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‘We carried out an extensive study of the distribution of the color fields
around the static q§ pair using the methods of lattice field theory. The
measurements have been performed on Monte Carlo configurations with
dynamical fermions, at 8 = 5.35, on the 163 x 24 lattice with periodic
boundary conditions. We have found some interesting differences with
the quenched results published earlier, among them the effect of breaking
the flux tube. We also performed perturbative calculations up to one loop
level to see which details of the color field distribution obtained using MC
methods are purely nonperturbative and which can be understood from
the perturbative expansion of the QCD action.

PACS numbers: 12.38.Gc

1. Introduction
1.1. Confinement of quarks

In the last 30 years many experimental and theoretical arguments ap-
peared supporting the idea of quarks and gluons as elementary strongly
interacting particles of the nature. This evidence comes from isospin and
SU(3) flavor symmetries, the results of the deep inelastic lepton-hadron
scattering and the spectroscopy of the low energy excited states of hadrons
and the ¢ and T particles. Nevertheless, neither the free quarks nor glu-
ons have been ever observed. This led to the idea of confinement — the

"long distance attractive interquark force which prohibits quarks separation
thus allowing only for the existence of their bound states — hadrons. Until
now there is still no rigorous theoretical proof of this phenomenon although
many models have been created to explain it.
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In the model presented by Kogut and Susskind [1] the confining force
is connected with the formation of the electric flux tube between charges,
with finite energy per unit length. Similar effect can be observed in the
superconductors of the second kind. As a result of applying strong external
magnetic field the magnetic flux tube is created in such materials in the
form of fibres of non-superconductive medium.

Another model of confinement, which was widely explored, has been
suggested by Chodos et al. [2] . According to them the hadron is made of
quarks and gluons confined inside a finite region (a bag) with a constant
energy per unit volume. It was achieved by imposing appropriate bound-
ary conditions which do not allow the particles to be separately extracted
outside the bag. Despite of its conceptual simplicity, this model (MIT bag
model) was able to explain many observed features of hadrons.

The most widely accepted candidate for the theory of strong interac-
tions is the Quantum Chromodynamics (QCD) based on the color SU(3)
gauge group. One expects to obtain the effect of confinement in this theory
as a consequence of its complicated nonabelian structure connected with
new color degrees of freedom [3]. It leads in turn to the nonzero coupling
between gluons which makes the interaction qualitatively different compar-
ing, for instance, to the case of Quantum Electrodynamics. In QCD, non-
perturbative treatment is needed when investigating the long-range part of
quark interactions responsible for confinement. It forces the use of special
techniques, among them Lattice Field Theory and Monte Carlo simulations
[4-7).

1.2. Lattice field theory — a nonperturbative method of exploring QCD

Lattice QCD is a discretized Yang—Mills theory with dynamical quarks.
It was first formulated by Wilson [5]. The motivation was to provide a
systematic, nonperturbative method of handling field theory with coupling
constant becoming large at large distances. This behavior, characteristic
for QCD, is qualitatively different than in QED and makes it impossible to
treat this theory in standard, perturbative way.

Lattice QCD is a regularized theory. On a lattice, wavelengths less than
the double lattice spacing a are meaningless. This implies that the momenta
are automatically cut off thus removing the ultraviolet infinities. Physical
results can be recovered in the continuum limit of this theory (a — 0), after
applying the renormalization procedure. The formulation of the QCD on a
lattice also preserves exact local gauge invariance.

There is also an important practical feature of this theory. Since it is
formulated on a discrete lattice, it is well snited for numerical calculations.
After quantization using Feynman path integrals and continuation to the
euclidean time, it closely resembles statistical physics with the partition
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function equal to Feynman quantum amplitude. This in turn allows for
using standard statistical methods (high and low temperature expansions,
Monte Carlo simulations).

Lattice field theory has a computable strong coupling limit in which the
confinement arises. Historically, it was the first major success of this theory
and the whole subsequent work was devoted to showing that this property
persists for finite coupling as well.

The degrees of freedom of the lattice Yang-Mills theory are link vari-
ables U; being members of the considered gauge group. In the case of SU(3)
they are unitary 3 x 3 matrices associated with gauge fields A4,

U; = exp (igoad;) = exp (igoa4A7T?) , (1)

where gq is the bare coupling constant, a is the lattice spacing and the index
[ represents oriented link between neighbouring sites ¢,z + fi (such link can
also be denoted (z, p)). The T%s are the group generators.

The gauge invariant Wilson action is defined as follows

SW =% B(1-RePn), (2)

where 8 = 2n/ gg , n is the dimension of the fundamental representation of
the gauge group and Py denotes plaquette — an elementary gauge invariant
object constructed from four links forming a closed loop

1
Po(z) = ;TrUz,uUz+u,le U:I,u . (3)

+v,u

We used the definition U, _, = Ul_“'“.
The plaquette is an example of a more general gauge invariant object

on a lattice — the Wilson loop

1
W = ~Tr II v (4)
lew
where, for simplicity, the symbol W denotes also the actual loop formed by
the links [.

Fermions are introduced by adding appropriate gauge invariant term to
the action

S = 1i® 3 (Bl (@)betn — $op VUL (2)0e) = moa* Y Btz
Tu z
— (5)

Here my is the bare mass and %, %, — the fermionic fields located at the
point z. This action has a correct classical continuum limit, but leads to
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the problem of species doubling [7]. This usually requires the reformulation
of the fermionic part of the theory by introducing additional terms to the
action ( Wilson fermions) or decomposing the lattice into an even and odd
sublattices (staggered or Kogut-Susskind fermions).

Now we introduce some basic definitions used throughout this work.
The quantum expectation value of a lattice observable X is defined as

(x) = 5 [1av)xe-s, (6)

where [dU] is the measure, Z — the normalization factor (partition function)

Z = / [aU]eSIY] (7)

and S[U] — the total action of the theory.
The correlation function of two observables X and Y can be written as

(XY) = % / [dU]XYeSIUL, (8)

These formulas can be evaluated analytically (Section 4) or numerically,
using Monte Carlo simulations (Section 2).

1.8. Survey of studies of the fields around two static quarks

The research on the structure of the color fields around the static charges
is a next advance towards the understanding of the physics of strong inter-
actions and the origin of confinement. It allows not only to obtain the
dependence of the ¢ potential on the distance but also enables the more
detailed exploration of the local behavior of particular components of the
chromoelectric and chromomagnetic fields. Using methods developed re-
cently, in connection with the significant progress in computer technology
in the last ten years, one can now determine the shape of the flux tube
between the qg pair with respect both to the energy and action densities
and its dependence on the interquark distance. Other issues that can be
investigated in this field include asymptotic freedom (Coulomb limit) and
excited states of the string.

First, exploratory study of the problem of the energy density distribu-
tion around static ¢ pair using Monte Carlo techniques was carried out for
SU(2) by Fukugita and Niuya in 1983 [8]. They pointed out the general
domination of the electric flux components (over the magnetic ones) and
noticed, that the transverse thickness of the flux tube increases with the
interquark distance in qualitative agreement with the string model. Also,
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the resemblance of the system to the electric dipole was observed. Analo-
gous work was done for the SU(3) case in 1985 by Flower and Otto [9] with
the stress on the connections with the string model. Large scale Monte
Carlo simulations were performed during 1987-1989 by the Cracow — LSU
collaboration {10-13], revealing the shape of the flux tube for large quark
separations (up to 9 lattice units). Lattice action and energy sum rules
obtained by Michael [9] were thoroughly checked in this work. Extensive
studies of the color flux distribution in the presence of static quarks were
also done by Sommer [15, 16]. Althouhg different operators were used the
results are consistent with the other ones. Field distribution around adjoint
source was considered by Jorysz and Michael [17]. Another important con-
tribution to the understanding of these issues is the recent work of Bali and
Schilling {18]. They used quite large lattices (up to 483 x 64) to demonstrate
flux tube formation over large physical distances in quenched SU(2) gauge
theory.

All these results were produced in the so called quenched approximation
which means that the loops of virtual light quarks were neglected [19-21].
Also, most of authors dealt with SU(2). In the last years new opportuni-
ties of studying the structure of the flux tube arose. Thanks to continuous
development of both computer technology and numerical algorithms we are
now in a position to include the effects of dynamical fermions in our mea-
surements. First such study was carried out by Feilmar and Markum [22]
for SU(3). They measured Polyakov loops on 83 x 4 lattice restoring most
important results of the quenched approximation. They also claimed to find
the evidence of the breaking of the flux tube although small N, size does not
allow to rule out the finite temperature effects in this case. The breaking of
the tube is a qualitatively new effect introduced by dynamical fermions.

In this dissertation we present the results for SU(3) and much bigger
(163 x 24) lattice based on MT,. configurations with dynamical fermions
[23-25].

1.4. Purpose of this work

The main aim of this work is the presentation and analysis of the results
of the measurements of the distribution of the color fields around the static
qq pair. The novelty of these measurements is that they were performed on
SU(3) configurations with dynamical fermions, i.e. without the quenched
approximation.

Apart from these measurements we also carried out extensive analytic
calculations of the same quantities for SU(3) in weak coupling approxima-
tion up to one loop level. The formulas obtained analytically were worked
out in configuration space using efficient numerical methods (Fast Fourier
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Transform). Comparing the numerical Monte Carlo results with the per-
turbative ones can help in filtering out perturbative effects in an attempt to
understand purely nonperturbative phenomena. The MC results obtained
in this work have also been compared with analogous measurements pub-
lished earlier by many people and computed using quenched approximation
(cf. Section 1.3). The effect of the introduction of dynamical fermions is es-
pecially interesting. Also, the quality of the quenched approximation, used
until now, can be assessed.

