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1. Introduction
1.1. Problems of chemical kinetics in disordered media

There has been a considerable recent growth of research activities con-
cerned with relaxation and transport in condensed-matter systems, such
as amorphous and porous materials, glass-forming liquids, polymer melts,
biological membranes and proteins {1, 2]. The approach to equilibrium in
such systems is generally characterized by time-dependent linear responses
such as dispersive transport and nonexponential correlation functions, and
by anomalous dependence of the transport or relaxation time on a number
of experimental variables. A common belief is that these features are due
both to the effects of dynamical interactions between the relevant degrees
of freedom and to effects of the static disorder of the material.

The understanding of transport properties in condensed phases is of
fundamental importance in furthering our knowledge of structure and func-
tionality of biological systems. The key to carrying out the description of
the kinetic rate in complex system is to identify the major energy scales
in the problem. Existence of large energy gaps leads quantum mechan-
ically to the separation of “slow” and “fast” variables being the crux of
the Born—-Oppenheimer approximation. This allows to solve the electronic
problem at fixed vibrational coordinates which are treated as classical co-
ordinates subject to thermodynamic fluctuations. In this context, the the-
ory of kinetic rate incorporates quantum mechanical estimates of Born—
Oppenheimer potential energy surfaces and dissipative motion of nuclear
coordinates described conveniently in terms of stochastic dynamics. The
interplay of these two factors is essential for understanding the degree of
temperature-dependent kinetics.

Chemical reactions govern all aspects of biological processes, from en-
zyme catalysis to the transfer of charge, matter and information. Most of
the knowledge of reaction dynamics, however, has been deduced from the
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studies of two-body interactions of small molecules in the gas phase [3]. In
contrast to this simple system, biomolecules provide a complex but highly
organized environment that can affect the course of the reaction.

The free energy surface of the complex chemical reaction going on in a
disordered medium is “rough” [4, 5, 6] (z.e. it has many saddle points and
local minima representing e.g. various conformational metastable states of
the medium). Distribution of the roughness of such a stochastic energy
landscape determines relaxation dynamics [7, 5, 8] and may be responsible
for dynamic, temperature dependent phase change in the medium [1]. The
principal goal in understanding complex dynamics is thus to explore kinetics
in disordered systems within two distinct categories of disorder:

— static disorder (fluctuations of metastable states follow a much shorter
time scale than the kinetic process of interest)

— dynamic disorder (time evolution of fluctuations mediating the kinetics
occurs at the similar or longer time scale than the kinetic process of
interest).

One of the most intriguing biophysical problems is theoretical interpreta-
tion of the mechanisms of conversion and storage of energy involved in
oxido-reduction reactions in which an electron is transferred along a chain
of redox centers embedded in a protein medium [9, 10, 11, 5, 12]. The stan-
dard picture of photoinduced electron transfer (ET) involves the coupling
of two electronically excited states, a neutral state and a charge transfer
state, to a single nuclear degree of freedom, i.e., the reaction coordinate.
This coordinate may be collective in nature, such as solvent polarization,
or may correspond to a specific vibrational motion of a protein or lattice.
The electronic interaction gives rise to a splitting of the energy levels in the
region where the neutral and the charge transfer potential energy surfaces
intersect. The majority of nuclear degrees of freedom constitute a thermal
bath. The coupling between the system and bath degrees of freedom in-
troduces dissipation into the system. The transfer of an electron is usually
thought to be triggered by a fluctuation of the dielectric polarization in the
surrounding medium. The dynamics of such fluctuations is determined by
the finite response time, which under certain conditions, can become the
rate determining factor of the reaction.

The aim of this survey is to present basic ideas of modern kinetic rate
theory devoted to studies of relaxation and transport properties in natural
systems. The presentation is based on a series of our papers published
elsewhere, [13-19].

Chapters 1 and 2 review main concepts of the electron transfer reactions
in the context of natural systems. In Section 2.2 we discuss shortly limita-
tion of use of a standard approach to the kinetic rate problem based on use
of the “generalized” Smoluchowski diffusion equation (a critical overview of
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the method has been published by the author separately in [17]). Chap-
ter 3 is a glance over various derivation of formula for the kinetic rate
constant in a stochastic medium with author’s contribution presented in
Section 3.2. Chapter 4 is devoted to biophysical applications of ET the-
ory and includes main results of the thesis. In particular, it is shown, that
complexity of a potential surface describing the states before and after the
electron transfer leads to the overall enhancement of the rate (Section 4.2).
Our discussion of electron-transfer processes refers to analysis of stochastic
effects entering nuclear and electronic factors controlling the rate (Section
4.3). To study the effect of heterogeneous media on electronic tunneling
in proteins, we introduce the concept of a ”diffusive pathway”(Section 4.4)
and classify electron transfer probabilities limited by stochastic motions of
interchromophore spacers. As a direct application of the formalism, we
discuss nonexponential relaxation dynamics and electron transfer rates in
photosynthetic reaction centers (Sections 4.3 and 4.4 and 4.5).

1.2. General concepts of ET reactions

Since the pioneering work of Marcus [20] conventional ET theory is
based on the Condon approximation which assumes that the electronic cou-
pling depends only on the donor-acceptor distance but not on the nuclear
coordinates [21, 22, 23]. As a result, the coupling term in the golden rule
expression of the electron transfer rate can be separated from the Franck-
Condon factor which contains only overlap integrals of nuclear coordinates.
Similarly, in an alternative ET description in the framework of spin-boson
model [24], one assumes that a coupling matrix element is constant in time
and depends only on the initial and final electronic states. The Condon ap-
proximation is ideal for intramolecular ET in system with a rigid spacer or
for intermolecular electron transfer in systems with the donor and acceptor
firmly held by binding to rigid matrices. The validity of this approximation
breaks down when modelling ET with a floppy spacer or for intermolecular
electron transfer in solutions.

One of the crucial issues in biological ET is the determination of the role
of spatially intermediate amino acid residues in controlling or directing the
electronic tunnelling interactions between redox sites. Traditional quantum
mechanical methods which can be valuable in determining physico-chemical
properties of single amino acids and prosthetic groups are usually intractable
for problems involving whole proteins. Among various methods used in the
field there are semi-empirical one electron theories advanced by Beratan and
Hopfield {10] and by Larsson [25, 26] which discuss the concept of through-
bond interactions in bridged donor-acceptor systems. An alternative ap-
proach has been proposed by Wolynes and Kuki [9, 27, 28] who examined
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tools based on real space quantum propagators!. The path integral theory
developed by these authors has been applied to study intramolecular ET in
a ruthenium-modified myoglobin, so far the only successful example of the
method that has been implemented in proteins at the one-electron Hamil-
tonian level?. In this formalism, the analysis of tunneling in a multistable
potential relies on a classification of the paths that contribute to the path
integral

(1}6—3H]2):/ dz,-z/)l(zi)/da:fd:g(:cf) 7’Dz(,3) exp{—fH(z(ﬂ'))dgp} :
;i 0
(1.1)

where H is the Hamiltonian of the system, 3 is the inverse thermal energy,
z; and z¢ are coordinates of initial and final “states”, respectively, and
the D symbol indicates path integration. A typical path which contributes
to the above expression is the one which stays in the donor potential well
for a relatively long time before rapidly making a transit to the acceptor
well, where it resides again for a relatively long period of time. Such a
rapid transit is called a “kink”. Other paths contributing to the path sum
will have a larger but odd number of such kinks. The kinks, typically well
separated in time, can be considered noninteracting. The contribution of
paths with IV kinks to the path sum is then

1—\1,—!(”3%—”0 , (1.2)
where F}, is the free energy of introducing a kink® and factor N! comes from
indistinguishability of the kinks. The amplitude for a transition from “state
1” to “state 2” can be represented as the sum

1
e—BEo Z me—NﬁFk = ePEBo sinh(e~AFk) (1.3)
odd

and should be compared with the quantum mechanics result which for the
system of two nearly degenerate states with energies Ey + A yields the same
amplitude in the form of

e PBosinh(BA). (1.4)

! This approach avoids strong dependence on the tails of basis functions used in
traditional basis set quantum methods, cf. [9, 21].

