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Using replica approach we consider a neural network model with synap-
tic weights that are clipped from below and above by some numbers. Such
a model is motivated by certain neurophysiological and technological ar-
guments. For some values of coupling bounds, namely those that select
binary synaptlic eflicacies approximately equal to 1, a double-stage first-
order phase transition is encountered. This transition occurs at zero tem-
perature and leads to a change of the critical capacity value ac(x — 0):
1.27 — 0.83 — 0. An even more interesting situation is observed when
synapses take only one value approximately (either —1 or +1). Here the
storage ratio may grow from zero to some finite number if the couplings
are allowed to fluctuate. We also study properties of the weights distribu-
tion and illustrate the contributions of Dirac’s delta at both boundaries
of the allowed range of the synaptic strengths.

PACS numbers: 87.10.+e, 05.50.+q, 64.60.Cn

One of the most important problems in the theory of neural networks
concerns the storage capacity. For several years many attempts have been
made in order to investigate properties of networks with synaptic couplings
(weights, or strengths) which are described by a definite rule (such as, for in-
stance, Hebb’s rule, the pseudo-inverse rule, and many others — see Ref. [1]
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for a detailed review). A new and powerful line of research in this field
was introduced by Gardner [2], who proposed that one should look for the
~optimal coupling configuration in the space of all possible network weights.

Gardner’s original idea has been widely extended since then (see, for
example, Refs [3—-11]). One of the main directions of subsequent investiga-
tions has been to impose some constraints on the synaptic couplings [3, 4,
12, 13]. In a recent series of papers [14-16] a network with the so—called
sign—constrained synapses was considered. In such a system each coupling
may take either positive or negative values (with an absolute value ranging
from zero to infinity). For instance one can require that for a given ¢, J;; <0
for all j, etc. A network constructed in this way is of interest for biological,
technological and cognitive reasons. One should, for example, evoke Dale’s
law [17], which, roughly speaking, says that in real neurophysiological sys-
tems there are actually two types of neurons: excitatory and inhibitory ones.
Excitatory neurons connect to all others with positive synaptic strengths,
so that for a fixed 7, J;; > 0 for all j. Conversely, inhibitory neurons con-
nect only via negative couplings, i.e. for a fixed 7, J;; < 0 for all j. In
general, the possibility of choosing of synaptic weights with arbitrary plus
and minus signs may lead to unnecessary complexity of behaviour in the
considered system (for further analysis of these problems — see Ref. [16]).

On the other hand, it is obvious that both in real situations (that con-
cern neurophysiology) or in applications (which concern hardware, or in-
formation processing) couplings may attain only a limited range of values.
For example, they have to be bounded from below and above. Such a case,
which is the subject of the present paper, is interesting also from a purely
physical point of view. In some conditions neural networks with synapses
clipped from both below and above exhibit first-order phase transitions.

Let us consider a network with N binary neurons o; = +1, where
i=1,...,N. The dynamics of such a system in the absence of noise (i.e. at
the temperature T = 0) takes the standard form of a simple, deterministic
updating rule

it + At) = sgn | Jijo;(t)| (1)
JF#i
where {Ji j} denotes the synaptic connections matrix, which in general does
not need to be symmetric.
A class of p = aN (a designates here the storage ratio) specified states
(patterns), E;.‘ , where the index 7 = 1,..., N enumerates the sites of the
network and u = 1,..., p specifies the patterns, is said to be stored in the

memory described by the dynamics (1), if the set {f ;" } defines its stationary
states. The matrix {Jij} in such a case should satisfy for each p and i the
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following inequalities
£4> " Jiet > kVN. (2)
j#i
In addition, one usually assumes that the so-called spherical constraint

Y Jhk=N (3)

J#1

must be fulfilled for every node 1.
The stability parameter x that enters expression (2) is a non-negative
real number, which determines the size of domains of attraction for the

stored configuration {E;” } Of course, larger values of k ensure stronger

stabilization of the remembered data, but lead inevitably to a decrease in
the storage capacity.

In order to put bounds on synaptic weight values, one requires that for
each i,5 = 1,..., N the following condition must be fulfilled

A<ygi;Ji; <B, 4)

where A, B (A < B) are real numbers, and g;; = +1 have been introduced
to control the sign of each coupling. In particular, when both A and B
are positive (negative), g;; is the sign (minus sign) of the corresponding
coupling. To realize Dale’s law one can use a separable form of the matrix
gij» 9i;j = hig; with h;,g; = 1. We shall assume such a form in the
following.