In Section 2 we introduce the Monte Carlo method in lattice field the-
ory and show how this method can be used to reveal the details of the
distribution of the color fields around static quarks. In Section 3 we present
the results of the measurements based on MC simulations with dynamical
fermions. Although, in general, our results coincide with the quenched ones,
we observe an important difference in the field distribution connected with
the introduction of dynamical fermions. Energy and action sum rules are
also analysed in this section leading to additional interesting conclusions.
Finally, we present an alternative promising method of computing the flux
distribution. In Section 4 we show how the color fields distribution anal-
ysed in previous sections can be calculated analytically using perturbative
expansion on the lattice. We derive appropriate formulas in the tree and one
loop order. In Section 5 the results of numerical evaluation of the formulas
derived in section 4 are presented. We contrast them with the Monte Carlo
results which proves the nonperturbative origin of the flux tube.

2. Color fields around the gq pair from Monte Carlo
simulations with dynamical fermions

2.1. Monte Carlo methods in lattice gauge theory

Monte Carlo methods are widely used in statistical physics. They are
an important tool in all cases where analytic results cannot be obtained.
Since the lattice formulation of the Quantum Chromodynamics in Euclidean
space (Section 1.2) is equivalent to the statistical physics with the partition
function Z given by (7) these methods can be directly applied in this field
(4, 27, 28).

The usual method of working out Eq. (6) using the Monte Carlo sim-
ulation involves generation of some (large) number of configurations {U}
(sets of link variables U') with probability governed by the Boltzmann dis-

tribution P(U) ~ e~ 5Vl (8 was absorbed into § for simplicity) . Then

! We write U instead of {U} to simplify the notation
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the equilibrium expectation value of some quantity X can be directly ob-
tained as an ordinary average of the values which it takes for particular
configurations

N
(X) = 3 3 X[V, 9)
n=1

with the error decreasing as 1/v/N provided the subsequent configurations
are not correlated.

In practice, a Markov chain of succesive configurations C is generated,
in which a configuration C,, depends only on the previous one, C,,_1, and
the so called detailed balance condition is satisfied. In the case of Boltzman
distribution this condition has the form:

P(Cn — Cnt1) exp(=5[Cn]) = P(Cni1 — Cr) exp(=S[Cn+1]) . (10)

This condition ensures that if the configuration C,, obtained after some
steps is distributed according to Boltzman distribution, the next one, Cp 41
also has the same probability distribution. If, in addition, the process is
ergodic which means that any configuration in the chain can be reached
starting from any other one (the configuration space does not split into dis-
connected parts) the sequence of C,s converges to the required probability
distribution?.

Two algorithms of generating configurations with given probability are
widely known and form the basis for more sophisticated ones — the heat
bath method and the Metropolis method [4, 7, 29]. In the elementary step
of the heat bath algorithm every link variable U; is choosen according to
the required distribution as if it were in thermal contact with a background
of all links interacting with it. In the Metropolis algorithm a modification
of the link variable is proposed and accepted or rejected with a probability
determined by the change in the total action generated by this modification.

2.2. Monte Carlo for dynamical fermions

Simple algorithms mentioned in the previous section become very time
consuming in cases when the change of action between succesive configu-
rations is nonlocal i.e. requires recomputing of the whole action instead of
being obtained as a function of a few locally modified variables {4]. An
example of such a situation is the lattice MC simulation of the QCD with
dynamical fermions. In this case the partition function Z has the general
form

2 The process of approaching the equlibrium distribution is called thermalization
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Z = / [dUdypdpleSUI-Se 9] (11)

with ¢ and ¢ being the fermionic fields and Sg — the fermionic part of the
action. Integration over Grassman variables

/ [dydylePMY = det M, (12)

leads to the following formula which, in principle, can be directly used in
the MC simulation

7= / [dU] det M[U]e~ SVl = / [AU e~ 5ef (13)

Here M is the fermionic matrix defined by Sp = ¥ M4, which is very
large, extremely sparse (at least for typical fermion actions) and, unfortu-
nately, det M depends nontrivially on the whole configuration of the Us.
This makes the S.g used in simulation nonlocal. The simplest approxima-
tion possible at this point is to neglect the fermionic determinant altogether
and generate configurations according to pure gauge measure [19-21]. It
implies leaving out all effects from internal quark loops and, consequently,
fermions are not dynamical in this approximation. This theory (quenched
approximation) was simulated in the 80s and up to now as the only one
technically accessible.

In practice, direct MC simulation of the full QCD using (13) is never
performed. Replacing the determinant by an integral over a set of auxiliary
bosonic fields x* and x leads to

7= / [dUdx*dyJe=SUI-X" M x| (14)

Now updating every link variable requires only the recalculation of the
x*M~1x which is much simpler than inversing the whole matrix. Many
effective algorithms of solving the corresponding linear (Dirac) equation

Mz =y (15)

have been developed, among them methods based on Conjugate Gradients
algorithms [30-32], Incomplete LU Decomposition [30, 32], Multigrid [32-
34] and Alternate Direction Implicit method [35]. Since the recalculation
after each link update is still very time consuming many approximate vari-
ants of this method have been devised. Most of them are based on solving
(15) once after all Us have been updated.
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There are, however, exact methods which also require this inversion
to be performed only once per lattice sweep. They use global configura-
tion updates instead of local ones and Metropolis type accept/reject step to
control detailed balance condition [36, 37]. The Hybrid Monte Carlo Algo-
rithm (HMCA) [36] is the one which combines the features of the Molecular
Dynamics method [38] and Langevin type step [39]. In this algorithm the
global updates are performed as a result of the microcanonical evolution
of the whole configuration with artificially introduced momenta and time.
This ensures higher acceptance ratios which was generally a problem in
global update schemes. The simulated probability is now

e—%pz—s[U]—x*M"lx’ (16)
with the ps as conjugated momenta allowing to construct the “phase space”
and the “Hamiltonian”. An elementary step ¢t — t' of the HMCA consists
of generating the momenta according to Gaussian distribution, then evolv-
ing p and U for the time t' using equations of motion and the Leapfrog
method, and finally accepting or rejecting the new configuration according
to Metropolis criterion. The x field is updated in between using x = M¢
with Gaussian noise £ .

The configurations analyzed in this work to measure the (W P) correla-
tions were produced by the MT, collaboration using the HMCA algorithm
[23].

2.3. Field distribution from Monte Carlo data — the method

The components of the chromoelectric and chromomagnetic field around
the static ¢g pair can be expressed in terms of correlations between the
Wilson loop oriented in the space-time plane (with the spatial extent R
equal to the interquark distance) and appropriately chosen plaquettes

B (WP, (z)) — (W){(Pu,(z
fp.ll(z) — _a_4< “ ( ))(W/% >< H“ ( )>, (17)
where W denotes the Wilson loop and P, (z) the plaquette oriented in the
plane pv with the center at z [8-10].
In the classical continuum limit (@ — 0) the average value of the square
of particular components of the color field at the space-time point z is
reproduced

fy,V - —(%)<F3V>7 (18)

so that —2f;; represent squared magnetic components of the color fields
and 2f;4 squared electric ones in the Minkowski space. Therefore, in order
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to find the distribution of the field around the static ¢g pair, one needs
to measure the expectation value of the Wilson loop and the correlations
between the loop and plaquettes.

In (18) and throughout this work we use the simplified notation

(sz) = (Fiu>q§ - <F3"’>vacuum ’ (19)

where ()vacuum means the quantum average in the vacuum state and () 9
- the average in the ¢g sector of the Hilbert space.
The formula (17) can be approximated as

B (WP,“,(a:) = WPy (o))

fuu(-’”) = ZI_Z <W> ) (20)

where P, (00) denotes “plaquette at infinity” in practice chosen as lying at
the maximal distance from the Wilson loop (on the periodic lattice), where
we believe the correlations vanish (actually they vanish much closer to the
Wilson loop [11]). Eq. (20) has an advantage of giving much smaller errors
due to self-cancellations of the statistical fluctuations of the terms inside
the brackets [10].

2.4. Details of the measurements

The measurements have been performed on 80 MT, configurations with
dynamical fermions [23], at 8 = 5.35 (a = 0.125 fm), on the 163 x 24 lattice
with periodic boundary conditions [24, 25]. Apart from the simple error re-
ducing trick mentioned in Section 2.3, the smearing technique has been used
to improve the signal by decreasing the fluctuations of the link variables.
Every space-like link has been replaced by the normalized combination of 4
oriented products of links, staples, surrounding it

Uu(n) ~ Uy (n)Uu(n + v)UJ(n + u) + three other staples, (21)

where p, v # 4.

The measurements of the (W) and the (W P) correlations for particular
Monte Carlo configuration have been performed making use of the following
lattice symmetries:

1. Translational symmetry — the Wilson loop and the plaquette can be
simultaneuously shifted along any of the four space-time axes, which
produces 162 x 24 quasi independent values.

2. Rotational symmetry — the Wilson loop can be located in three planes
zt, yt, zt which multiplies the number of sampled values obtained from
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one configuration by 3 (other possible Wilson loop orientations could
not be used due to the space-time asymmetry of the lattice).

3. Reflection symmetry — there are 16 equivalent plaquette locations
around the Wilson loop (symmetric quadrants) which yield an addi-
tional factor of 16 measurements per configuration.

Therefore, the final value of the correlation between the Wilson loop
and the plaquette, obtained from one configuration, is the average of 163 x
24 x 3 x 16 = 4,718,592 measurements. The averaging over translationally
symmetric measurements have been done using the discrete correlation the-
orem and the Fourier Transform (the details are given in Appendix A). This
method produces at once all averaged results for various relative orienta-
tions of the Wilson loop and the plaquette and can dramatically accelerate
computations when applying the Fast Fourier Transform (FFT) algorithm
(which can be further effectively vectorized for the vector computer).