% In recent reviews, Kuki et al. {9] present a generalization of the method to
multi-electron Hamiltonians.

3 Fy is a difference between the free energy of a one-kink path and that of a
path confined to one well E,.
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Thus the tunneling amplitude A is exponentially related to the free energy
of introducing a kink:
A=p e BFk (1.5)

A tunneling matrix element A gives the probability amplitude for transitions
between potential energy surfaces characteristic for electronic configurations
before and after the ET transfer estimated at fixed nuclear configurations.
If A sufficiently small, second-order perturbation theory gives a “golden
rule” expression for the rate of transition between the two electronic states
as a thermal average of the rate between two particular nuclear-motion
eigenstates on each of two potential energy surfaces:

ke = (| Higl0(B)), (16)

where H;; is the perturbation matrix element between the initial and final
vibronic states and p¢(E;) is the density of final states at the initial energy.

In semiclassical theories of tunneling, an extremal one kink path is
found. The free energy F}, is then the action associated with an extremal
path plus contributions from small amplitude oscillations around the path
which are treated harmonically. The extremal path can be easily deter-
mined in a classical flat potential where the action of a straight line path is
proportional to its length giving rise to A proportional to e™".

For the complicated potential provided by a protein, it is not obvious
that a semiclassical approach will work. Also, the harmonic treatment of the
amplitude fluctuations becomes questionable because of the rapidly varying
electron-atom pseudopotentials. This issue is an objective of complementary

treatment of ET presented in Sections 4.2 and 4.3.

2. Electron transfer rate theories
2.1. Semaclassical model and quantum-mechanical aspects of ET

To provide a theoretical framework for discussing problems of ET in
natural systems, we will briefly recapitulate differences between adiabatic
and nonadiabatic transitions in simple chemical reactions (cf. [29,10, 9, 20,
30, 21, 31)).

Chemical reactions involve dynamic motions of electrons and nuclei.
Because of the mass difference, one can consider the nuclei at any moment
to be fixed (Born-Oppenheimer approximation) so that suitable wave func-
tions, ¥ ({Xq}) and corresponding electronic Hamiltonian, He({ Xgq}), de-
pend parametrically on the nuclear coordinates {Xg}. The states before
and after the reaction are then described by two different electronic states
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of given energies. The transition is considered to take place between an
initial electronic state of a system, ¥;, in which the electron can be said to
be localized in a “donor” region (R) and a final state, ¥¢, in which an elec-
tron has been transferred to a spatially distinct “acceptor” region (P). The
various contributions to the transfer dynamics from nuclear and electronic
degrees of freedom may be described by classical, semiclassical, or quantum
theories (20, 21, 9, 27, 32, 28, 25, 5, 12, 29]. For ET processes occurring
in dissipative condensed-phase media, the dynamics can often be cast in
the framework of Kramers-like theory [33, 34, 22, 35, 36, 37] as a chemical
kinetic process characterized by a diffusion related rate constant k.

Two types of ET processes are commonly distinguished: an intramolec-
ular process in which the reacting sites are considered to be chemically
bound (in general, by covalent links to an intervening bridge, cf. Section 4.3)
and an intermolecular process in which separate reactants R come into con-
tact forming a complex which then reacts yielding separate product species
P. In practice, differences between those two types can be dubious. Effec-
tive electronic overlap between basins R and P does not necessarily require
covalent bonding between reactants and so called “superexchange” models
(25, 26, 31] may be applied to more general situations. Some sort of a uni-
fied view can be achieved by treating quantum mechanically the reactive
complex as a “supermolecule” [38, 21] which comprises species of P and
R together with the intervening bridges. A comprehensive treatment of
the kinetics must involve, however, the dynamics of the electronic manifold
and that of the nuclear modes (e.g. translational or orientational diffusion
involving the solute or solvent molecules).

If the coupling between the states ¥;, ¥, exists, two energy curves
specific for the different electronic states repel each other giving rise to a
splitting:

A= 2H,;f = <¢iiHel|5pf) . (2.1)

According to a semiclassical model, in which the nuclei move classically and
the electronic states adjusts to the changing nuclear coordinates, transition
between the states |¢) and |f) can occur only through the H;; coupling. If
H;; = 0, the system will remain in state |7) because the electronic state can-
not change even if the nuclear coordinates, through their thermal motion,
will change their configuration to the one characteristic for the state |f). If
H;j is very large compared to the kinetic energy of nuclear motion, kpT,
the electronic state |f) remains thermally inaccessible, and the nuclei will
move according to the “lower” electronic state. When A < kgT, thermo-
dynamic considerations alone do not determine whether the electronic state
can change. Depending on the relative time scale of electronic and nuclear
motions, the system can either remain in state |¢) or undergo a transition
from |7} to | f).
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In a non-adiabatic process the system jumps the small gap between
the interacting energy surfaces and continues on the same surface, i.e., in
an electronic state with the same characteristics as the state of the system
before the crossing. The probability of the jump is given by Landau—Zener
equation [39]:

P=1-exp <~W’;Lz) , (2.2)
where the adiabaticity parameter vz is defined as the ratio of the splitting

A to the energy uncertainty A/7yz and can be written in the form of

A2

Trz = m s (2.3)

where v is a nuclear velocity and Fy, F, stand for the slopes of the non-
interacted energy surfaces 4.

Nonadiabatic ET in which there is appreciable nuclear tunneling is con-
veniently considered in terms of the formalism developed for multiphonon
radiationless transitions [40, 5, 20]. In this formalism the probability per
unit time that a system in an initial vibronic state v will undergo a tran-
sition to a set of vibronic levels {fw} is given by:

27rHl
f Z S;‘U fw E‘I.‘U - 5fw) bl (2’4)

where §;, ¢, is the overlap of the vibrational wavefunctions and ¢;y,€ f4
are the energies of the vibrational levels. If a Boltzman distribution over
the vibrational energy levels of the initial 7 state is assumed, the thermally
averaged probability per unit time of passing from a set of vibrational levels
{iv} to a set of vibrational levels { fw} of the final state is

kva = —(FO), (2.5)

where

E Zexp ( o ) Sw fw‘s(eiv — €fw) (2.6)

* Note that Eq. (2.3) verifies the argument given above. Forv,, > 1, P = 1 and
the transition is adiabatic whereas for v,; < 1, P tends to n+y.,/2 with a direct
proportionality to A?; a typical result for a hlghly nonadiabatic transition. For
comion nonadlabatlc ET processes |A| < 1072 a.u. which is c.a. 0.03 eV or
c.a. 0.6 kcal mol [29, 9 27, 25], so that it becomes critical for the model in use
to predict the value of A for a given ET reaction).
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Fig. 2.1. Energy profiles of reactant and product states as a function of the electron-
transfer reaction coordinate. The reorganization energy E, (the vertical difference
between the free energies of reactants and products at the equilibrium nuclear
configuration of the reactants) is the sum of the reaction energy AE (taken as
positive for an exothermic process), and the optical excitation energy E*. A4 is
the energy separation between the energy surfaces due to electronic coupling of R
and P states. Thermal ET occurs at the nuclear configuration characteristic to the
intersection of the curves.