The probability that the solution of the inequalities (2) and (4) (with the
constraint (3)) exists is, following Gardner, given by the fractional volume
in the interaction space of the matrices {Jij}

VO(I,I/ Ian; ) s( > 72

J#i J#£1

< [(ews7, - How -ssip[lo (&S 7% Tier x|,

J# J#z

neglecting a constant normalization factor (see, for example, Ref. [2]) which
plays no role in further considerations.

In this paper we restrict ourselves, for simplicity, to random, unbijased
and uncorrelated patterns. Such data are characterized independently for
each 7 and p by the probability distribution

Pr(gg‘ - il) =1 (6)
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Due to this fact, and thanks to the separability of the matrix g;;, the theory
is locally gauge invariant with respect to specific realizations of the quanti-
ties {gi;} (see Ref. [15]). After simple calculations one can show that the

volume V is independent of the particular realizations of { g,‘j}, and reads

el (g (e -o].

As usual in the theory of disordered systems, we are actually interested
in calculating the mean value ((In V')), averaged over all possible realizations
of {¢}. To evaluate the quantity (InV)), one makes use of the replica
method, writing

Vn
(nv) = 1im A1 ®)
We first take n to be natural, and perform an analytic continuation to n = 0.
To calculate ((V™)), one introduces the order parameters

1
=5 S5 ©)
J#i

for a # B, their conjugated counterparts F*8, and parameters E to assure
the spherical normalization constraint (3). Note that o, 3 = 1,...,7n denote
here the replica indices. The calculation of {V™)) reduces, as usual, to an
evaluation of the integral over the introduced order parameters. This inte-
gration can be performed using the saddle-point method [1, 2]. Assuming
the replica-symmetric solution at the saddle point ¢®8 = ¢, F®# = F, and
E® = E for each a and 3, we obtain the expression for the expectation
value of V'™ in the form

Wy =c / dgdF dE e~ NnF(@FE), (10)
where C is a normalization constants, and the free-energy density F reads
F=-aGy -Gy - 1¢F - L1E. (11)
The functions Gy, G2 are given by
K+ 1,/q
Gy= | Dt 12
1 / lnH[ 1—q q] ] ( )

Gzz/Dtln{ [A\/E+F+\/%€T B\/E+F+\/%/__ﬁ]}

— 1In(E + F), (13)

1 F
+2E+F
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with the Gaussian measure Dt and the function H(z)

_ ie—tz/z
Dt = Nor , (14)
H(:c):/Dt. (15)

z

The critical capacity is obtained when the volume V shrinks to zero,
which happens in the limit ¢ — 1. We anticipate that at criticality the
order parameters behave as

=i e
=t an
E+F=1“’Tq. (18)

After some calculation one obtains the three saddle-point equations

o={ [oifo(t+wdy) +o(-t-wB)|[(4 + %) o (t+w428)
+(i+%)@(—t—wg-§_f)]t}—-j;+1, (19)
{/Dt trwd) +0(-t-wi)|[(42 - 2.4) 0t +waLE)
(7 -rg) (-]} + 41, @
¢ =aG(x), (21)
where
G(k) = / Dt (¢ + £)? O(t + ). (22)

These equations may be solved numerically to obtain the critical capacity
ac. It is possible, however, to perform analytic calculations, and to show,
for example, that if A - —oco and B = 0 (or, alternatively, A = 0 and
B — »), ac(k — 0)=1.

We stress that the above results have been obtained within the replica-
symmetric theory. To be able to accept these results we must check the
validity of the replica-symmetric Ansatz. To this end we examine the en-
tropy function. Its value should tend to minus infinity at the saturation
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limit ¢ — 1. The most divergent term in the expression for the entropy
function is proportional to (1 — q)_z. Depending on the sign of the factor
which multiplies this term, the entropy may diverge either to plus or to mi-
nus infinity, if ¢ — 1. The regime of parameters in which replica-symmetric
theory is valid can therefore be determined by imposing the requirement
of the proper sign of the factor preceding the most divergent term of the
entropy function.