The MC configurations have been grouped into 16 bins, each of 5 con-
secutive configurations, to decorrelate the data. Each bin was the input for
one program run, which produced the averaged results for all Wilson loops
in the range 1 x 1 to 8 x 8. The final statistical error was estimated as the
standard deviation of the population of these bins.

The reference plaquette, cf. Eq. (20), was chosen to be placed at the
maximal possible distance from the Wilson loop, contrary to the fiducial
volume approach used in [11]. However, the subspace for which the results
have been saved on disk and then used for statistical analysis was limited
to the 4-dimensional cuboid with the sides extending 4 lattice units in each
direction from the Wilson loop.

The FORTRAN program for computing the correlations was prepared
in Krakéw during 1991. Final tests and code vectorization was carried
out at the computer center of the KFA Jiilich, Germany. Main computa-
tions and statistical analysis of the results were performed in 1991-1992 on
the Cray Y-MP supercomputer at this center, partially from Krakéw using
Internet capabilities. All required interpolations and data smoothing was
done on IBM RISC workstation at Particles Theory Department, Institute
of Physics, Jagellonian University in 1992-1993.

3. Monte Carlo results

We begin with describing the notation and geometry which will be used
throughout this section. Independently of whether we present the Monte
Carlo or the analytic results, the general set-up of the lattice is the same:

1. The 4-dimensional lattice is assumed to be periodic in all dimensions.
Its size is Ny = N; X N2 X N3 X Ny sites so that it consists of 4Ny
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links. Most often we will consider the case of symmetric lattice N7 =
e ::IVg =N.

. The Wilson loop of the size R x T lies in the zt plane. The interquark

line is the z axis (the longitudinal direction). The mid-point between
the quarks is (0,0,0,0) (for the timeslice T = 0) and the corners of
the loop are (0,0,+R/2,+T/2). The directions z and y are collectively
called the transverse directions. We denote the longitudinal direction
by Z and the transverse direction by X in all figures. We use lattice
units for the space-time coordinates.

. There are six possible orientations of the plaquettes according to the

six components of the color field tensor. Since we have chosen the
Wilson loop to be oriented in zt plane, the relationship between various
plaquettes and the field components is as follows:

component plaquette
123 IZZt
E, Py,
laz Iét
B, P,
B, P,,
lgz }Jzy

Because of the cylindric symmetry of the problem, we will usually con-
sider four (squared) components: electric longitudinal (Eﬁ) = (E?)
and transverse (E2) = ((EZ) + (Eg))/ 2 and, respectively, magnetic
longitudinal (Bﬁ) = (B?) and transverse (B2 ) = ((B2) + (B2))/2 (cf.
Eq. (18)). For simplicity we use the notation () instead of () z—()

as it was explained in Section 2.3, Eq. (19).

vacuum

Fig. 1 illustrates the above points.
In this section we present the results obtained from the Monte Carlo

simulations of the QCD with dynamical fermions. The details of the mea-
surements were given in Section 2.4. Although we tried to exploit as much as
possible the configurations which were available to us from the MT, collab-

orat

ion, the final results still have large statistical errors increasing rapidly

with the size of the Wilson loop. Therefore, the range of the Wilson loops
for which we are able to show reliable numbers is limited to 4 x 5. Also, the

COorr

elations have meaningful values only at small distances from the edges

of the Wilson loop (in practice 2-3 lattice units). Nevertheless, the vicinity
of the sources and the most interesting region between the quarks can be
succesfully examined. It allows us to present first results with dynamical
fermions obtained on the lattice of considerable size.
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Fig. 1. The geometry of the measurements.
3.1. The shape of the flux tube and the distribution of particular components

First we analyse the relative importance of various components of the
color fields. The following table summarizes the availability of the results
for particular components. For greater loops the errors are comparable to,
or larger, than the signal even in the region close to the loop.

component Rmax Thmax

(Eg) 4 5
(E%) 4 4
(B?%) 4 4
(B?) 3 3

Since the plaquettes are used to compute the values of particular com-
ponents, we assume that the correlation value obtained from the Monte
Carlo data represents the center of appropriate plaquette. Consequently,
different components are measured on different sets of lattice points. In
particular, no component can be measured at the “singular” sites where the
quarks are located. Also, only the data for (Eﬁ) is directly available exactly
on the interquark line. Thus we will show the numbers from the vicinity of
these sites. Interpolation will be used to construct the action and energy
distributions in the whole space.
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Fig. 2. Longitudinal profiles for chromoelectric and chromomagnetic components

Fig. 2 summarizes the contributions of particular components for the
4 X 4 loop. The points denote values lying near the interquark axis. The
general shape of the profiles supports quenched results first presented in
[8] and [9], and then confirmed in many other papers: there is an evidence
for the flux tube between the quarks visible in all components. Also, the
general relationship between the absolute values of particular components
is in agreement with previous results:

KEDI > KED) 2> (BL) > (B, (22)

which implies that the contribution of the chromoelectric components to the
net flux between the quarks is dominant. We used absolute values in (22)
since the measured magnetic components turn out to be negative: (Bf) <0
(cf. Eq. (18) and (19)). This agrees with the quenched results, as well.
The dominance of (E2) over (B?) in Fig. 2 is connected with the dif-
ferent locations where these components are measured. For (E? ) they were
taken closer to the t = T/2 subspace (quark creation/annihilation time)
which artificially increased the values (note that we use rather small Wil-
son loops). Also, the quenched results concerning transverse dependence of
the components (z.e. perpendicularly to the z axis) [8-12] are reproduced
in the case of dynamical fermions. This is shown in Fig. 3 for (Eﬁ) and
the loop R = T = 3. The data are taken at the middle time slice, for the
z-slice mid-way between the quarks. The dependence is approximately ex-
ponential as also found in the quenched case [11]. We tried to fit our data
to the combined exponential /gaussian dependence proposed in [13] using a
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Fig. 3. Transverse profile for (Eﬁ)

x? fit but the result?® clearly indicated the exponential rather than mixed
dependence.

Now we turn to the energy and action density distributions which are
two physical observables often used to describe the flux tube. They are
given by

e = 1(E* + BY), (23)
T = %(E'2 - B2). (24)

Since the magnetic contributions turned out to be negative, there is a
strong cancellation between the two terms in (23) and the enhancement in
(24). This was also found in earlier studies [11, 13, 14].

As we mentioned above, the values of particular components, as ob-
tained from the measurements, are all defined at different space-time points.
To compute the energy/action density distribution one has to combine them
using interpolation. Many interpolating schemes are possible here (for ex-
ample krigging, [13]). Since our data are concentrated in a relatively small
volume around the quarks we have applied a simple method based on com-
bined linear, polynomial and cubic spline interpolation. The raw results for

8 We used MINUIT — the standard function minimization program available
from the CERN Computer Centre Program Library
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each component have been first assigned to appropriate points of the finer
lattice with the spacing @' = a/2, made of 16 Ny sites, and then propagated
to all remaining points of this lattice using the interpolation. Finally, all
components have been combined giving the energy/action distribution on
the fine lattice. The results for the Wilson loops 3 x 3 and 4 X 4 are pre-
sented in Figs 4 and 5, respectively. The lines were drawn for convenience
and do not represent the results of the interpolation. As expected, the
action density is significantly larger in the whole area around the quarks.
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Fig. 6. Energy and action density for the loop 5 X 5 — interpolated longitudinal
profiles

Also, since the differences between the action and energy density measured
in the peaks and in the mid-point between the quarks are nearly identical,
"we conclude that the chromoelectric component strongly dominates in the
vicinity of the sources. It is not surprising since this region can be well
described perturbatively and the perturbative fields close to the quarks are
pure electric ones (compare the results of the analytic section).

To show how the results for energy and action profiles extrapolate to
larger loops and how the statistical errors increase with the loop size we also
present the data for R = T = 5. Although with significantly larger errors,
the data in Fig. 6 coincide with the results obtained for smaller loops.

3.2. Comparison with quenched results

Now we proceed to the direct comparison of the longitudinal depen-
dences for both the quenched approximation and the dynamical fermions
case. This is done in Fig. 7 for the loop R = T = 4 and both chro-
moelectric components. The results for (B2 ) and (Bﬁ) have much larger

errors. To make the comparison more clear we have normalized our data
forcing the values at the points labeled “N” to be the same as obtained from
the quenched approximation. The data representing quenched results were
taken from [11] . The situation for electric components seems to be clear:
including dynamical fermions results in lowering the value of the field in the
area between the quarks making the tube weaker. This may be interpreted

* Although these reference results are for SU(2) we have chosen them since we
had free access to all raw data which made the comparisons more reliable.
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as an effect of entering the region where the flux tube can be broken. This
phenomenon does not exist in the quenched approximation since in this case
one neglects the important part of the strong interactions which takes part
in breaking the tube, namely creation of light quarks.
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Longitudinal profile of <E121 ) for larger (4 x 5) loop is shown in Fig. 8.
The effect of quenching is no longer visible although the errors are larger
and the interpretation not so reliable.

The comparison of appropriate data for magnetic components is less
conclusive because of much larger errors. Generally, no meaningful differ-
ence can be seen in this case between the (normalized) longitudinal profiles
obtained in the quenched approximation and with dynamical fermions.

Also, as was mentioned previously, the transverse profiles for the com-
ponents at z = 0, which we were able to measure with acceptable precision,
show no significant qualitative difference compared to the quenched case.

3.3. The dependence on T

The average value of the color field component measured using the
correlation (17) for any finite Wilson loop size is the mixture of the contri-
butions from various quantum states of the gluon field with external sources
qq. Since we are mainly interested in revealing the shape of the flux tube in
the lowest energy state, we have to increase the temporal extent of the loop
T to supress the contributions from the excited states. However, as was
mentioned above, the statistical quality of our results is acceptable only for
small loops. With this in mind it is natural to ask, how well the flux data
extrapolate to large T for various components.