stands for a thermally averaged vibrational overlap (Franck—Condon factor)

and
Qi=) exp (_};;) . (2.7)

v

In the high temperature limit iw <« kpT and by assuming that there is only
a single vibrational mode of angular frequency w undergoing displacement
in the ET process, the above equation yields

kg = H’?f( il >2exp {—M] , (2.8)

h \E.RT 4E.RT

where E, is the “reorganization energy” [20, 30] which is equal to the sum
of reaction energy (“exothermicity”) and the optical excitation energy (cf.
Fig. 2.1). AFE stands for the difference of energy between the final and
the initial state (negative for a spontaneous reaction). Equation (2.8) is
also readily derivable from transition state theory using a Landau-Zener
treatment of the barrier crossing Eqs. (2.2), (2.3) with v estimated by the
one-way thermal average across the barrier.
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2.2. Medivm relazation dynamics and electron transfer

The averaging over the Franck—Condon factor over the thermal equilib-
rium distribution is permissible only if the medium dynamics (its charac-
teristic relaxation time) is fast on the time scale of ET. For very fast ET
rates this may not be the case and one has to correct the previous nona-
diabatic result Eq. (2.8) by incorporating explicitly the relaxation time of
the environment. The dynamic effect of the “solvent” on activated rate
processes was first addressed and consistently treated by Kramers [41]. In
Kramers’ approach, the reaction system is idealized as an effective Brow-
nian particle moving across in a one-dimensional potential barrier V(z),
where z represents a reaction coordinate.> The influence of the solvent on
the reaction dynamics is described stochastically through a Fokker-Planck
Equation (FPE) for the distribution of position z and velocity ¢ of the
Brownian particle or, equivalently, by a Langevin equation. By incorpo-
rating solvent memory effects, Kramers’ theory can be generalized, so that
effectively the reaction coordinate dynamics is governed by a generalized
Langevin equation (GLE):

5(2) = —0,V () - / drn(t — )a(r) + F(t), (2.9)

where the random force F(t) is assumed to be a Gaussian process satisfying
the fluctuation-dissipation theorem®

(F(t)F(t + 7)) = 2kpTn(7) (2.10)

together with the relations:

(F(t))

(F(t)) =

0,
: (2.11)

> The time dependent reaction coordinate z(t) for an ET process is commonly
identified with a portion of nonequilibrium, orientational polarization for the
time-dependent effective charge distribution in the solvent which is assumed
to satisfy Eq. (2.9). As such, the reaction coordinate z(t) is a macroscopic
variable, a function of a great number of microscopic coordinates character-
izing the position and orientation of mutually interacting solvent (medium)
molecules.

Relation (2.10) can be understood as a definition of the dissipative memory
kernel (7).
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Though the description of the motion of the effective particle along the
reaction path in terms of GLE seems reasonable, it is not rigorous and one
encounters difficulties in its use (for the discussion of this issue, see e.g., [42,
43]). First of all, it has not been generally proven that in the presence of
an arbitrary potential V (z), Eqgs. (2.9), (2.10) can hold simultaneously with
Egs. (2.11). Secondly, the random force f’(t) is usually not well specified
and may itself be dependent on dynamics of the effective particle in the
external field. Therefore in using GLE one makes additional assumptions
of questionable validity, such as the Gaussian nature of F(t).

The derivation of a GLE from exact microscopic equations has received
much attention [44, 45, 42, 46]. But as discussed in more detail in [42], the
formal status of a GLE for a barrier crossing reaction is uncertain 7. In the
special case where all forces in the system are linear, i.e., the GLE is linear
in the reaction coordinate z(z) and the potential coupling of the effective
particle to the bath is bilinear in z and the coordinates of bath, Egs. (2.9),
(2.10) are exact and derivable from a system Hamiltonian [44, 43, 46).

A complementary method of calculating the rate, especially practical for
mathematical analysis is based on derivation of a Fokker-Planck equation
(FPE) associated with a non-Markovian Langevin equation. The method is,
again, applicable mostly to the situations where the system dynamics can
be characterized by harmonic potentials and Gaussian random forces (the
only case when the closed-form FPE can be derived from the starting GLE
(47, 46, 48]). In the latter case, it is also possible to relate dynamics of the
system with only one coordinate in projected phase space [48, 49, 33, 34, 50]
whose time evolution can be recast in terms of “generalized (nonstationary)
Smoluchowski equation” (GSE).

Such a reduced description of the process, obtained after applying a
projection technique leading to a contracted evolution equation GSE yields,
however, substantial problem of posing correctly an appropriate boundary
condition {18, 51]. In the discussion of this issue, we have also shown [18]
that, depending on the method of elimination of auxiliary variables leading
to a 1-dim GSE, various forms of diffusion and drift coefficients for the
diffusion equation can be derived, which in turn, lead to different long-time
predictions of the system dynamics. Evaluation of the rate in this case yields
consistent results only in the high friction limit {18} which can be shown to
be asymptotically equivalent to a trivial nonmemory dynamics.

" For the equation to be of practical value, the dynamics entering the time
dependent friction should be independent of the external field V(z) and depend
only on the dynamics of the pure bath [44, 45, 42, 46].
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2.3. Adiabatic versus nonadiabatic ET processes

Given relaxation of the medium can be satisfactorily described by Eq.
(2.9), the overall electron-transfer rate is determined by the interplay of
two factors: the strength of electronic coupling between the states and re-
laxation dynamics of the solvent (which represents “nuclear degrees of free-
dom”). Interpolation of the transfer rate between the purely nonadiabatic
rate constant Eq. (2.5) and Kramers’ prediction [41, 37| for a fully adiabatic
reaction

o\ 1/2

kap = fmw’D (ﬂATrV ) e PRV (2.12)
assumes the form &:

Foverall = (Ena + kap) ™" (knakap), (2.13)

where D is a “diffusion constant” related to a Brownian dynamics along
the reaction coordinate and AV* is the contribution to the free energy of
activation from the nuclear reorganization. In a semiclassical model (cf.
Eq. (2.8))

«_(AE+E.)
A = e,
4 4F..

(2.14)
For a medium characterized by a single relaxation time 7% the friction
term defined by fluctuation-dissipation relation (2.10) is time independent
n = w?ry, and the diffusion constant can be identified as [33, 34, 35, 36, 22,
43, 18]

D = (Bmw?r) ™ = (Bmn)~7. (2.15)

The 77, dependence of the ET rate can be now recast in the explicit form,
Eq. (2.13):

kn
koverall(TL) = 1+ :A ) (216)

8 Formula (2.12) refers to the case of the overdamped dynamics in a cusp-like
potential; a quartic potential with a parabolic barrier top characterized by the

barrier frequency w, leads to the rate kap = %};—e—[mv*.

® In terms of ET nomenclature, this case corresponds to a Debye solvent, for
which the Laplace transform of dielectric response function, £(s) = (1+s7p)~!
relates to a frequency-independent friction 71(s) = 7 = €x7TD/€0- €0, €0
represent high and low-frequency dielectric constants.
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where K4 = kn 4/kap(TL) serves as the adiabaticity parameter!?:

ATHZTp

K4 = iE (2.17)

Consistently with the above description, in the Debeye solvents, relaxation
of the reaction coordinate can be characterized by the correlation function

a0 = OO, a8

which in the overdamped limit (acceleration term can be neglected at the
level of GLE description, cf. Eq. (2.9)) leads to a single exponential decay

At) = et/ (2.19)
which is simply related to the diffusion constant D (c¢f. Eq. (2.15)):
D = —(22(0))AT (1) A(t). (2.20)

The vast majority of polar solvents exhibit, however, a continuous distri-
bution of dielectric relaxation times [52, 53], so that severe deviations from
relation Eq. (2.16) can be expected in such systems. The same state of
affairs prevails for ET processes in glasses, proteins and polymers [7, 2, 54,
55, 1].

