties the cancel-
lation of the infrared singularities and therefore A = aA'. Moreover, and as
a consequence of the Slavnov—Taylor identities, the ultraviolet singularities
cancel and lead to (see Eq. (4.10) of Ref. [5]):

—;}(Alnp +b)—é =—(A'InF+ B,

where F' and D come from the two and three bodies phase space, respec-
tively. In our case, @ = 1 and &; = 0, which implies that:

Cc3 X —A',

and
cox A'InF + B.

Thus the terms ¢z and ¢3 can be completely determmed from the virtual
a5 |79 v

correction I ‘ was calculated

. We remind the reader that & 3—

in Refs [9] and [10], and has as an expression (in d = 4 — 2¢):
de,. 779d ol 1 drp®\e s 4dmp? \e
[ L (R
dv virt 27 F(l —2)\ § $v(1 —v)

L gemel( 4 D (2 5

a,(p)27ra et L 2 201 _
+ 2B T dorNo (23 3+ 1n2v 4+ In?(1 v))

x (1~v+—-)+2+(2+3——)1nv

+(2+3m)1n(1—v)+(2+m)ln2v

+

%) m*(1 - v)} . (3.8)
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Now, knowing that

one obtains:

A'oc——2( v +1—v), B'oc( v +1—v)+4

1—wv v 1—-wv v

and consequently:

and

. v 1-— 4y’ v 1-v
cz_—2(1_v+ - )[2111( 5 )—lnv(l—v)] -|—(1_v+ " )
(3.9)
Now, for the calculation of the term ¢; (which is proportional to §(1 —

w)), one has to notice that it is common to virtual and Bremsstrahlung
corrections. It is given by [5]:

=[Aln’D + BInD + C)+[A'In* F+ B'InF + C']. (3.10)
For the sub process vy — ¢ Eq. (2.14) can be simplified to the following,
cg=cglnv+¢ —e,

where ¢ is given by Eq. (3.9) and,

- v

c’:{2g—2—3+1n2v+1n2(1—v)<lv + 1—v)
+2+ (2+31%v)1nv+(2+3—1—_v—v)1n(1—v)

+ (24 =) mPo+ v)lnz(l—v)], (3.11)

and c is a term coming only from the two Bremsstrahlung diagrams of figure
2 and gives a contribution proportional to G=w)1 [5] In fact, for the two
diagrams shown in Fig. 2, one has to deal with two types of integrals I; and
Iy such that:

I = (ps)3Jr,
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and
I = (ps)sJz,s
where (ps); is the 3-body phase space given by:

(ps)3 :m(%)h/dv/dwv(l —v)7 (1 —w) v 2w "

™

kid
X / df, sin—2¢ 0, / df; sin'~2¢ 9y, (3.12)
0 0

with 8; and 6, are defined in the c.m.s. of p; and p; (see Fig. 2), such that

e aAaAnd

Fig. 2. The Brewmssirahlung Feynmann diagrams contributing to the term ¢ of the
subprocess vy — ¢q.

in “d” dimensions, one has:

p1 = 2\/_(1 0,...,0,siny, cosy),
p2 = i12}/'?)'(1,0,...,0,—simﬁ,cos#)),
3(1 — v + vw)

p3 = N (1,0,...,0,sin¢y"  cosy"),

pa = \/25(1,. .,cos 03 sin by, cosby),
k= ?(1,...,-c0302 sinfy, — cosfy), (3.13)

with

s = $v(1l — w),

cosp = M; siny = ‘/
1—vw 1—vw

1+v—vw
: cosz/)":l_v+v

v — vw
cosyp; siny' = —*msm'ﬁa
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J1 and J; are given by:
vw
2
7r.§(1 - v +ow)(l —v)

1 4 1 v , 2 i
x{v v]n( 2 )s+;[61n(1—v)+41n(1—_—;+1—v+2v )*{}5 }
(3.14)

Jy = — (1 - w (4 - 2)(2 - 2¢)?

and

Iy = 21rg(—il_—w)(1-w)—l(4—2e)(2—26)2[1—2(1n2)e+ (2m22+ 3’;)52] :

Now, using the expression:

—1—e __ 1 1 ln(l—w)
(- w)7e = L) ¢ - e[ ]++0(e2),(3.15)

and taking only the contribution proportional to §(1 — w) we obtain:

—(4ln2+81n(1j}_v))(1iv), (3.16)

therefore the expression of the term c; becomes:

= 2(1_v 1v )[2111(4":#)__lnv(l—'v)+2]np—%]]nv
+4111v[(?%2._3+h12“+1n2(1_v))(1fv+1—v