To get an idea how important are higher states we first analyzed the
dependence of the Wilson loop itself on its temporal extent®.

Using the transfer matrix formalism the Wilson loop can be expanded
in terms of consecutive energy states E; of the lattice hamiltonian projected
onto the ¢g sector of the Hilbert space [11]

(W(R,T)) =} rie” BT, (25)

with the ground state energy Fy equal to the static potential Vq.
For T large enough the lowest order term dominates the sum and one
can rearrange the above equation to obtain following linear formula:

—%ln(W(R, T)) ~ Eqo(R) — %1117‘0 : (26)

This dependence is illustrated in Fig. 9 for various spatial extents of
the loop. The squares represent the measured values and the straight lines

% The Wilson loops have been measured simultanously with the correlations as
they form the denominator of Eq. (17). These measurements are much more
precise than the ones for the components.
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— the fit to the linear formula given above. For T > 3 and R < 4 all
the points lie on the fitted line indicating, that the contributions from the
excited states can be neglected in this case and the series in (25) can be
reduced to the first term. Generally, the smaller is the spatial extent of the
loop, R, the smaller is the deviation from the linear formula (26).

The dependence of the correlations (17) on T is shown in Fig. 10. The
values were taken from the middle of the Wilson loop (the mid-point between
the quarks and the middle time slice). Where it was possible, the results
were presented for various spatial extents, R.

The results for B = 2 may indicate, that the values stabilize for T' > 3
which means that there is no need for going to very large loops to obtain
reliable results, at least for small spatial extents. This coincides with the
conclusion we came to examining the T dependence of the Wilson loops.
Unfortunately, we cannot state the same for larger R. However, since the
best results for R = 2, (Eﬁ) are comparable to the quenched ones, we hope

that also for other components higher states do not contribute substantially,
as it was obtained in the quenched case [11].

Another interesting information contained in our results concerns the
lattice energy/action sum rules developed by Michael [14]. We tried to
compare our results to the ones evaluated according to the sum rules.
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Energy
The Michael energy sum rule for the quenched case reads [14]
(27)

3a Z (E(2)* + B(2)?) = Eo(R),

where the sum should be computed in the lowest quantum state of the color
field. This formula expresses the simple fact that the energy required to pull
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the quarks apart (the potential) can be obtained by integrating the energy
density over all space. The potential Fy(R) can be obtained from Eq. (26)
and Fig. 9.

The curves in Fig. 11 show the energy density integrated over the in-
creasing cuboidal volume surrounding the Wilson loop, for R =3and T = 3
and T = 5. This volume is represented by the distance d of the faces of
the cuboid from the edges of the loop (equal in all directions). The errors
grow with T as expected from previous results. Also, since the errors of
the field values increase with the distance from the Wilson loop, the error
bars increase with d. The values for T = 3 have small errors and clearly
stabilizate at £(d = 4) = 3.84(0.16) which means that in this case the whole
energy is concentrated in the volume (R + 8) x 8 x 8. Unfortunately, this
rather precise value cannot represent the left side of (27) since it probably
contains significant contributions from higher states. Thus we turn to the
line T = 5 which seems to stabilizate at E(d = 3) = 2.48(0.56) showing
that the lowest state energy is concentrated in smaller volume around the
sources. Appropriate value for the potential obtained from the data plotted
in Fig. 9 is Eq(R = 3) = 7.87 with negligible error. This discrepancy results
from neglecting the important contribution to the energy density originat-
ing from the quark condensate [23]. Our results show that this additional
contribution is comparable to the gluonic one. This is in contrast with the
quenched case where the sum rule (27) is rather well satisfied [11, 12].
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Fig. 11. Integration of the energy density over the increasing volume for R = 3.
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Action

The action sum rule without dynamical fermions reads [14]

£(8) ) _ Baf(B)

Jln
*(mom-12) - 575

= , (28)

3’ ) (B@)' - B@)) = -5

where f(()/a denotes the self-energy contribution.

Appropriate results are presented in Fig. 12. For T = 3 the action
extends over a large region around the Wilson loop (much larger than for
energy density, as expected). For T = 5, which is more suitable for our
purpose, the action fills the volume (R + 10) x 10 x 10. Its total value is
10.00(0.96) which is about 4 times larger than the integrated energy. This is
considerably less than found in the quenched case where the action density
is larger by the factor (7-9) than the corresponding energy density [12].
This difference may again be a result of neglecting the quark condensate
part of the action density. Another possible contribution to this difference
may come from the self-energy terms of Eq. (28) which, for small values of
R examined in our measurements, are more important.

3.4. Integral method

We have also checked an alternative method of measuring the compo-
nents of F,, (z) in the lowest quantum state, suggested to us by R. Sommer.
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We will call it the integral method. Similar methods were also used for other
purposes [26].
We consider the dependence of the sum

Sw(@) = Y, fu(@1) (29)

0<t<T

on T. There can be substantial contributions from higher quantum states
of the ¢g pair to this sum as a signal from the creation/annihilation mo-
ments, especially in the vicinity of the edges, +7'/2, but the lowest state
contributes equally for each t. Consequently, we expect the asymptotically
linear dependence

§(2,T) = a(2) + b(2)T , (30)

with b(Z) being the ground state contribution.

More formally, using transfer matrix 7 formalism on the lattice with
the time extent N, and denoting the quark creation/annihilation operators
by S and the plaquette operator by P we can express the correlation (W P)
as

- - Ne—T &gt ppT—t5
(WP(#,t)) = Z lTr(T TSTLPTY fs). (31)

Using appropriate formulas for (W) and (P), evaluating the traces and
putting the results into Eq. (17) we obtain for any f,, an infinite series
involving all eigenvalues of the transfer matrix. Leaving only the dominant
terms depending on two lowest energy contributions we can write

o=rea(Z) (@) o) e

where A; is the i-th eigenvalue of the transfer matrix in the ¢g sector,
A; = e Fi and Fy, A, B, C are constants independent of T (Fo is the true
ground state value of the component). The sum over ¢ now takes the form

1“(%)T AT
S(z,T)=(A+ B)—l—:_F‘ZI)- + (Fo - C(E) ) T (33)

which, for T large enough, becomes (30).

Generally, the results obtained using the integral method are in agree-
ment with the ones presented previously. The errors of the linear fits to
(30) are also comparable with the standard ones. Fig. 13 presents an ex-
ample of the longitudinal profile obtained using this method for R =
It is compared to the profile from Fig. 2 computed near the middle time
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slice T = 0. In this case the errors of the integral method areteven a little
smaller. Fig. 14 is an illustration of the linear dependence given by Eq. (30)
for one of the points of Fig. 13.
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This method can be an interesting alternative to the standard one since
it automatically involves higher degree of averaging by combining the data
for variuos 7. In the standard method the same result can be achieved by
fitting the parameters to the sum of exponents, which is more difficult.

3.5. Summary of the MC results

To summarize the Monte Carlo section of this work we point out the
most important results:

1. Generally, the results obtained using dynamical fermions coincide with
the previous, quenched ones. This concerns the shape of the flux tube
(longitudinal and transverse profiles of the components, energy and ac-
tion), the relationship between various components and their depen-
dence on T.

2. The inclusion of dynamical fermions significantly lowers the value of
the color field in the region between the quarks. This effect may be
interpreted as entering the range of interquark distances where breaking
the flux tube can be observed.

3. The check of the energy and action sum rules applied to our results
clearly indicates, that another important contribution of the flux tube
must be taken into account, namely the quark condensate.

4. The alternative method of computing the lowest state values of the
components has been introduced. It produces results consistent with
the ones obtained in the standard way.

4. Color fields around static quarks in the weak coupling limit
4.1. Action in the weak coupling limit

As it was mentioned above lattice QCD can be treated as just another
method of regularization of the continuous Yang—Mills theory. In the weak
coupling approximation, which is the perturbative limit of the lattice the-
ory, all results of other regularization schemes (Pauli-Villars regularization,
dimensional regularization) can be reproduced. However, lattice regulariza-
tion is less convenient and, in practice, extensive weak coupling calculations
are carried out less frequently than in other schemes.

In our work we perform the weak coupling calculations mainly to better
understand the physics of the Monte Carlo results. In general we expect,
that nonperturbative effects will modify the distribution of the color fields
but we have no idea, how significant this modification will be, especially at
larger distances from the charges. In the vicinity of the sources the Coulomb
component of the interaction probably dominates and perturbative results



Color Fields Around the Static Quark-Antiquark Pair 1373

can be quite meaningful. Also the comparison of perturbative QCD results
with the classical electric dipole is interesting.

The Wilson action

In the weak coupling domain the link variable can be approximated by
its power series and (1) yields

Ulzl-{-gAl-‘}-%ng?-}-.... (34)

The lattice constant a was absorbed into the gauge field A and we have
defined g = igo.

Using this formula one can expand the plaquette (Appendix B) and the
Wilson action (2) to obtain

SW = S+ g5W + 425V + 0(g%). (35)

Detailed expressions for all these terms are listed in Appendix C.
The gauge fizing term and the counterterm

The terms in Eq. (35) are not the only ones that we must take into ac-
count. Following the Faddeev-Popov quantization technique [40] we should
include terms which prevent the Feynman integration over gauge fields
which are connected by a gauge transformation. These terms result from
factoring out a path integral over gauge transformations. Appropriate pro-
cedure on the lattice was outlined by Wilson {5] and carried out by Baaquie
[41]. First, the gauge fixing term is introduced which reduces the lattice the-
ory to the conventional discretized field theory in which the field variables
A, (z) take values over an infinite range (—o0, +00) and the Feynman ampli-
tude is definite. This modification requires introduction of the counterterm
so that the amplitude remains unchanged.

