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Exact solutions are found in 5-dimensional projective unified field the-
oty (PUFT) for a Melvin-like magnetic universe with (and without) a
non-rotating black hole on its axis of symmetry. These solutions and the
motion of test bodies are compared with those in Einstein-Maxwell theory.
It is shown that particles with positive scalaric mass (a new hypothetical
characteristic of matter in PUFT) can accrete onto stars if magnetic fields
are present in their surroundings.

PACS numbers: 04.20. Qr
1. Introduction

The 5-dimensional projective unified field theory (PUFT) developed by
Schmutzer 1] is based on the postulated Einstein- like field equations

5 1 5
Ry.u - Eg;u/R = ’90@#1/ ) (13‘)
with
@;,;V =0, (lb)
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where K¢ is Einstein’s gravitational constant and @*" is the energy projec-
tor of the non-geometrized matter (“substrate”). The cosmological term is
omitted here.

Projection of (1) into the 4-dimensional space-time by a specific vecto-
rial projection formalism leads to the following 4-dimensional field equations
(Gauss system of units):

1 4

4
Rmn — Egmn R =K (Emn + Ymn + @mn) ’ (2)

generalized gravitational field equations;

4
H™ = =™, (3a)
B[mn,k] =0, (3b)
Hpn =€3°Bn, (3¢)

generalized electromagnetic field equations;

2 1
k

Ve = -0+ —
7k = ko (30 + o
scalaric field equation. To characterize the scalar field predicted in PUFT as
a new fundamental phenomenon in Nature we introduced the notion “scalar-
ism” in analogy to electromagnetism (see [2]). In the equations (2)-(4) B;x
and Hj, are, respectively, electromagnetic field strength and induction ten-
SOrs,

B H®), (4)

1 1 :
Eppn = _(Bmkan + _gmnBij]k) (5)
4 4
is the electromagnetic energy tensor,
3 1
Yomn = _m(a,ma,n - 'égmna,ka"k) (6)

is the scalaric energy tensor, @,,, is the substrate energy tensor, ;™ is the
electric four-current density and

9= e 7Ok, - g@mm )

is the scalaric substrate density. The scalaric substrate density is responsible

for a new attribute of matter — the so-called scalaric mass, which can be
in principle independent of ordinary inertial mass.

Obviously electromagnetism can give birth to the hypothetical scalaric

o-field. Another source of the scalaric field could be the scalaric mass of
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matter (see eq. (4)). Exact solutions with electromagnetic fields in PUFT
are therefore interesting because they can give important information about
the scalaric field itself and the influence of the latter on the electromagnetic
field.

In this paper we find in PUFT the exact static cylindrically symmet-
ric solution of the 4-dimensional field equations (2)—(4) with magnetic field
parallel to the axis of symmetry. A similar solution in Einstein-Maxwell the-
ory is known as Melvin’s magnetic universe [3,4]. Several aspects concerning
geodesics and motion of test bodies will be represented. Furthermore, we
find the exact solution for a magnetic universe which contains a non-rotating
black hole on its axis of symmetry. Much attention has been attracted by
such a model of black holes immersed in external magnetic fields which are
homogenous at infinity (“magnetized” black holes, see [5, 6]). As is well-
known, magnetized black holes could be an appropriate model for some stars
with a magnetic field in their vicinity. This magnetic field can be created,
for instance, by physical processes occurring in the plasma nearby the star
— and not by the star itself. We have come to the conclusion that parti-

cles with non-zero positive scalaric mass can accrete onto magnetized black
holes.