In a solvent with static disorder, the dielectric relaxation of the mi-
croscopic solvent environment of any electron donor-acceptor pair is expo-
nential but inhomogeneity of various relaxation times 77, sets up a given
distribution of 77,9(7r). The observed survival probability of reactants
P(t) is an ensemble average of systems with individual rates k(7 ):

P(t) = / e *L) gy (rp )dry, . (2.21)
0

1% From Eq. (2.13), if the rate constant for well dynamics is large relative to
the rate constant for surface crossing (i.e., kap > kna), then the reactants
population is equilibrated and the conventional nonadiabatic rate expression
is obtained. On the other hand, when the well motion is sufficiently slow,
‘a dependence on well dynamics (77) will be obtained. Note the difference
between k4 and Landau-Zener adiabaticity parameter Eq. (2.3), the latter
being defined for a ballistic motion on the top of barrier between the states of
reactants and products.
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This issue is further discussed in Section 4.2 where we analyze possibility
of the breakdown of the formula for nonadiabatic ET in the presence of an
effectively long relaxation time caused by medium inhomogeneity. Quan-
tum mechanical calculations on natural molecules of various configurational
states and estimates of configurational costs in biological ET systems are
presented in Sections 4.4 and 4.5.

3. Kinetics in a fluctuating potential
3.1. Model of dichotomously changing potential

In this Section we discuss various approaches to study kinetic prop-
erties of the system driven by dichotomous forcing. We focus on various
definitions of kinetic rates derived from the definition of time-dependent
correlation function and analysis of a reaction flux through the barrier sep-
arating different stable states.

Description of the model system consists of two factors. First, the full
dynamics is expressed in terms of certain set of degrees of freedom {z;}.
Secondly, action of fluctuating environment is modeled by the set of param-
eters {a;}, which in general can appear nonlinearly in phenomenological
equations for time derivative #;

a':i:f(;l)i,aj), i:l...n, j"-:l.... (3.1)

We consider a system whose action is determined by a dichotomously switched
potential, i.e., the state of the environment changes between two different
levels a1, as that in turn can be associated with two different potentials
Vi, V2 exerted on a dynamic variable z (for the purpose of simplicity we
limit ourselves to a one-dimensional case, although the analysis can be eas-
ily extended to many-dimensional space). We assume temporal evolution of
a; to be given by a Markovian dichotomous noise [56]

P;;(t) = Prob(ay =i | g = j), (3.2)

where 7, j can take on one of two values, ¢, j € {a1, a2}. Temporal evolution
of the noise depends on A1, A\, — the mean frequencies of passage from ay
to az and from az to ay. Under these assumptions P;;(t) reads

1 A1 + dge=itA2)t 3 (1 - e—()\1+>\2)i)>
T AL+ Az \Ag(1 — e (rAt) Ay 4 e~ (At Ae)t

A switching of the environment between two different states is a stationary
random process with a characteristic correlation function

C\%:T)\i—)z?(al — az)? exp(~[A1 + Aa]t). (3.4)

P; (t) (3.3)

C(t) =
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If the environment is in configuration «;, the equation of motion of  is

dz _ 9Vi(z) _ V= f
PO vt f(z, ;) = fi(z). (3.5)

The pair process (¢, a;) is Markovian and obeys Kolmogorov equation [47]

O¢p(z, a1yt | 2o, 0,0) = — 0 f1(z)p(z, a1, t | 2o, e, 0)

— M1p(z, a1,t | zg, a9, 0)

+ A2p(z, oz, t | 2o, g, 0) (3.6)
9tp(z, a2, t | 2o, 0,0) = — 0z f2(z)p(2, a2, t | 2o, 0, 0)

- AZP(z’QZ’t ' zo’aﬂao)

+ A1p(z, a1, | 2o, 0, 0). (3.7)
Our interest concerns evolution of the probability density p(z,t) defined as
p(:l:,t) = p(z,a1,t) + p(z, az, ). (3'8)

By assuming statistical independence of the processes zs, a; in the infinite
past, a closed evolution equation for p(z,t) is [56]

Bep(z,t) = /D(t = t"Yp(e,t')dt' = =87 { A2 f1(z) + A1 f2(2)}p(z, 1)
0

t
07 fi(2) ~ fale)) / exp{— {7+ 827" (M1 fu(2)

+ A2 f2(2)))(t — )} (Ar2)0x{ fi(2) — fal2)}p(=, t))dt,
(3.9)
where v stands for the inverse of the noise correlation time
Y=A1+ A2 (3.10)

For a deterministically stable system, well defined stable stationary states
to Eq. (3.9) exist, and the stationary probability distribution function ps(z)
is given by

11 Note that the support of the stochastic process, guaranteeing existence of a
positively defined p,(z) is determined by the union of intervals, whose bound-
aries are given by zeros of f; and f,.
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AU 'S5 S B
Ps(z) = ps(z,00) = £ Fifa XP{ ./(f1+f2)dy}

= ZD;ffl(z)exp{—/D—Ifé—?(?)/—jdy} ) (3.11)

where Z stands for the normalization factor. As a direct consequence of the
above scheme one gets

A1

p(:L', aq, 00 I 3’0,00,0) = mp(a:,oo)
A
P(, 02,00 | 20, 00,0) = - :Azp(:c,oo). (3.12)

Further information on the steady-state behaviour of the system can be
obtained from the extrema of p,(z) which are solutions to the equation

Ops(z) _ REE-AF Mh+Xf
Oz fifa(f2 — f1) fif

=0, (3.13)

where o
4
fz - dm .

For the purpose of further studies it will be convenient also to rewrite
Eq. (3.9) in terms of the probability current j,(z,t) whose Laplace trans-
form fulfills the relation

D(s)p(z,s) = —sz'p(:c,s), (3.14)
and

Jn(2,8) =77 (A1 fz2 + A2 f1)b(z, 8)

7 (o= f1) [s+ 74072 O fr 22 f2)] 7 0o (1 — F2)(=, ).
(3.15)

From Eq. (3.15) we get the following expression for a stationary nonequi-
librium current j,(z, 00)

(3.16)

z z 2
}'p(:c,O) = F Y a)(f2 - fl)/dyG(y) exp [— dzj;y(z)
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with
Flz)=Mfi+A2f2, (3.17)
and

A
LA

0z(fr = f2)B(=,0). (3.18)

G(z) =[y + 87" (A1 f1 + A2 f2)]

A1A
4 M2

3.2. Definitions of transition rates in a system driven by
dichotomous noise

There exist few complementary derivations of the kinetic rates [57, 58,
59, 15, 60] of a transition between different stable states of the system de-
scribed by Eq. (3.9). In the following we will briefly present general formulae
for the kinetic rate constant defined for the system driven by dichotomous
noise. A generalization of the standard approaches, presented in this Sec-
tion, assumes that function f(z,a) may be nonlinear both in z and a.