)+2

v)lnzv

++3—mo+ (248 ) In(1 - v) + (

+(

v) n2(1 — v)] + (41nz +81n (l—f;) - ‘ - (347)

4. Numerical results and conclusions

We first specify the impute partons fragmentation’s functions entering
in our numerical calculations for the physical process vy — h + X (in our
case, we take h the pion 7). The fragmentation of the quarks into pions
is taken from Baier, Engels and Peterson [14] which is in a good agreement
with the data of PEP [15] and EMC [16]. These are:

1+2

Dvr‘*‘/u(z’QZ)“‘ D( Q ) (4'1)
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and
1-1z

D(z,Q), (42)

with (Qo =5 GeV): D(z,Q3) = 0.5(1 — z) (z is the momentum fraction of
the quark into the pion) and from SU(3) symmetry, one can write:

D7r+/d -

D1r+/cf:D7r+/u7

and

D7r+/d:D7r+/ﬁ:D7r+/s:D7r+/§' (4'3)

It is to be noted that the exponent in (4.2) is in accord with counting
rules, and the normalization in agreement with ete™ — = + X data. The
Q? dependence is determined from the Altarelli-Parisi evolution integro-
differential equation. The fragmentation function is defined in the universal
convention [16] (this is necessary when only leading logarithmic parametriza-
tion are available).

The results are presented at /s = 63 GeV and the QCD. A parameter
equals 0.2 GeV. We restrict ourselves to the production of three flavours
only. Moreover, the strong running coupling is calculated in the leading
logarithmic approximation. To be more specific and to emphasize the effects
of the renormalization and factorization points dependence, we have taken
Q*=u* =M 'z - P,% (Pr is the transverse momentum of the pion xt).
It is to be noted that the increasing Q? softens the fragmentation function.
Thus, we expect that the scale violation in the quark fragmentation function
reduces the spectrum when the larger factorization scale (M 2 = 2P2) is
used.

Fig. 3 displays the ratio R = ;%‘ff; (k-factor); for a pseudo rapidity
y =0, /s =63 GeV and Q% = P2 (dashed line) and Q? = 2PZ (dashed-
dotted line). It should be noted that the greater instability in the predictions

is obtained for the larger values of :cT( = 15_%), where the perturbative cal-

culation is expected to be reliable. This suggests the necessity of including
higher order corrections. Now, changing the scale Q2 from P2 to 2P2 in-
troduces in the ratio R, the scale dependent term associated to the quarks
split function p,, given by:

1

+ / dq;[l%‘;:csz_F/q(zc)_2Dr+/q(zc)](l—z)}. (4.4)

3
T$Temin d_'lJ\'y'y—*q‘iCF{2 [ln(l = Zmin) + Z] D"+/q(zc)

z
Tmin
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V5=63Gev, y=0

Fig. 3. The ratio R = 2t (k-factor) for the hadronic process vy — 7tX as a
function of zp with /s = 63 GeV, a pseudo rapidity y = 0 and a — Q% = P}
(dashed line), b — Q% = 2P} (dashed dotted line).

For zmin close to 1 (i.e. large z7) the first and second terms become large
and negative, implying a decrease of the correction when the factorization
scale increases. At small 2 the contribution of the previous terms becomes
smaller and, therefore, the correction decreases (with the increase of Q%)
slowly in comparison with the first situation. This behaviour is, of course,
necessary to compensate for the changes occurring in the Born term and,
therefore, to stabilize the total (fully corrected) cross section oyqt.

Fig. 4 shows the rapidity dependence at zp = 0.5, /s = 63 GeV
and with different choices of scales Q2% = P% (dashed line) and Q% = 2P%
(dashed-dotted line). Notice that for the choice Q% = 2P%, the ratio is
very small and tends to become large and negative for smaller values of
y (at the edge of phase space). However, for Q? = P.%, and because of
the important role played by the logarithmic term in Eq. (4.4), the ratio
R is more important. It is to be noted that for both choices of scales, the
behaviour of the correction at large z7 is affected showing a rapid growth
with zT.

We conclude that with the soft-gluon approach and the prescription de-
scribed previously, we have evaluated easily the next-to-leading order cor-
rections without any use of complicated diagrams. More applications are
under investigation.
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Fig. 4. The ratio R = Ziet- (k-factor) for the hadronic process vy — 7t X as a
function of a pseudo rapidity y with /s = 63 GeV, ¢ = 0.5 and a — Q% = P2
(dashed line), b — Q? = 2P% dashed-dotted line).
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