2. Melvin-like magnetic universe

For a Melvin-like magnetic universe (see, for example [7]) we start with
the line element:

ds? = 2Mr) (dp? - dt2) +e 2P g2 | p2e2¥(P) g2 (8)

The field equations (2)-(4) lead to the following set of equations (prime
means derivation with respect to p)

V4o + WA —e(2¥+39) (gL — Z(a) (9)

¢n n % _ e(2¢+30)(B12)2 , (10)
#H A' (2‘¢'+30’) 2
A+ 7,‘ =e (BIZ) ) (11)
d
“ (29+30) —
5, (e B1) =0, (12)

!
i

o + L = 2(2¥+39) (g )2 (13)
P
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The magnetic field strength tensor has only one non-zero component By; =
—B21 (2! = p,2? = p,2% = z,2* = t; z is the axis of symmetry). Equa-
tion (12) gives

By; = Ee_(2¢+30), (14)
p

where B is an appropriate constant of integration. From equations (11) and
(13), by means of (10), we obtain

A—¢p=Clnp, (15)
o—2¢p=Dnp (16)

(D and C are constants of integration). Taking into account the relations
(14)-(16) we find in place of (9) the following equation:

D - (3/4)D* B%e"%

@) +22 S - T an

In an intermediate step we define
x=Inp and n =8¢+ 3Dx. (18)
Equation (17) leads to
d 2
(—") = 16C — 3D* — 16B%e". (19)
dx
As a consequence of (19) we have the inequality

3D?
=0 - —— . 20
C=C 5 >0 (20)

Integration of (19) gives

2

e"? = Uy exp(Z\/gx) + ;%)exp(—izx/gx) , (21)

where m? = 16B2/(16C — 3D?) = B2?/C, and Uy is an arbitrary constant
depending on the unit of measurement of the magnetic strength. With the
help of (21), after some calculations, we obtain

- %In[U p(D/2+2\/_) %p(D/z—zx/g)]’ (22)
-2
B[y G, ™ (v
Bn == Upp®V ¢ 4Uop( 2 C)] : (23)
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The physical magnetic field strength can be defined as

-2
Bynys = Ba  _ B{ng[(c+1)/2+2\/5] N __”_lz_p[(c+1)/2—2\/3] .
/911922 4Uy
(24)
Both ¢ and B}, must remain finite when p tends to zero. Consequently
from the relations (22) and (24) we obtain

C=1, D=2, C=1%, m?=4B2. (25)

Here we have chosen Uy = m?/4 = B2%. Thus our exact solution now reads:

e = (1+ B2p?)'/?, (26a)
e?% = p=2(1 + B2p?)'/?, (26b)

o= %ln(l + B?p?), (26¢)
By = Bp(1+ B?p?) 2, (26d)

—2
Bphys = B(1+ B%p%) " (26e)
The constant B has the physical meaning of the magnetic field strength
on the axis of symmetry. Bpy,s decreases with distance from the axis of
symmetry somewhat faster than it does in Einstein-Maxwell theory (for
Bp < 1) (see [3]):

(Bohys) g_ag = B(1+ B?p%/4) "

3. Geodesics and motion of test bodies in magnetic universes
In PUFT the equation of motion of a point-like test body reads [1]:

1d
mum;kuk - Ean’un — 8062 (O"m + C_zagum) s (27)

where u™ = dz™ /dr is the four-velocity, and m, e, and s are, respectively,
the mass, the electric charge and the scalaric mass of the test body. Natu-
rally a neutral test body with zero scalaric mass will move along a time-like
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geodesics. It can be shown that in PUFT, as in General Theory of Rela-
tivity, light beams propagate along null geodesics. In Table I we indicate
the main features of the motion of test bodies in magnetic universes in the
Einstein-Maxwell theory [4] and in PUFT.

TABLE 1

Motion of test bodles in magnetic universes. Here pg is the positive root of the
cubic equation (%) - 2p( B%p? — 1) =0.