Let us start with a definition of kinetic rate based on estimation of the
escape time. The measured quantity is an activation current j; which starts
in a given stable state region and crosses an intermediate region separating
two different stable steady states. The forward rate constant between these
two states is defined as the inverse of the escape time T [58] of a metastable
state in the intermediate region. Nonequilibrium current jo builds up a
total integrated probability po proportional to the escape time T [61]

Zy
joT = / po(2)dz, (3.19)

— 0
where Z, belongs to the intermediate barrier region. By solving Eq. (3.14)
for the nonequilibrium po and setting j,(z, 00) = jo we arrive at the formula

z

o= i [ [2F20) - fily) + @) faly) — £2(9) A1(y)
m(z)=io [ | A0 1) a8) ~ 1 9)) [pswrar

K (3.20)
Hence the escape rate is [58, 62]
Zp 2y -1
_ 1 _ 1 L+ (f'1fo = 2 1)/ (0(f2 — F1))
T T2 / p’(z)dz/ psf1f2/7 dy

(3.21)
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Another derivation of a phenomenological rate law comes from the stan-
dard use of projection operator techniques [45, 44]. Correlation function
expressions for the rate constants have then formally a structure similar to
those in equilibrium reaction rate theory [3]. We follow directly derivation
presented elsewhere [60]. The only generalization made in our approach is
that, as it has been stressed before, evolution Eq. (3.9) can be nonlinear not
only in z, but also in a-parameter'?. After (60, 63] we adopt the definition
of the population number in a state of reactants R (or products P),

M,
Npg(t) = / p(z,t)0(—z — &;)dz,
My
M,
Np(t) = / p(z,t)O(z — 62)dz, (3.22)
M,
with its steady-state analogs:
)
1= [ pule)da,
M,
M,
np = /p,(:z:)d;c, (3.23)
o2

where M, M, are the roots of D.g(z) = 0 with My < M, and O(z) rep-
resents the Heaviside step function. A state R(P) collects all z belonging
to (My,81),(82, M3) respectively, and §; and é; are the lower and upper
boundary of an intermediate barrier region. By use of the projecting oper-
ator P

81 M,

Pola,t) = p(2)0(61-2) [ pla,t)danz +.(2)0(e- ) [ 5", (3:24)
M, b

and after assuming that the initial distribution p(z,0) is proportional to

ps(z) in each domain R (P) we obtain for the rate

t t
—dZR == / ARp(t — t')Np(t')dt' + / Arp(t —t')Np(t')dt', (3.25)
0

0

12 Let us note that in such a case white-noise limit approximation of environ-
mental activity would be meaningless, as it is impossible to define nonlinear
operations on a white noise process {56, 47].
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with Agpg, Arp being definitions of time dependent rate kernels [45, 60).
If the decay time of the population number is long compared with that of
the rate kernel and with the noise correlation time 1/v, one can omit the s
dependence of the rate kernel so that the interesting forward rate constant
for the reaction going from population of reactants to products!3 is simply
ks = Argr(0). From now on, evaluation of Agg follows the scheme presented
in [60] and requires only a knowledge of analytical expressions for the flux
contribution related to this quantity. By use of Egs. (3.22), (3.23), (3.24),
(3.25), P and its complementary projector, we arrive at

kfzi\RR(O):qg[fdz' 1 (f72 L F(=HH(") )

’ YDest(2')ps(z')\ fi~f2  (f2 = f1)Desr(z')
N F(8) _ F(81) ] -
7(f2(82) = f1(62)) De(62)ps(62)  Y(F2(81)— f1(61))De(61)ps(61)]

(3.26)

where H(z), ps(z) and D.g(z) are defined in Eq. (3.11). The above formula
is a natural generalization of the results presented by Kapral et al. [60, 63] to
the case of multiplicative dichotomous noise affecting the system. One can
also use the concept of the mean first passage time MFPT (:.e. the average
time that a process starting from a point 2, inside the initial domain of at-
traction, needs to reach for the first time the separatrix manifold between R
and P regions, [64, 47, 42, 65]). The latter has been derived and elaborated
in a series of papers ([37] and references therein) using different boundary
conditions. (A natural choice is the requirement of probability absorption
at 8; and é2.) Recently, another method of calculating the rate constant
in a dichotomously changing medium has been presented [15, 16], closely
related to the stable state picture of Northrup and Hynes [66, 67]. The
rate k is expressed in terms of the reactive flux & calculated as a long-time
derivative of the correlation function:

k=2 (3.27)
R
d dC(t)
t
- — 1im & 2
® th—fgo dt ’ (3.28)

13 This approach based on a rigorous definition of reactants (R) and products
(P) states requires (in the case of multiplicative noise) discussion of existence
and relative stability of “noise-induced stationary states”, see [16, 56].
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where
C(t) = (Nr(=(0))Np(=(t))), (3.29)
so that

7= /do‘(z)ns(:c)-Ja(a:)P(:c,a), (3.30)
a=1,2S

where Jo(z) = f,(2)pst(®, @) is a stationary current, P(z, a) defines the
probability to be absorbed in the product region at some time between 0 and
oo knowing that we started at ¢ = 0 at point ® with the external environment
in configuration o and ng is the external normal to the hypersurface S at
@. p(@, a,t)de is the probability that the process is confined in the volume
de around point Z and that the external environment is in configuration «
at time t. The absorption probability P(e, a) fulfills the equations [15, 16]

P(2,a) = P(z + dza,0)[l — Aadt] + Y P(,B)ga,s(2)Nadt, (3.31)
3,a

which arise from the fact that, when starting from (#, ), there are two
ways of being absorbed in the product region. First, the environment does
not change its configuration a during the time interval dt (that occurs with
probability 1 — A,(@)dt ) and then the particle moves to point z + deg,
where the deterministic evolution of the system is governed by Eq. (3.5).
Second, the environment changes its conformation in time dt which occurs
with probability A,(z) and goes to configuration S # o with probability
43,o(2). The boundary conditions are:

P(“’)a)‘zE'P: 1 if nP(w)'f(waai) <0,
P(z,a)l,er=0 if mng(e) fle,a;)<0. (3.32)

The rate constant given by Eq. (3.27) is a well-defined quantity since it does
not depend on the precise choice of the dividing surface (the barrier region),
in contrast with the TST constant Eq. (2.8)) (for the discussion, cf. [16]).

4. Biophysical applications
4.1. Dichotomic ion channel kinetics

Many biological functions — such as nerve impulses, muscle contrac-
tions, vision — have their basis in a sudden change in cell membrane per-
meability. Specific membrane proteins act as gates or agents of active trans-
port, regulating the flow of molecules and ions between the cell and envi-
ronment. Members of one class of membrane proteins, the ion channels,
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open in response to electrical, chemical or mechanical stimuli to allow the
spontaneous flow of ions down a concentration or potential gradient across
the cell membrane.

Thermal fluctuations provide energy to cause the proteins to sponta-
neously alternate between closed conformations that block the flow of ions
through the channel and open conformations that permit such a flow [68].
Studies of random fluctuations of the channel current were aimed at un-
derstanding the gating mechanism, that is, the changes in conformations
that open and close the channel and the processes that affect those changes.
Phenomenological models meant to characterize the statistical properties
of the experimental data include mostly concepts based on the theory of
Markov processes [69, 70, 71], although there is a growing interest in ap-
plying methods stemming from the theory of deterministic chaos [72, 73,
54].

As a direct application of the formalism presented in Sections 3.1 and
3.2, let us briefly discuss the model of ionic transport through a gramicidin
channel [68, 74, 75]. The model is not a direct exemplification of an ET
in biological medium; ion transfer can be safely described as a classical
diffusion process with a macroscopic flux of charge-carriers passing through
the pore. The expressions derived in this Section can be, however, used in
a broader sense applied to estimate the adiabatic factors determining the
ET rate in stochastic media.

The gramicidin channel is well-suited for theoretical study because of
its structural and functional simplicity. Because it exhibits functional be-
haviour similar to more complex biological channels, while being relatively
small and structurally well characterized, the gramicidin channel serves as
the model of choice for studies of the mechanisms of ionic permeation across
lipid membranes [68].