After numerical calculations we have found that the replica-symmetric
predictions are not valid if -1 < A <1 and —1 < B < 1. The limiting case
with A = —1, B = 1 is especially interesting. Here we have a network with
binary couplings Jij = 1. All J;; must then attain the absolute value 1,
since otherwise the spherical constraint », i ij = N cannot be fulfilled.
The entropy function becomes strictly negative at the point A = -1, B =1,
which indicates that the replica-symmetric theory is no longer valid (note
that for A = —1, B = 1 the couplings {J,-j} are discrete and the entropy
function may take only non-negative values). However, for 4 = -1 — ¢,
B = 1+ ¢, with ¢ denoting a very small positive number, the replica-
symmetric solution is correct and the entropy tends to minus infinity, if
g — 1. In this limit we obtain the critical capacity a.(x — 0) = 1.27, which
is exactly equal to the number 4/ calculated by Gardner and Derrida [3]
without replica-symmetry breaking for the case of binary weights J;; = £1.
This result which obviously violates the bounds of informational capacity
[1, 4], has been rejected as incorrect. We stress, however, that in the limit
A=-1-¢,B =1+¢, with ¢ = 07, when couplings are very close to +1
(and only a very small fraction of them belongs to the set [-1 4+ ¢,1 — ¢]),
the solution a. = 4/7 is correct. As we see, even a very small relaxation of
the requirement of binary coupling leads to enormous changes in capacity.

Note that for A = —1, B = 1, one should break the symmetry of
replicas, and obtains then a. 2 0.83 (see Ref. [4]). Furthermore, if 4 =
-1+ ¢, B = 1 — ¢, the critical capacity o, is zero (since the spherical
constraint (3) can no longer be fulfilled). Therefore we have encountered
here a double-stage (a.: 1.27 — 0.83 — 0) first-order phase transition,
which occurs at zero temperature. This fact is of great importance: in all
practical applications of networks with binary couplings (for example, in
hardware, or information processing) it is impossible to assure that weights
take ezactly the values +1. Noise (of any origin) will inevitably cause the
real coupling values to undergo some fluctuations around +1. In such a case
the capacity of a system will be increased from 0.83 to 1.27. One should
also notice that by taking A = —1 — ¢, B = 1 + ¢, we deal with a case
that can be compared to the situation in which small thermal fluctuations
of binary synaptic weights +1 occur. The limit ¢ — 0 is then, in a sense,
equivalent to the limit of vanishing fluctuations, or vanishing temperature
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Fig. 1. The ¢ parameter as a function of variable A with B = 1. For 4 = —1 the
double-stage first-order phase transition (e.: 1.27 — 0.83 — 0) is seen. Dashed
line corresponds to the solution, for which replica-symmetric theory gives wrong
results. Note that if k — 0, o, = 2¢.

T — 0. This situation is illustrated in Fig. 1.

An even more interesting case, however, is encountered for A = -1 —¢,
—-1<B<1l(orB=1+¢,and -1 < 4 < 1). Here, assuming that all
gi; have the same signs, we see that the coupling values are very close to
either —1 or +1. Only a very small fraction of weights belongs now to the
set [-1+¢&,B —¢] (or [A+¢,1 — €], respectively). It is worth stressing that
in the limit ¢ — 07 the storage capacity of a network remains finite and
depends on the value of B (or A); on the other hand, strictly at the point
A=-1,for -1< B <1 (or B=1,for -1 < A < 1) the replica-symmetry
must be broken, and a. = 0. Hence, again we conclude that even very small
fluctuations of synaptic weights around —1 (or +1) can allow the system to
store a number of patterns of the order of N. This phase transition is also
interesting for technological applications. Note that learning requires here a
choice of a few couplings only — most of them take the same value. In order
to visualize these statements we have plotted (in Fig. 2) the dependence
of the parameter ¢ (see Eq. (21)) on the variable A for several values of
B. Dashed lines in both Figs 1 and 2 correspond to replica-symmetric
predictions, which are not valid, if -1 < 4 <1,-1< B <1

The nature of replica-symmetry breaking in the above theory may be
easily understood by simple physical (or rather geometrical) considerations
(see Ref. [4]). For A = -1 — ¢, B = 1 + ¢ (and, similarly, if A = -1 — ¢,
—1<B<1l,or B=1+¢,—-1< A <1)the volume V (in situations not too
far from saturation) forms a compact set F on the hypersphere i J fj =
N, and the space of solutions of (2), (3), and (4) is connected; thus any
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Fig. 2. The ¢ parameter as a function of the variable A for B = 4, 1.5, 0.5, 0, —0.5
and —0.9 (upper to lower). Dashed curves correspond to those values of A and B,
for which replica~symmetric theory predictions are not valid. The first-order phase
transition from a finite value of . to zero at A = —1 for B = —0.9, —0.5, 0 and
0.5 is marked by the dotted line. Note that for K — 0, ac = 2¢.