Forms of motion Einstein—-Maxwell theory PUFT
Circular geodesics 0<p< 7%5 0<p< ™
time-like time-like

p= 7%-5 light-like
;7%5 <p< % space-like

p> % no circular geodesics

Geodesics paralell to Null-geodesics are given

the axis of symmetry by the equation z = +¢

Circular orbits of 0<p<

charged particles 0<p<po (Under the condition)
so/m > —1/2

For circular time-like orbits the periods of rotation as measured by the
particle are equal to:
(a) circular geodesics in Einstein-Maxwell theory

1/2 -1
T - 27r\/_ 1/2( Bz 2) (1+%B2p2) , (28)
in PUFT
" T — 27l'\/i 1/2 1 B2 2)—1/4 (29)
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(b) circular orbits of charged particles in the Einstein-Maxwell theory

= bl 3o+ )

e e\2 3 1/2) 7
ez (@ s3] o

ir

T _ . p(l + B2p2)1/2

172y =1
s [ e ) e )

where 79 = so/m . Here and in Table I p denotes the radius of the
circular orbit.

in PUFT

4. “Magnetized” black holes

In the general theory of relativity it is possible to obtain the exact solu-
tion describing magnetized black holes by applying Ernst’s transformation
to Melvin’s magnetic universe [4, 7, 8]. The results are [5] (z! = r,2% =

p,23=6, z% =1):

2M~ 1 72 sin? fdp? 2M
2 _ 42 _ 2, 292 (1 2
ds* = A [(1 - ) dr* + r°dé* + 14 (1 - )dt ] , (32)
Byy = BrA~%sin? 9, By3 = Br2A~%sin 6 cos b, (33)

where M is the mass of the black hole,
A=1+ 1B%?%sin?0. (34)

The expressions (32) and (33) coincide with Melvin’s solution when M — 0
and with the Schwarzschild solution when B — 0. In PUFT similar methods
which generate new exact solutions, as far as we know, have not been elab-
orated. But it can be shown that by analogy with (32) and (33) magnetized
black holes are described by the exact solution

-1 2 12 2
ds? = L1/2 [(1 - 3;1‘.-4-) dr? + r2de? + ﬂ‘-;di - (1 - 3#) dtz] :

(35)
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By = BrL™%sin?9,  By3 = Br:L %sinfcos¥, (36)

c=131InL, (37)

where I = 1 4+ B%r2sin? 6. The black hole has no scalaric mass. Therefore,
the scalaric o-field (37) was generated exclusively by the magnetic field (36),
which is, as expected, homogenous and parallel to the axis of symmetry at
infinity.

The solution (35)-(37) is not asymptotically flat. When B — 0 it goes
into the solution for an ordinary black hole without scalaric mass. (This is
the case when the Schwarzschild solutions in general relativity and in PUFT
are the same. For more details see [1].) When M — 0 it coincides with the
Melvin-like solution found in Section 2. An event horizon exists at r = 2M,
which is not singular.

According to (37) the scalaric o-field diverges logarithmically at infin-
ity. (An analogous behaviour at infinity has the electromagnetic potential
generated by an infinitely long charged string.) But the divergence of o-field
appearing in the equation of motion of a point-like test body (27) remains
finite. Of course for realistic objects magnetic field falls to zero as one
moves far away enough from the center, and the scalaric field goes to a con-
stant. More details on the motion of test bodies in the metric (35) and in
the fields (36), (37) can be worked out using the Hamilton-Jacobi equation.
(The Hamilton-Jacobi equation in PUFT can be obtained on non-trivial as-
sumptions.) Our investigations show that a particle in an external scalaric
field has an effective potential energy proportional to its scalaric mass and
to the value of the scalaric field (see also [1]). Using the fact that around
a magnetized black hole the scalaric field increases monotonously with the
distance from the center (see formula (37)), we conclude that particles with
positive scalaric mass will accrete onto the black hole. Scalaric mass of
matter plays an exclusive role in PUFT. Therefore, if one can observe any
tracks of scalar mass in stars (with magnetic fields in vicinity) it would be
highly interesting.

It should be taken into account that in PUFT and in Einstein-Maxwell
theory the approximate solutions of magnetized black holes up to the second
order of B coincide with each other.
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