Free energy profile V(X)) of the gramicidin channel is known [75] to be
dominated by relatively long-range, slowly varying electrostatic forces. The
energy of a single ion passing through the channel in units of kT is

V(z) = Vo(z) + Tui(2), (4.1)

and represents the sum of single ion energy in the absence of applied voltage
(74, 76]

Vi(z)=53-2L1(z- 3) =6-B(z- 1), (4.2)
and an applied potential gradient at a position* z:
Pei(z) = A(1 — z). (4.3)

14 Position of an ion z is expressed as a ratio of the distance X from the channel
end to channel length L.
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In the model, A is assumed to be dichotomously changing switching of the
applied potential:

Ae{+4,-A4}
M
+AC —A. (4.4)
A2

Steady states of the potential (4.1) are:
A
28°

and we assume A/ > 1. Regions described previously as R and P (reac-
tants and products) can be now associated with the positions of the ion to
the left of z = 0 and to the right of # = 1, respectively. The intermediate
barrier region is located in the neighbourhood of z = 1/2. The process of
an active transport through the channel takes place in the interval z € [0, 1]
so that it is included within [z,,,2,,] limited by natural boundaries that
the stochastic process z(t) cannot exceed. The evolution of the dynamical
variable z(t) is governed by an Eq. (3.5) or its probabilistic analogue (3.9).
The stationary probability that the external environment of the ion is in a
state A(—A) is A2/(A2 + A1), (A1/(A1 + A2)). These values have meanings
similar to channel gating [68] probabilities. In fact, for A = —A the ion
is likely not to pass the channel (the channel is “close”) and similarly, for
A = +A, the channel is open for the ion transport. The probability P(z, a)
of an ion to be absorbed i n the product region (which is now the interior
of the channel of length L) at some time between 0 and oo knowing that
the process started at time ¢ = 0 at point z with the external environment
in configuration « fulfills the system of Egs. (3.27):

1
331’32 = 5 :|: (4-5)

8P(23,1) _ Al z _ 13
(923 _Fl(il))[P( ’1) P( ’2)]7
aP(GE,2) _ Az z _ z
5o = Ty F(®:2) - Pl 1) (4.6)

with the boundary conditions

P(ay =0,2)=0,
P(az =1,1)=1. (4.7)

To solve Eq. (4.6) we first introduce

¥(z) = P(z,2) - P(z,1). (4.8)



Electron Transfer Processes in Disordered Media 1471
From Eq. (4.6) we have then

¥(z) = —P(a1,1) exp(t2(z]as) — t1(a1|z)), (4.9)
where to(z|y) is defined as

z /\a
t = d =1,2, 4.10
a(zly) / Fa(Z) z, a ( )
¥
and we have used
¥(a1) = —P(a;z,1). (4.11)
From the first equation of the set (4.6) we get
al A
Pal:Pa,1+/ ! _@(z)dz. 4.12
(1) = Plan 1) + [ 59 (812)
T
By setting £ = a, in this equation, we arrive at
asz A -1
P(a;,1)= |1+ / ! exp(t2(z]a1) — t1(a1z))dz , (4.13)
Fy(z)
ay

which yields

v—-1 I

_A+h
26

1
g s [ afer AF

(A+B)(A-B)” 28

P(al :0, 1): [1-{-
0
(4.14)
with g = A2/28 and v = A; /28, p,v > 0. We now estimate the integral in
(4.14) for three characteristic cases (cf. Fig. 4.1):
(a) A2 = 26, M = B,p1 = Az2/(A1 + A2) = 2/3,p2 = A1/ (A1 + A2) = 1/3
(the channel is “open” for the passing ion)
(b) Az = B,A1 =28,p1 = 1/3,p2 = 2/3 (the channel is “close”)
(¢} A1 = Az = B;p1 = p2 = 1/2 (the channel is equally likely to be “open”
or “close”for passing ions).
For case (a), Eq. (4.14) takes the form:

1
(A+B8)(A-pB)/

-1
- %(A +8)*/% + %(A - ﬂ)3/2” : (4.15)

P(al,l):[l-\\- [2A(A+ﬂ)l/2_2A(A_ﬂ)1/2
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In case (b) one gets

2
(A+8)7(a-p)

Plar1) = |1+ armpi-a-pp| 7 (a16)

For the symmetric case (¢) P(a1,1) is

(4+p)'/2
(A-p)7

(4-p)217"
arctan (A +,3)1/2H .

(4.17)

P(ag,1) = [1+ [arcta.n

(A2 - g2)1/2

P(ay .1
1.00 a

080

060

0.003-

T ——r—r—
100 ina

Fig. 4.1. Probability of an ion to be absorbed in the interior of the channel given the
external environment has been prepared in a state “1” (+4). (a)A1 = 8, A2 = 25;

(b)A1 =28, A2 =8 (c)A = A2 = B

Patch-clamp recordings from a single ionic channel have proved to be
an effective way of extracting information about the conformational states
of gating macromolecules. In the studies of some gap junctions [77, 78, 79],
patches containing only one channel constitute a minority of recordings.
Anatomical studies, mostly freeze fracture, have revealed that individual
gap junction channels tend to aggregate in groups, that could explain co-
operative behavior observed in their patches. A molecular interpretation
of the observed cooperativity can be understood in terms of mechanical in-
teractions between the neighboring channel proteins. We have derived a
model {77] which describes the cooperative gating of channels using only
the current amplitude histograms for the probability of observing various
conductance levels. The process of channel gating is then described in terms
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of an aggregated Markov process, t.e., a finite Markov process in continuous
time, the states of which are grouped into several aggregates. The compos-
ite effect of correlated recordings from various conductance levels can be
then easily analyzed in terms of aggregation of proteic monomeric subunits
forming conducting n — mers.

4.2 Similarities between glasses and proteins.
Kinetics in “rough” potentials

Proteins are complex systems owing to their structure and the many
competing interactions among their constituent atoms. The primary struc-
ture of a protein consists of a linear chain of amino-acids linked by covalent
peptide bonds. The chain folds into secondary structure elements, the most
important of which are o helices and (-pleated sheets. The helices and
sheets fold into a compact three-dimensional tertiary structure which deter-
mines the biological activity of the protein molecule. Unlike the situation
in crystalline solids, the absence of obvious spatial symmetries in a protein
molecule does not force the molecule into a unique structure. The compara-
tively weak forces that stabilize the protein allow for considerable structural
variability [1, 80]. Led by this observation, Klotz and Weber [81] suggested
that a protein with a given primary sequence exists in many conformational
states that are dynamic in nature. Functional relevance of the manifold of
protein conformational states has been established experimentally in flash
photolysis studies of e.g., small ligand binding to myoglobin by Frauenfelder
et al. [82, 6]. The existence of states and substates implies two types of
motion in proteins — equilibrium fluctuations and functionally important
motions which are nonequilibrium processes driving the system from one
functional state to the another.

Interpretations of the flash photolysis experiments on proteins led some
authors [82, 83] to the conclusion that substates and fluctuations in proteins
posses a hierarchical character which results in a nonexponential relaxation.
It has been well recognized that the relaxation time follows an unusual
law (the Vogel-Fulcher Law, [84, 54, 73]) and can be correlated with some
characteristic (not necessarily Gaussian) distribution in kinetic parameters.
Similar conclusion can be drawn from the theoretical models of photosyn-
thetic chromophores [85, 86, 13, 17]. The molecular dynamics calculations
performed on photosynthetic conformers and their natural models [87, 88,
19] suggest that they possess high structural flexibility with relatively low
steric energy differences between various conformational forms.

A particular aspect of biopolymers is also the usual presence of the
hydration shell, a monolayer or two of bound water molecules on the sur-
face of the protein. In heme proteins, the hydration shell displays a broad
liquid-glass like transition [1, 80, 2], which in turn can be characterized by
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general features displayed by this class of transitions studied in amorphous
materials. The most significant points are the divergence of the transport
or inverse transport properties (such as viscosity, inverse diffusion constant
and relaxation times) and the extremely broad relaxation phenomena of the
stress and modulus.