solution may be continuously deformed into any other one. The critical
capacity (for which only one connection matrix in the interaction space
exists) is attained when V' — 0, and the typical overlap ¢°P between distinct
replicated configurations (which is equal to the cosine of the solid angle of
the cone created by couplings that fulfil requirements (2), (3), and (4)) tends
toward 1. For ¢ = 0, and hence if J;; = %1, all possible solutions (in the
number of 2/V) are located on the hypercube, whose vertices belong to the
hypersphere > i Jizj = N. In such a case the critical capacity behaviour
(with the only one solution in the interaction space) may be thought of as
equivalent to the situation in which the area of the surface of the set F
on the hypersphere is around 1/2V. Such a surface contains typically only
one point of the hypercube J;; = £1. From Gardner’s original calculation,
however, for V ~ 1/2" one gets a. ~ 0.85 and ¢ ~ 0.5 (if & — 0). The value
g ~ 0.5, which is obtained from these simple considerations, remains quite
close to 0.56 given by the requirement that the zero-temperature entropy
vanish. One step of replica-symmetry breaking gives the correct value of
the critical capacity a. = 0.83 (see Ref. [4]).

Let us now examine the distribution of clipped synaptic efficacies [15],

say the coupling J;;, for certain ig and jo
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o(7)={{6(7 = Jiojo) N1,
= <<H IT dJij)‘s(J - Jiojo) 6(J§i'li2j - N)

i {[Agg,»j Jij SB(#i
NCHETER)

X[Asgij{fij SB(jgi dJij)é(.;#:i J?j - N)I;LI @(55‘ J%f:i %5;‘ - K)] }>>{5,“}
=(umTg[ 5 (11 495)60 - Jii0) 5(% ;- N)

"0 N A<y < B A

“efer 5 3he )]

0 (L)AE - me(e 5 % - gy

i A<gi; J;j<B j#i
(23)

Note that the resulting free energy density (and then the saddle-point value)
has the same form as in Eq. (10).
After some calculations we obtain

o(J)=0(gJ — A)O(B - gJ) _f_z__;e~sz2/2
+ H(-gAX)é(gJ — A)+ H(¢BX) (B - gJ), (24)

where X = w//¢. As we see the distribution g(J) contains two Dirac’s
delta contributions at both limits of the allowed range of synaptic values.
If A= -1land -1 < B<1(orB =1, -1< A < 1), however, o(J) =
8(gJ - 1).

In Fig. 3 we have plotted the X parameter as a function of A for several
values of B. Note that for B >1and 4 — 1, X — oo.

Finally, we would like to add a comment about a proper learning al-
gorithm, which can be easily constructed as follows. Let us start learning
with all the couplings {J;;} taking values (A + B)g;;/2. We then proceed
exactly as is done in the perceptron algorithm (see Refs [2, 14, 18, 19]),
with one exception: if the value of g;;J;; after updating is lower than A4 or
greater than B, then one puts the g;;J;; equal to A or B, respectively. The
convergence theorem for such an algorithm may be proved in a way very
similar to the cases considered in Refs {2, 14, 18, 19].
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Fig. 3. The X parameter as a function of the variable 4 for B = 0.9, 4, 2.5, 2,
1.5, 1, —0.5 and 0 (upper to lower, looking at the right-hand side of the figure).

To summarize, we have investigated a network with clipped synaptic
efficacies. The weights with large absolute values (for example, if |J| > 2)
have a very small influence on the critical capacity. This is, of course, a
simple consequence of the fact that only a very small fraction of couplings
takes large values. Keeping the latter in mind, one may search for an efficient
dilution algorithm and cut off of change (in a certain manner) some synapses
that do not have a great influence on the storage capacity (i.e. those that
take either the value zero or the large values, for instance).

In some special conditions, namely, if A = —1 and B = 1, we encounter
a double-stage first-order phase transition (with “jumps” of the value of
ac(k — 0): 1.27 — 0.83 — 0), which may play an important role in practical
applications, enlarging the capacity of a network with binary couplings. An
even more interesting situation occurs when synapses take only one value
(either —1 or +1). Here the storage ratio may grow from zero to some finite
number if one allows the couplings to fluctuate. We have also investigated
the distribution of synaptic weights and found Dirac’s delta contributions
at both limits of the allowed range of efficacies values.
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Note

1433

After completing this paper we learned about the recent article by
R. W. Penney and D. Sherrington [20] on a similar subject. They con-

sidered a slightly less general case than ours, i.e. |J| < B.
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