The action now takes the form

§'= 5§+ §OF 4 §FP, (36)

where SCF is the gauge-fixing term and S¥F — the counterterm.
Denoting the gauge transformation on the lattice by

UV (2) = V(2)U,u(2)V (= + p) (37)

and defining the counterterm to be

1
J{dV]exp (SGF(U(V))) ’

exp (SFP(U)> =
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(we temporarily neglect g) one can show that [41]

= / [dUeS = / [dUTeS". (39)

For the specific gauge-fixing term

o (597 0) = [[# (S anttic - -#@) . oo
z,a n
where t*(z) are fixed numbers, one can evaluate appropriate $¥F
exp (S7P(4)) = det (d (1+ ZM + 21 (41)
d d ’

with the matrices d(k), M®%(k, q) and L*%(k, q):

1 itk =0,
“M:{E“wafiﬂﬁo
(diagonal),
M(hg) = e Al @
and
L*k,q) = & f“befcdezz(l et )(1— et AL (k — k' — q)AS(K'),

(43)
respectively [41].

Using det X = exp(Trln X) and taking into account the terms quadratic
in A we can transform (41) to the form given in Appendix C, Eq. (109). In
continuous QCD the Faddeev—Popov ghosts are introduced in this place to
express SFF,

The measure term

Finally, to perform the SU(3) integration, we have to include the mea-
sure term according to

/dgf(g) = /da1 coodanJ(a)f(g(a)), (44)
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where g is the group element, a — the parameters of the group and J —
the Jacobian which can be evaluated from the following formula [4]

J(7) =~ det ! 9(a(8,7)) (45)

o8 |p=p(e)

assuming that the (composite) parameters a, 3, 7 are connected by the
group multiplication

g(a(B,7)) = 9(B)g(7)- (46)

For U = exp(iA®T®) we can express the Jacobian as the exponent of
the measure term which gives

[ Uu(2) = exp(-5M) ] d4s(=). (47)

z,1,0

SM is given in Appendix C.
Collecting above formulas we express the weak coupling action in the
form

S = So+ 981+ ¢%S2 + 0(g3), (48)

where

So = Sy + S§F, (49)

the first order term receives contribution only from the Wilson action

$1 =85V (50)

and the Wilson action, measure and Faddeev—Popov terms contribute to
the second order
Sy =SV + sM 4 TP, (51)

4.2. Perturbative calculations of the (W P) correlations
in the lowest order (tree approximation)

We are to compute the (W P) correlations in the weak coupling approx-
imation i.e. assuming small value of the bare coupling constant g [42]. As
earlier the formula (17) will be our starting point.

Let us start with the power expansion of the Wilson loop. Using (34)
and (4) one can write

W =1+ ¢’wy + g3ws + gws + O(gs). (52)
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Note that there is no first order term in this formula due to the trace
in the definition of the Wilson loop.

The same holds for the plaquette P (Wilson loop of the size 1 x 1)
with appropriate coefficients p;. They are given in Appendix B. Taking the
average we obtain for the main terms in (17)

(W) =1+ g% (w2) + g%(ws) + g*(wa) + O(g°), (53)
and
(WP)® =g*(waps)°

+9° ((w2ps)® + (w3p2)©)
+¢° ((iw2pa)® + (wsps)® + (wap2)©) (54)

where ()¢ denotes the connected correlation

(XY)* = (XY) - (X)(Y). (85)

Since the average denoted by () involves the full weak coupling action,
the (w;p;)° terms are still g-dependent. To express them in terms of free
propagators we introduce the following definitions

e50
Il (56)
leS

= fes .

Now one can easily obtain (using (48) and expanding the exponents)

(X) (57)

(X)=XO© 4 gxM) 4 2xC3) 1 0(g%), (58)
and

x(0) _ (X)) (59)
X(l) — (X51>8’ (60)
X = (X§a)y — (XS1)5(51)q » (61)

with -
So = %512 + 52. (62)

Defining

pij = (wip;)° (63)
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and expanding it according to (58)

pii = pyy) + 9053 +9%0%0 +0(g°), (64)
one has
P = (wip;)§, (65)
Pg;) = (wipjS1)g — (wi)o(PjS1)g — (Pj)o({wiS1)g (66)
and
2 = ((wip;) $2)y — (wido(piS2)g — (Pi)e(wiS2)g + (wiS1)g(PiS1)q -

(67)

These equations were already simplified using the fact that 51 ~ A4A4
and
(A142... A2k 1)y = 0. (68)

The correlation to be computed, Eq. (17) now takes the form

_ B g*ha+9%ps +¢%s + O(g")

f(z) = (69)
at 1 —}-gzwgo) +0(g%)
where the indices uv have been suppressed and
< 0
Pa=pi2 (70)
« 0 0 1
ps = by +ps + A5 s (71)
po = p5s + 05 + 653 + P53 + A5 + ety (72)
Thus the first nonvanishing coefficient of the series
f=Lmrantent.) (73)
is )
fa = pay = (wap2)g - (74)

Using the expression (90) for wy given in Appendix B and reducing
internal propagators in W and P

((AtAm)(Ap Am))o = (AtAp)o{AmAm)o + (AtAmr o (AmAr)e s (75)

where [,m € W and I',m' € P, Eq. (74) can be rewritten as
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1 .
fa=g= 3 (ArAp) A% AZ) = 25 S DD (76)
ImeW ImeWw
Pm/ep UmlepP

It is the final form of the tree approximation of the correlation between
Wilson loop and plaquette on a lattice, which has been directly used in
computer calculations. Dy denotes the (free) propagator between the links
I, 1" and ny is the number of gluons of the theory (8 in case of SU(3)).

First order calculations have been implemented in FORTRAN and per-
formed in 1992-1993 on the IBM Risc workstation in the Particles Theory
Department. The method uses configuration space instead of momentum
one and is quite effective since the propagators for particular lattice can be
computed once (using Fast Fourier Transform, Appendix A) and then reused
for various Wilson loops and the positions/orientations of the plaquette.

4.3. Nezt order (one loop) terms
Next two coefficients of the series (73) produced by (69) are

fs = oY + oY + o) (77)

and
P B B BB RC R B
Taking into account that w; ~ A...A with ¢ As (Appendix B) and
S§1~ AAA we obtain from (65)—(67) and (68)

fs5=0 (79)

and the terms of fg are

wy” = (wa)g, (80)

pé‘;’ (wsp2)5 (81)

% = (wapa)l, pSy) = (wap2)y, pS3 = (wsps)y (82)

Pgla) (w2p3S1)g — (w2)o(P351)g >

Py = (wspaS1)g — (P2)o(ws51)g (83)
and

p$2) = ((wap2) §a2)y — (wa)o(p2S2g — (pedo(wafa)y.  (84)

Equations (80)-(84) constitute the second order (one loop) approxi-
mation of the correlation coefficient between Wilson loop and plaquette.
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Corresponding propagator expansions analogous to Eq. (76) are given in
Appendix D.

Appropriate calculations have been carried out in configuration space
using a C program being the extension of the earlier one written in FOR-
TRAN for the tree computations. The C language preprocessor was es-
pecially useful with its ability to define parametrized macros representing
rather complicated computational formulas and lattice objects without slow-
ing down the computations [43]. The configuration space and FFT were
used as before (Appendix A).

During the one loop computations it was essential to use the double
precision arithmetic to obtain reliable results, especially for the terms with
many nonzero couplings like in the case of (Eﬁ) (¢f. Appendix D).

5. Perturbative results

In this section we present analytic results concerning the distribution of
the color fields around static charges. The method and used formulas have
been explained in section 4 and in the appendices.

We have performed part of the computations on a 173 x 20 lattice to
preserve the possibility of direct comparison with the MC data produced
by the Cracow-LSU collaboration (high statistical quality of these results
allows for comparisons using much larger Wilson loops than it is available
from our MC data) [11]. We have also set the value of 8 to be 2.4 and
a = 0.1285 as for these reference data. Results from much bigger lattice,
i.e. 324, were also obtained to reveal the details of the distribution. All
these computations were performed only in the tree approximation.

We also present the results of the one loop calculations. However, in
this case, the size of the lattice and the range of Wilson loops were limited
to significantly smaller values because of numerical complexity and time
requirements of the program. In these calculations we mainly concentrated
on the importance of one loop order terms and on qualitative changes in-
troduced in this order.

All weak coupling calculations presented in following sections were car-
ried out for the SU(3) gauge group.

5.1. Fields around quarks in the tree approzimation — general
picture

We begin with some comments implied by the geometry of the prob-
lem. As we expect from (76), the (Bﬁ) connected with plaquettes in plane

zy vanishes in the whole space-time (note the presence of é,, in (88), cf.
Appendix A ). Furthermore, both (B2) and (Bg) vanish in the subspace
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t = 0. To see it, one can imagine appropriate plaquette lying perpendicu-
larly to the Wilson loop in the same distance from its upper and lower space
sides and consider all possible combinations of the signs in (76). The same
observation is true for both (E2) and (E2) which, in turn, are equal to zero

if z = 0. In contrast to (Bﬁ), which in the lowest order has no coupling

to the Wilson loop at all, (Eﬁ ) has the strongest one. It is connected with

the fact that appropriate plaquette and the Wilson loop are parallel. In
consequence, the number of the nonzero products of the propagators in (76)
is relatively large.

These facts result only from the symmetry of the problem and provide
consistency check of the numerical computations. They are in agreement
with the usual interpretation of the Wilson loop as representing the world
line of the static ¢g pair which, in the Born approximation, reduces to the
simple electric dipole.

Further results are presented in the following figures. Note: squares,
stars etc. represent exact, discrete values produced by the program. All
curves were fitted using slightly modified spline interpolation. Their purpose
is to distinguish and clarify particular dependencies.