This experimental and theoretical picture led us to explore further the
combined effect of both steric and electronic factors resulting from confor-
mational variability of chromophores on the kinetic rate of ET processes in
proteins {19, 13]. On the basis of a simple model presented below, we infer
the possibility of longer effective relaxation times in a spatially disordered
medium, which can eventually lead to the breakdown of the nonadiabatic
limit and question a direct applicability of a conventional kinetic rate ap-
proach.

The general nonadiabatic system used for description of a fast long-
range ET consists of a two-level system coupled to a reaction coordinate
(¢f. Section 2). Time—evolution of the reactants’ population can be viewed
in terms of time-dependent properties of the diagonal elements of the density
matrix p relevant for that problem. By adopting the coarse-grained kinetics
for the diagonal elements of p introduced by Zusman {33, 34], the evolution
equations for the system become

atpR(za t) = _HRP(‘C’ t)5(:c - zc?‘) + LRPR(:C’ t) ’ (4'18)

0ipp(z,t) = Hrp(z,t)8(z — zcr) + Lppp(2,1), (4.19)
27rHi2f

Hpp = ——[pr(z,1) - pp(z.t)], (4.20)

z(t) = AErp(t) - (AERp(t)) = 6ERp(t), (4.21)

where pgr(z,t) stands for the probability distribution function for the reac-
tion coordinate z value !® at time ¢ to belong to the “reactants” or “prod-
ucts” wells, respectively, Hrp represents the electronic coupling between
the two diabatic surfaces and Lp p is a Liouvillean operator for the classi-
cal diffusive motion within the harmonic well. If the dynamic properties of

15 In the original Zusman’s approach [33], the reaction coordinate is defined
as time-dependent energy gap between the levels of a two-state system, cf.
Eq. (4.21). That yields p as an explicit function of energy. Conversion to any
generally chosen “reaction coordinate” y would require scaling of p according to
p(z,t)dz = p(y, t)dy, which yields Hrp = 2nH%(hayo) ™' x[pr(y,t)—pp (v, 1)),
where the spring constant a relates solvent polarization mass to the curvature
of the well a = mpw? = 2E,/y?, yo being the minimum of the reactants’
parabola.
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the medium described by L p can be approximated by the overdamped!®
Debye solvent, Ly p takes the form of the Smoluchowski operator

1[0 o2
LR = TL 1 (5—53 + <$2>eq5;c—2> ,
(0 d?
Lp = TL 1 (a—m(QB - 2E7-) + <Z2>eqa*:c2-) ) (4.22)

where E. represents the reorganization energy of the solvent and 7, stands
for a characteristic longitudinal relaxation time of the medium, related to
the friction coefficient 7 by the formula Eq. (2.15).

For a non-Debye solvent, Liouvillean will be explicitly time-dependent
but with the assumption of the overdamped motion within the well, solvent
relaxation can be characterized in terms of a finite number of exponentials,
so that one can choose an equivalent “effective”, time independent Liou-
villean to describe rate-limiting diffusive dynamics of the solvent [35, 22,
52]. Egs. (4.21) can be solved by use of the Laplace-transform technique
with a suitably chosen initial conditions (the usual assumption is that at
time ¢ = 0, the system resides in either one of two diabatic states with the
equilibrium distribution peq). The time evolution of variations

6pr(t) = pR(t) — peq (4.23)
is given by
1
%@R(t) - / drhyan(T)8pa(t - 7), (4.24)
0

and in the overdamped limit, after assuming the Debye representation of
the solvent, leads to the Kramers expression (c¢f. Eq. (2.12)) for the rate

kren

.y 1/2 .
kron = kap = 17 (—Kg’—)) e PV (4.25)

The above formula is within 10% exact for sufficiently high barriers (i.e.
BV(z*) > 5, where 8V (z*) stands for the parabolic potential value at
the top of the barrier. For lower barriers, k.., has to be corrected by a

16 Assumption of the overdamped dynamics is essential for the purpose of using
the particular form of the kinetic rate (effective Kramers limit). The general
variational state theory [89] which is also a suitable theory in the case of
cusplike potentials, predicts deviations from the rate {Eq. (2.8)) beyond the
strong-damping limit.
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multiplying factor ¥(2) = (1 + erf(z))[z:e"”2 f d:ce“’z(l + erf(x))?] 7,z =
BV (z*)).

The point we want to make now is that given the local fluctuation in
steric effects of the potential can be represented in the form of Gaussian-
distributed “ripples” imposed on the otherwise smooth, averaged potential
surface, the effective relaxation time for the medium becomes exponentially
enhanced. Let us start our description by use of the thermodynamic concept
of the amorphous state. An amorphous state is a random but frozen state.
Suppose that the total energy for the system is

H =Hy+ H,, (4.26)
where Hy stands for the background “solvent” energy with the random
structure of “impurities”. Interactions between the “background” and the
impurities and among the impurities themselves yield an extra term in the
energy Eq. (4.26) of the system. The total thermodynamic potential (free
energy function) for the system can be calculated by use of the partition
function:

e BV = Z e~ B(Ho(z)+Hi(z))
= ¢ BVo—BE(2) (4.27)
where z stands for some collective coordinate in the system. From Eq. (4.27)

one gets
3 e~ B(Ho(z)+Hy(z))
z

T o R G e N C
e T

so that eventually the free energy function can be expressed as

V =V~ kgTln(e PH1(®) (4.29)
A similar analysis can be repeated in the case of the diffusive well dynamics
described by the Liouvillean operator in Eq. (4.21). In this coarse-grained
approach, our knowledge of particular types of hamiltonians governing the

evolution of “solvent” and “imperfections” dynamics is limited; we are as-
suming that the free energy potential can be described as a sum

V(z) = Vo(e) + f(z), (4.30)
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where f(z) stands for random, local variations of the potential Vp(z)!7. To
calculate the population within the well we need to estimate the integral

/dz‘e"ﬁv("’) 2 /dz:e_ﬁv"(”)(e_ﬁf(”)), (4.31)

which evaluated over small “distances” dz provides smoothing of V(z).
Eq. (4.31) suggests description of the diffusive dynamics in terms of the
effective potential

Vst = Vo — kpTIn{e Pf(2)y, (4.32)

From the general form of the Smoluchowski operator Eq. (4.22) we can
infer that an effective diffusion coefficient changes to the value (the result
is straightforward if the amplitude of fluctuations f(z) does not depend on
the coordinate z, for the discussion of more general cases, see [84])

D.g = (<eﬂf(z)>_;_<~ﬁf(z)>)

D = (Bmpwiry)?, (4.33)

which together with the expression Eq. (4.32) define a classical Liouvillean
averaged over random contributions to the potential, f(z)

Legg =D i 0 4.34
eff = Desr 8?+8_:cnff . (4.34)
The formal expression for the diffusive rate constant within the harmonic
well with randomly distributed “roughness” follows derivation based on the
mean first passage time approach [90, 65], with a reflecting boundary con-

dition at ¢ = —oo0 and an absorbing boundary at the top of the barrier,
.
z==z . v
(k(’i‘l}f) = /dyeﬂveff(y)De_ff1 / dzeBVerr(2) (4.35)
z* -0

By assuming that the fluctuations f(z) superimposed over the mean po-
tential Vy(z) are Gaussian distributed with a zero mean and dispersion o2
direct evaluation of Eqgs. (4.32), (4.33), (4.35) with the relaxation rate in
the mean potential well predicted by Eq. (4.25) yields

2 2
eBe

(kaif) = PRAL (4.36)