Main results concerning the distribution of the fields around quarks are
presented in Figs. 15-17. They have been computed on the 32% lattice for
the the Wilson loop of the size R = 8,7 = 11. These results serve mainly
as a check of consistency with our expectations based on classical Maxwell
electrodynamics.
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Fig. 15. Longitudinal profiles for (Eﬁ) and (E?).
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Fig. 15 shows typical longitudinal profiles, for ¢ = 0, obtained for the
electric longitudinal (stars) and transverse (squares) components. All these
profiles are presented for loops with odd T. It guarantees that the values
represent exactly the middle time — slice. The classical electrodynamic
expectation for (E2) exactly on the z axis is zero (only longitudinal field
exists on a line connecting the charges for the classical electric dipole). Since
we are not able to obtain appropriate values directly on this axis® we cannot
state that our lattice results break this obvious symmetry. Instead, as it
is shown in Fig. 16, natural extrapolation to # = y = 0 can be proposed,
which supports it.

The shape of both energy and action distribution exactly on the ¢g
axis is the same as the one given in Fig. 15 for (Eﬁ) due to vanishing of

(E?) and (B?). Fig. 15 presents also the most apparent difference between
perturbative and Monte Carlo results: there is practically no field in a large
region between quarks i.e. no flux tube, responsible for confinement. This
issue will be discussed below. As was mentioned above there are no magnetic
fields for the timeslice ¢ = 0.

3.08-2F .

<BE> L

2.0E-2

1.0E-2}

2.0E+Q

Fig. 16. Transverse dependence for (E?) and two different 2.

Fig. 16 shows the transverse dependence of (E? ) for z = R/2+ 3. Stars
represent R/2 + 3 (the point outside the dipole) and squares R/2 — 3 (the

® This problem was discussed in sections covering Monte Carlo results
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point between the charges, a little closer to one of them) 7. The zero value on
the interquark line was forced artificially to meet our classical expectation
(it seems not to be very artificial looking at the program output points) .
The dashed line lies lower as there is much stronger compensative influence
of the quark at z = —R/2. Both curves have clear maxima, like appropriate
transverse dependences for classical electric dipole do, and the maximum for
the dashed line (inside the dipole) lies closer to the interquark line than that
for the solid line. This agrees qualitatively with the appropriate classical
relation: zmax = 1.83 for the profile at 2 = R/2 — 3 and Znax = 2.12 for
z = R/2 4+ 3 in some units. It contrasts with the nonperturbative case,
where generally fields are stronger between the charges as a result of the
flux tube formation and there are no other maxima outside the interquark
line.

bl
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T T T

1@ 2

T
1o a el

Fig. 17. Transverse dependence for (Eﬁ) and various z.

Transverse dependence for the (Eﬁ) is presented in Fig. 17. The solid,

short-dashed and dashed lines are the profiles for z = R/2-0.5, z = R/2 —
1.5 and z = R/2— 3.5, respectively. Again, this dependence agrees with the
one shown by the classical dipole. It is monotonic, with clear maximum on
the interquark axis. In addition, for every two profiles 27, z; one can find
such z that these curves cross (although, for instance, the classical crossing

" As was mentioned earlier, (E? ) equals zero for the profile z = 0, which, in this
case, is equivalent to R/2 — 4.
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point for z = R/2 — 0.5 and z = R/2 — 1.5 takes place for z = 1.27 and the
two lines in the figure meet at z ~ 2.5).

The dependence of the nonvanishing magnetic component (B2 ) on the
transverse space coordinates at fixed ¢ is generally the same as the depen-
dence of transverse electric fields on these coordinates at fixed z because of
the symmetry z & ¢, E « B (exact for square loops).

Also, the counterpart of Fig. 15 can be drawn for this component show-
ing sharp maxima for ¢ = 7 /2. This reflects the instant creation and
annihilation of the charges artificially introduced by the finite Wilson loop.
In continuum electrodynamics such singular effects lead to the deltas in the
solutions of appropriate Maxwell equations for magnetic fields. The lattice
cut-off regulates these signals so that we obtain sharp maxima.

The relations (22) obtained by many people from MC data are generally
supported by the tree approximation results (excluding the interquark line
which is in some sense singular and unreachable). Hence the origin of the

dominance of (Eﬁ) and the smallness of (Bﬁ) in the MC results can be, at

least partially, understood from the perturbative expansion.
5.2. Comparison with quenched results

The direct comparison of the perturbative vs. Monte Carlo data is
shown in Fig. 18. The longitudinal profile for (Eﬁ) for theloop R =6,T =7
is presented. Squares represent the tree approximation results. Monte Carlo
data, taken from [11], are denoted by stars. We have multiplied the MC
numbers by 8/3, taking into account the difference in color factors between
SU(2) and SU(3), to make them comparable with the perturbative data.

This is the direct evidence for purely nonperturbative origin of the flux
tube between quarks. The effect of forming the tube is in fact much stronger
than one can see in this plot as all other components (which vanish in a large
area between the charges in the perturbative limit) have a significant influ-
ence in the nonperturbative case. On the other hand, purely perturbative
<E|2I> is much stronger close to the charges, i.e. nonperturbative effects lower
this value. One may say that turning on nonperturbative effects results in
shifting the significant amount of energy from the vicinity of the charges to
the area between them, which leads to the formation of the flux tube. This
in turn, as we believe, generates confinement.

5.3. The dependence on T

In this section we will shortly discuss the dependence of the results on
T. This is crucial in extracting the pure lowest state data in MC simulations
and was mentioned earlier in MC sections. As an example we use (Eﬁ) at the

mid-point between the quarks. We examine this dependence for various R.



1384 T. BARCZYK

B B T R S e
<E,,2>
150 whrwx MC ]

r oocao Tree ]

190} .
50} .
eg—*¢ = > > 2 P

Fig. 18. Perturbative vs. Monte Carlo data: longitudinal profile for (E|2I .
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Fig. 19. (EZ2) at the mid—point between the quarks as a function of temporal extent
of the Wilson loop.

We expect that, for any fixed R, the components converge to their
lowest state values when T gets large. In real measurements based on the
MC data, the crucial point is how fast the components stabilize i.e. for which
T the profiles actually describe nearly pure lowest state distribution. Also
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the smoothness of the T dependence is important for reliable extrapolations
[13]. We have examined this issue on our data.

Fig. 19 presents the T-dependence in the range T = 2,...,9 used in
[11]. Note the logarithmic scale on the vertical axis. There are four sets
of data points: squares, triangles, diamonds and stars for R = 2,3,4,5,
respectively. The dependence on T is quite analogous to the one obtained
in {11]. The slope is clearly raising with R or, in other words, the values
stabilize earlier for smaller R (at T = 4 for R = 2, T = Tfor R = 3
and T = 9 for R = 4). Only for R = 5 the stabilization point seems to
lie beyond the scope of measured T values (compare similar effect in [11}).
The resemblance of the perturbative dependence to the nonperturbative one
may indicate, that the way the different energy states mix weekly depends
on the coupling constant.

5.4. One loop corrections

In this section we present the results of one loop calculations performed
according to the formulas derived in Section 4.3 and Appendix D. Due
to the complexity of the analytic formulas and corresponding numerical
expressions we limit the presentation of the results to the lattice of the size
12* and the Wilson loop 5 x 5. Since we concentrate on the differences
between the tree and one loop approximation we present the data setting
the coupling constant go = 1. The scale of go for which the one loop
approximation can be reliable may then be approximated by comparing the
appropriate tree and one loop values. We neglect the constant factor 3/a*
as well.

As in the section presenting the results of the tree approximation we
start with some introductory remarks.

Generally we expect that including the one loop approximation the dis-
tribution of particular components around the quarks will no longer closely
resemble the classical electric dipole. It is because this approximation in-
volves action terms, like the Faddeev—-Popov term, which have no counter-
parts in quantum electrodynamics.

Probably the most important difference between the tree and one loop
results is the nonzero distribution of (Bﬁ) This feature of the one loop

(2) (2)

s 2
approximation comes from the terms denoted Poy 1521 22,5% 1
) 19 ' ’

Appendix D (appropriate graphs are given in Figs 28 and 29). All other
terms consist of direct couplings between the Wilson loop and the plaque-
tte so that they do not contribute to the distribution of this component.
However, our numerical results show that the relative contribution of (Bﬁ)
to the total electromagnetic field, even though nonzero, still remains the
smallest.

and p in
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The number of nonzero couplings (propagators) which build the one
loop terms is the largest for (Eﬁ) and intermediate for transverse electric
and magnetic components. This is analogous to the situation we know from
the tree approximation.

4,063 prrrrrrrey rrrerrereeT rrrrrereT e 4.@E- 3 " rerrrrrer
sesoo E2 3 E 7 ]

cANER B? 1

(a) (b)

Fig. 20. One loop longitudinal profiles for electric and magnetic components.

Below we show the one loop results obtained by numerical evaluation
of the formulas derived in section 4.3. We do not combine them with the
tree results.

Fig. 20 presents the longitudinal profiles for the electric and magnetic
components. Both electric profiles have the maxima near the quark loca-
tions, like in the tree approximation. The values which they take at their
maximum values are comparable although (E|2|) is generally much larger
along the profile. The profile for the magnetic longitudinal component is
qualitatively different from the electric profiles taking the maximal value at
the center of the loop (i.e. at the mid-point between the quarks). Also the
other magnetic component is concentrated between the quarks. However,
this behaviour may be, at least partially, connected with the small size of
the Wilson loop and the lattice. Note also, that we are not exactly on the
interquark line (it was explained in the MC section). As we stated above
the contribution of (Bﬁ) to the total chromoelectromagnetic field is still the
smallest but the sign of this contribution is in agreement with the MC re-
sults for (Bﬁ) (note that the tree distribution for this components was zero
in the whole space-time so that we use the one loop results for comparisons
with the MC data).

Fig. 21 presents the comparison between the one loop contributions of
all components along the transverse direction (starting, as usual, from the
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Fig. 21. One loop transverse profiles at z = 0.

mid-point between the quarks). As expected intuitively all of them are
decreasing functions of the distance from the Wilson loop.
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Fig. 22. One loop vs. tree approximation — longitudinal and transverse depen-
dence for (Eﬁ)

Fig. 22 compares the tree and one loop contributions for (E ﬁ) at go = 1.

As expected, in the perturbative region near the sources the tree contribu-
tion dominates more over the higher order one than in the nonperturbative
region between the quarks and outside the dipole. The superposition of the
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two contributions can lead to the flattening of the profile observed in non-
perturbative results {c¢f. Fig. 18). Along the transverse profile we observe
the monotonic fall off of both contributions with the one loop contribution
decreasing significantly faster.

5.5. Summary of analytic results

The most important results of the perturbative section which we would
like to stress are:

1. The distribution of the color fields around the quark dipole in the tree
approximation closely resembles the distribution of the electromagnetic
field around the classical dipole. It is in agreement with our expectations
based on the direct correspondence between lowest order action terms
in QED and QCD.

2. The color field in the tree approximation (reduced in this case to the
electric longitudinal component) has sharp maxima in the vicinity of
the charges and decreases rapidly toward a zero value in the region
between the quarks. This behavior is in contrast with the MC results
where we observe the formation of the flux tube and the field decreases
slower when we enter the interquark area.

3. The dependence of (Eﬁ) on T, which turned out to be similar to the
distribution obtained from the MC measurements, suggests that the way
the different quantum states contribute to the total field may weekly
depend on the coupling constant.

4. The one loop results slighty correct the picture obtained in the tree
approximation. The superposition of these two contributions has more
in common with the MC results. The nonzero distribution of (Bﬁ) is
the most important result of including the one loop approximation.

5. The relative strength of the tree and one loop contributions identifies
perturbative and nonperturbative regions around the sources.

6. Conclusions and summary

We carried out rather extensive study of the distribution of the chromo-
electric and chromomagnetic field around the static quark-antiquark pair.
The study was performed using both Monte Carlo (nonperturbative) and
analytic (perturbative) approaches.

The Monte Carlo results have been obtained from the configurations
with dynamical fermions, at 8 = 5.35. They are the first nonquenched data
obtained for considerably large lattices (163 x 24). Although these results
are generally in agreement with the quenched ones published earlier by many
authors, we have also found some interesting differences, among them the
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effect of breaking the flux tube and the differences in the distribution of
the energy and action density. We also stressed the need of including the
quark condensate to completely describe the ¢g system. It is also apparent
that we need much better statistics to reduce significantly the errors for
greater Wilson loops. Examining larger interquark separations seems to be
crucial for understanding the mechanism of breaking the flux tube and the
origin of confinement. Finally, an alternative method of computing the field
distribution was checked against the standard one. Having an advantage
of automatically approximating the results for large T this method may be
successfully used in future, more precise studies.

The analytic calculations have been performed mainly to see which de-
tails of the color field distribution obtained using Monte Carlo methods are
purely nonperturbative and which can be understood basing on the per-
turbative expansion of the QCD action (:.e. using weak coupling approx-
imation). As we expected, the formation of the flux tube, responsible for
confinement, is an example of such nonperturbative effects which cannot be
derived perturbatively. On the other hand, rather surprisingly, the depen-
dence of the longitudinal electric component on T is similar in the Monte
Carlo and in the perturbative approach. It implies that the way the different
quantum states mix in the total field (which directly influences the T' de-
pendence) may be independent of the coupling constant. Finally, we proved
the nonzero distribution of the longitudinal chromomagnetic component in
the one loop approximation and we found that the one loop corrections are
consistent with our expectations based on the tree order and MC results.

I wish to express my gratitude to Jacek Wosiek who proposed me that
very interesting subject and patiently acquainted me with the lattice meth-
ods. I deeply appreciate his guidance and remarks. Also I would like to
thank R. Wit who acquainted me with modern numerical methods. Finally,
I thank E. Laermann and F. Karsch for their support and hospitality during
my work at HLRZ Jiilich.

Appendix A
Fast Fourier Transform in MC and in perturbative calculations

As mentioned in Sections 2.4, 4.2 and 4.3 special numerical methods
based on the Fast Fourier Transform (FFT) were used both in Monte Carlo
and weak coupling computations presented in this work.

The FFT — a fast algorithm for numerical evaluating of the discrete
Fourier Transform [44] became generally known in the 60s, although it was
developed and used much earlier. In the standard formulation it can be
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applied to the data sets consisting of Ny = 2% real or complex numbers,
accelerating the computations by a factor of Ny /log, Ny comparing to the
ordinary method of computing FT. For the data vector composed of all
Ny = 163 x 24 sites of the lattice used in this work this factor is rougly
6000.

Crucial for the use of the FFT in the Monte Carlo computations per-
formed in this work is the discrete correlation theorem [44]. It relates the
correlation of two discrete real functions, each periodic with period Ny, to
their Fourier Transforms

FT(Corr(g, b)) = FT(g)FT(h)", (85)
where the correlation is defined as
Nv—l
Corr(g,h); = > gjrihe, (86)
k=0
and the Fourier Transform
FT(h), =) e**h;. (87)
k

For given MC configuration, fixed orientation of the Wilson loop in
the subspace zyz and particular component of the color field there are Ny
possible pairs (Wilson loop, plaquette) representing the same physical space-
time point (translational symmetry, Section 2.4). Grouping all Wilson loops
in 1-dimensional vector g and all plaquettes — in vector h we can apply the
above theorem directly, computing at once all required correlations (z.e. field
strength for all physical space-time points) averaged over the translational
symmetry.

Using FFT requires the length of the input vectors to be a power of two.
It can be accomplished by extending their length, duplicating the data in
one of them and zero-padding remaining free slots in both8. Although the
resulting vectors are much longer the problem can be still efficiently solved
using vectorized FFT subroutines from the CRAY math library.

The FFT was also extensively used in the weak coupling section of this
work. All calculations have been finally performed in configuration space
and the results expressed in terms of free gluonic propagators

&
D, (0,z) = -£X
l"V( ? ) NV g 8 _ 2Z§=1 cospA ]

ipz
: (88)

8 Simple extension to the next nearest power of two and zero-padding changes
the value of the correlation
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where p takes discrete values: py = 2wk)/Nx, kx = 0,1,...,N) — 1 and
Ny = N1 N3 N3Ny is the total number of lattice sites.

This formula is the (inverse) 4-dimensional FT of the momentum prop-
agator, and can be effectively evaluated using FFT. We implemented the
4-dimensional algorithm working well for any set of Nys (not only powers
of two). Using it, one can compute the propagators once for particular lat-
tice and then store them on disk and reuse for various Wilson loops and
field components. Appropriate disk file can be effectively compressed using
the symmetry implied by periodic boundary conditions, so that the time
needed for reading it can be neglected compared to that of the actual com-
putations. The same technique has been also applied to the Faddeev—Popov
ghost weights (Appendix D, Eq. (136)).

Appendix B
Wilson loop up to g*

Using the definitions of the Wilson loop (4) and the link variable U; (1)
one can compute the coefficients w; in the series (52). The simplest way to
do it is to use the Baker-Hausdorff formula

ezp(X)exp(Y) =exp (X +Y + 3[X,Y]
+ 1356 Y]+ (XYL Y+ (89)
extended to the case of many exponents. Taking advantage of the well
known properties of the trace and SU(3) generators (the commutator and

the A are traceless, TrAB = TrBA ) we obtain for particular w;s (for con-
venience we introduced auxilliary subterms for ws and wg: w; = >, w; k)

2
wy = T (Z Az) , (90)
1
3
w3,1 = 61;'1‘1‘ (2 Az) ; (91)
Z Al{Am, An})’ (92)

w32 = on

'LU4,1 = %Tl’ ( (Z A[) z [Ams An] ] (93)
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2
wa 3 = Sinﬁ(E[A,,Am]) , (94)

I<m
1
W43 = RTT (Z A Z [{Am, An], AP]) y (95)
l m<n<lp

(
w4,4=$1‘r Sy [Am,[An,Apn), (96)

l (m,n)<p

1
was = T ZAI S Am,An],An]), (97)

m<n

1
Wg.6 = mTT ;Az> ’ (98)

where A, is the gauge field coupled to the link /. The sums are defined as
oriented, ¢.e. the notation I < m means, that the link [ comes before the link
m on the oriented loop. The gauge fields should be preceded by the minus
sign if taken from the second half of the loop, so that for the plaquette the
sum Y, A; represents F,, .

Appendix C
The action terms

In this appendix we list all contributions to the action needed for per-
turbative calculations up to one loop order [41, 45-50]. The notation was
introduced in Section 4.1. For convenience we have choosen the sign in the
exponent of the Feynman amplitude to be positive i.e. ¢ instead of e ™%,
where S is the weak coupling action. Also, the coupling constant is defined
as iggp . These conventions influence the signs in the formulas presented
below.

The structure constants f2%¢ and the coefficients d**¢ are defined as
follows

{77, T = 1§°® 4 d°*°T° (symmetric), (99)

[T, T% = if**°T° (antisymmetric). (100)

So denotes the zeroth order term in the Wilson action plus the gauge
fixing term (in Feynman gauge). These terms yield the free propagator
(Ad),

=-1) Fi(e)F =313 ALA5(2)A, 45 (=), (101)

Tpv zpv
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where Fy,(z) = Ay A,(2) - AyAu(z) and A A, (z) = Au(z + p) — Au(z).
57 is the first order term of the expansion of the Wilson action

fabcz 2, () ( z)A (z)+A”(w+V)A"'(z+u)) (102)

Tuy
55 W is the second order term
52 =
~ }:{f““”fc"’e(mﬂﬁ’édf( ) - S5 () - HILES(2) + 1 (2)
Tpy
_<%dcabdcde + %5ab5de) Ha?]dz(z)} (103)
where
I§hee = (A2(2)Ab(2) + AL(z + )AL (2 + 1))
x (A%(2)45(2) + AL(2 + v)A5(z + ) (104)
I5he = (4%(2) - 423(2)) FL,(2) (A%(e) - 4%(2)) Fe(2),  (105)
gt = Fp, (=) { (45(2) + 43(2)) AZ(2)45(2)
- (e +v)+ (e + ) ALz + )ALz + 0}, (106)
and

ngbde = F2, F2 F2,F2,. (107)

The above terms can be directly derived from the expansion of the
Wilson loop restricted to the case of the plaquette. The antisymmetry of the
group structure constants f%%¢ and the properties of the trace mentioned
in Appendix B considerably simplify this derivation. All required input
formulas are given in Appendix B.

The remaining S, terms are the measure term

sM - o1 ZA“ z)A%(2) (108)

and the Faddeev—-Popov term

15 O An(2) A=)
zp

1% 17+
n k,‘(l—f-(zp,,,) (1+ k) A%(k — p)A%(p — k),(109)

k*)(55*)
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where l::u = e k4 _ 1 and Ny is the volume of the lattice.

Appendix D
(W P) terms

In this appendix we write down computer-ready expressions analogous
to (76), for one loop terms listed in Section 4.3, equations (80)-(84) . They
are based on formulas given in Appendices B and C. The letters k,{,... and
k',l',... denote links along the Wilson loop and the plaquette, respectively.
The gauge field A may be written in two forms: A; is connected with the
link ! on the Wilson loop (plaquette) and A,(z) — with the site z of the
Euclidean space. These two notations are equivalent: 4; = 4,;)(2(1)) -
The meaning of the constraints like I < m was explained in Appendix B.
The loops in the graphs represent the Wilson loop (on the left) and the
plaquette. The lines represent the propagators.

The term (80) illustrated by graph in Fig. 23 is

2
-2 - _12: 110
w, " = an Dip,. ( )

im

The next one, pgoz) (Fig. 24) was already written down as (76). Two

mutually symmetric terms, pg) and piz) correspond to graph type presented

in Fig. 25. We will discuss the latter. According to formulas given in
Appendix B there are 6 subterms wy ;... w46 of wy

(wap2)g = (wa,1p2)g + - - - + (wa,6P2) ;- (111)

Now one can separate the color part and write

) . ra
(w4’1p2>3 = m(dabefcde +if befcde)

x 373 Y (avabac, alaz Az, (112)

kl m<n /g

Using the Wick theorem the above formula can be expanded according
to graph in Fig. 25, giving 12 products ? of three propagators: Dy; D, v D, s,
«vvy Dinn Dy g1 Dy, Supressing the color indices (thanks to deltas introduced
by the propagators) and using the symmetries in color and link indices we
find that 4 of these products are preceded by the color coefficient including

® Of the 15 products possible here 3 vanish since we use connected correlations.
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Fig. 23.

Fig. 24.

Fig. 25.

f2°b, which equals zero, and among remaining 8 products there are 4 pairs
of mutually compensating terms. Finally

(w4,1p2)8 = 0. (113)
Quite analogous considerations lead to following results for remaining

(0)

terms of p,,

<’U)4 2P2 32n2 Z Z Z(2leDm_,anrl

I<m n<k s'r
— Dy Dot Dyt — Dmlelenrl), (114)

where C¢ = fabe fabe,

( 43p2 16nzz Z ZDlemr’Dns' DymDipi Dyt
E l<m<n r/s!

- Dln-Dkr’Dms’ + Dm‘nDkr’Dls')’ (115)
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(wq,4p2)g = 0, (116)

( wy 5p2 48n2 z Z z Dlem.,JDmsl kaDlr’Dms

k l<m sl
— Dy Dyt Dot + Dy Dt Dy 1), (117)
1 [(n?-1)° n2-1 1 1
(wa,6p2)g = oY { 5 T ¢ tglat Ca
X Z Dlemr’Dns'a (118)
k...s!

where Cg; = d®2°d<® and Cy, = dobedobe.

Next we will analyse the subterms of p( ) - (wsps)y. Appropriate
graphs are shown in Fig. 26. Using the formulas (91) and (92) and evaluating
the trace we can write for ws

1
:mdabc > Af AL 4G,

w3

lmn

1 - rabe a 25 4c
+ 5t IZAlAmAn

1 T £ a
+ oif e N ApAb AL (119)

Iim<n

Fig. 26.

Using the same formula for p; and taking into account the symmetries
in color and link indices we find that only two of nine products possible here
are nonzero giving the final form

(wsps)y = 57— 2Cd1 }: DDy Doy

1111
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+ 56m 2Cd2 > DDt Dy
sy
1
- 16n20f Z {Dll’(Dmm’Dnn' - Dmn'Dnm’)
ll’:.::li";l
+ Dlm’(Dmn’Dnl’ - Dml’Dnn’)
+ Dln’(Dml’Dnm' - Dmm’Dnl') } (120)

Now we turn to the terms involving action parts listed in Appendix C.
The term (83) will be analyzed first. Appropriate graph is presented in
Fig. 27. Combining the formulas (90), (119) and (102), after some cancel-
lations due to color symmetries, we obtain

g]{i) - 32n3 IZ Z Z Z Pll'sza m zﬁDn’z7 :t te . (121)
m

Tuy II4II
m <n' 18 products

Fig. 27.

The sum denoted by Y .. deals with the indices zo, 23 , z4 and
means the summation over four different products yielded by (102). The
(site, direction) pairs which they represent for all four components of this
sum are as follows:

term I Ir IIr v
o o (ztpmy) (2+mv) (z,u)  (2,4)
o o (op) (z4np) (mm) (2+0mm)
Ty & (z,v) (z+uv) (z,v) (z+pv)

The four-propagator products are generated according to the Wick the-
orem and correspond to the graph 27. Half of them are preceded by the
minus sign due to antisymmetry of f*%¢, This formula, although rather
complicated, can be substantially optimized at a run-time.
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Remaining terms in the expansion of (WP) involve parts connected

with S, denoted collectively by p( ) in Section 4.3. Two graphs in Fig. 28
represent terms originating from ;S 2. The general formula for this types of
graphs can be obtained using (90) and (102).

%prgSlz =
abe pa’b’c’ d 4d d' 4a 4b 4c ga’ 4b 4c
128n4f PSS AfAg A A%, A AL AS A3 Ab A%
i yor 197
(122)

where 24,23, 2 can be (z + u,v),...,(z, 1) and y5,ye,y¢c ~ (¥ + 0, 7),. .-,
(y,0) according to the same convention concerning 3 »,4» as in (121).

Fig. 28.

In particular, the graphs in Fig. 28 are

(2) -
PZZ,%Slz,l - 128n4 Z Z Z Dl”O!Dmy&Dl’zﬁDm yepm»yy( +-

zpy nign | ™ 4
l’m’ yor 36 products

(123)
and

(2) -
Pa2,gs2,2 = 128n4 Z Z E chaDl’yo 2pve Doyy Dmmt £ |

Im THY »3g”
Um! yor 18 products

(124)

respectively.
Graphs introduced by the second order term of the Wilson action, S;V ,
are presented in Fig. 29. Appropriate terms can be obtained from (90)
and (103). All these terms have the part A%A Az, Az; in common.
The composite indices z4,..., 25 represent the vanous combmatmns of the
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b 4

Fig. 29.

(site, direction) pairs corresponding to the S;’V terms listed in Appendix C.
This notation is analogous to the one introduced in (121). Combining this
four-field part with the expressions for wy and p; yields the generic form of

the terms formin (2)
g pzz,s;”

yobde A7 Az, A5 AL, A2 AL AL AS (125)

zg?

where Y @bde can be feabfede op deabgede op gabgde zecording to (103).
Evaluation of this term using the Wick theorem produces following

results. For the graph on the left, term pgzz) w o We have 16 nonzero
29
products of the type
CfDlzaszle’z.me’zp (126)

(half of them are preceded by the minus sign), 8 products of type
Ca1Diz, Dinzg Dy, Dtz (127)
16 products of the type
Ca2D1zoDmagDypyy Dy, (128)

and 24 products of the type

'DlzaDm:chl':c-,Dm’z&’ (129)
(for clarity, all constant multipliers have been neglected).
Appropriate counts for the second graph, term p(zzz) SW o0 ATE: 32 prod-
19
ucts of the type
C'fD”:szcDm:znyﬁ%, (130)

16 products of the type

CdlDll'szaDm’z.yDz,gzp (131)



1400 T. BARCZYK

32 products of the type

CdzDu'szaDm'z,yszzp (132)
and 48 products of the type
Dy DmzoDitey Dagas- (133)

The measure term, S}, (Fig. 30) can be derived from (90) and (108):

2
2 n‘ -1
p(22),sgl = 48n Z 12: Dl)zl-‘Dl’,Z;LDmm" (134)
T m
Um!

Fig. 30.

Faddeev-Popov action consists of two main parts. The former, local,
has the same structure as the measure term so that it can be included
into the formula (134) changing the overall factor. The latter needs some
additional evaluation to fit into our computational scheme. Turning to
configuration space we obtain for this part

S35 =—-1n) A%(2)AL(¥)Ru(y — 2)Ruu(z - 9), (135)
s
where ( ) )
ko (14 365)
Ru(u)=Y — e ik, 136
pv(w) Ek: T (136)
Hence
2
2 n“—-1
st = 2 O Ry =2 R =)D Drn e Doty (137
uv 1’2’

The coefficients R can be computed using FFT (Appendix A).
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