17 The dominant contribution in Eq. (4.30) comes from V(z), the amplitude of
the perturbation term, f(z) is a measure of the roughness of the potential.
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so that duration of the process becomes exponentially enhanced. Note, that
the result can be interpreted as the effective enhancement of the longitudinal
relaxation time of the medium which can be now expressed as
2_2 2 /2
= e = rrefo/T" (4.37)
where we have identified {f?) = k3TZ. Such forms of the relaxation times
have been discussed in temperature-dependent dynamics of spin-glasses
(2, 1, 54]. For a Poisson distribution of f(z), same analysis leads to

eff TL TL
= = 4, 8
TL 1_ﬂ2(f>2 1_T02/T2’ ( 3 )

predicting a “phase change” at a specific temperature at which Tfff di-
verges. The result differs from the evaluation of the average escape time
in a system of random energy barriers, as reported by Vilgis [55], where no
underlying structure of the smooth free energy (a potential well) was used
in presentation of the model. A direct observation which follows from the
derivation of formula (4.35) is that the distribution of first passage times
is no longer exponential (cf. [565, 84, 7, 54]). The moments of first passage
time in the system described by a Liouville equation with a Smoluchowski
operator (4.22) can be calculated from the general formulae [64, 90, 47] after
substituting potential and diffusion terms with the effective potential (4.32)
and the effective diffusion coefficient (4.33), respectively:

z Yy
M; = 2j / dyePVer() p—1 / dze PVer(IM;_1(2),  (4.39)
- —00

My = (), (4.40)

and due to the dispersion caused by the randomness of f(z) do not follow
the law of the exponential distribution

5!
M; # == (4.41)
My

In this context, diffusive decay of the population within the harmonic well
with a superimposed random roughness would result in nonexponential dy-
namics. From Egs. (4.37), (4.38) it becomes apparent that at high temper-
atures compared to the intensity of fluctuations o, diffusion within the free-
energy well is essentially unaffected by the existence of randomly distributed
barriers. At lower temperatures, effective relaxation time will strongly de-
pend on the form of distribution of f(z).
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This picture is essentially consistent with the model of a statistical
distribution of thermodynamic driving forces in mutated protein ET systems
(85, 86]. In fact, by assuming that the “reactants” and “products” free
energy potentials are slightly modified by random distribution of “ripples”
(reflecting existence of conformational substates in the proteic medium)
around their parabolic envelope and do not change their curvature due to
ET process, one gets (cf. Egs. (4.30), (4.32) and Fig. 2.1):

22
Vg = e + o1 f1(z),

Y
Vp = a(i2—)— + o2 f2(z) — AV,
b2 = 25’", (4.42)

where the “effective” free energy gap between the reactants and products
state (defined as the energy difference between the bottoms of the parabolas)
becomes a random variable. A

If the free energy gap Vg — Vp = AV can be described by a Gaussian
distribution around the mean value AV, the time evolution of the donor
population becomes

+ o0
Np(t) = Np(0) / e—tkNA(Af/)(zra_z)——l/28——(A‘7—AV)2/2&2d(A‘})‘

—c0
(4.43)
The inverse of the average lifetime of the donor state can be then calculated
from the above formula leading to a simple expression for the ET ratel®

-1

k=|[ Npt)dt| . (4.44)
/

The result is different from the “average kinetic rate” evaluated as

+ oo
(k) = / kv A(AV)(275%) /26~ (AV -V /28" g ATy (4.45)

— o

with kn 4 given by Eq. (2.8).

'8 This step requires that a particular form of ky, is known, e.g., the high
temperature TST approximation, Eq. (2.8).
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Our analysis shows that when applied to the theory of ET in proteic
media, this feature would be responsible for an effective enhancement of
a longitudinal relaxation time of the medium, which in turn may affect
nonadiabatic character!® of the process (cf. Egs. (2.16), (2.17)). On the
other hand, the breakdown of the nonadiabatic limit in the presence of a
relatively long relaxation time of the medium, rises the question of a direct
applicability of a conventional kinetic rate approach 29,

4.3. Conformational changes of reagents. Concept of fluctuating barriers

Kinetics in ET processes is controlled in part by the behaviour of the
near-neighbour electronic couplings which are functions of nuclear coordi-
nates and depend exponentially on the distance between the adjacent chro-
mophores. If the timescale for intermolecular motions is similar to that of
the ET transfer time, the electron transfer occurs as a process involving
dynamical disorder.

From the point of view of a physical description of the system, the
process can be pictured as a “gated” barrier crossing where the height of
barrier is fluctuating randomly in time [59, 91, 92, 93]. The process of that
type is known to control the flow of small ligand molecules (O2, CO) into
large biomolecules such as myoglobin [1] and has applications to interstitial
diffusion in solids [94]. Dynamical disorder is also responsible for a decay of
the photoexcited state in the special pair of natural photosynthetic reaction
centers {13, 87, 83] (cf. Section 4.4, 4.5).

In modelling non-exponential decay of illuminated donor complex of
(BChl); in reaction centers of purple bacteria Rhodopseudomonas viridis
(see section 4.5 and [19]), we have assumed that the relaxation process
occurs in a fluctuating medium, with a competitive process of isomeriza-
tion (“dynamic disorder”) in which the complex undergoes conformational
variations on the time scale of the decay. Spontaneous isomerization of chro-
mophores causing the transition from one configurational state to another
one and back has been suggested based on visible variations of the electro-

19 The criterion of adiabaticity Eq. (2.17) requires that the energy uncertainty of
the system in the mixing region (close to a transition point) is small compared
to the splitting of energy levels within the region. For a diffusive motion along
the reaction coordinate, the adiabaticity parameter can be estimated from the
residence time in the transition region.

20 A typical assignment for use of the rate theory is the assumption of excita-

tions and relaxations of nuclear medium modes following the faster time-scale
than the electronic ET transfer. This situation calls for a perfect time-scale
separation in the system, the limit which does not need to be achieved in a
slowly relaxing media.
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static energy of chromophores studied in molecular dynamics models of the
complex. The time T; the donor exists in a given configuration ¢ before
flipping to the another one has been assumed to follow an exponential law:

Prob(T; >t) =e ™t XA >0, i=1,2...N. (4.46)

At the macroscopic level, time variations of the population of the excited
donor state R* = (BChl), are governed by phenomenological kinetic equa-
fions:

% = —kprznz — L2, L ={4;}, i=1,2,...N, (4.47)
where I; describes the process of stochastic changes among various confor-
mations and z(t) stands for the population of the primary donor. Since
the pair process {z(t),I;} is Markovian, it is possible to derive an evolu-
tion equation for the probability density p(z,I:,t). Average over I; yields
equation for p(z,t) alone but results also in an explicit memory kernel in
the evolution equation for that quantity. A particularly simple form of
the evolution equation (3.9) is derived if the conformational changes can
be parametrized by two states with a symmetric stationary probability of
occupation of a given state:

1
Oip(2,t)=0zkrenzp(z, t)WzAzx/exp{—['y ~Ozkrznz)(t—t')}0,zp(z,t')dt,

B (4.48)
where
A1 = —|Az| = A4, (It) = 0, (IL11r) = A%e™7, (4.49)
and
A] = /\2 = ‘)’/2 . (4.50)

The moments of the normalized population X (¢) = z(t)/2(0) can be calcu-
lated by use of the characteristic function for the process I; [90, 47] leading
to the formula:

(X™(t)) = e~ ™hrante™7t/2 [cosh(Iyt) + 2% sinh(Lnt)]
In=1(7% +4n24%)1/2 ) (4.51)

where positivity of the rate requires A < k,zn. Decay of X(t) is no longer
governed by a single exponential (¢f. Figs. 4.2, 4.3), which would be a lim-
iting case if the effect of the fluctuating medium could be ignored.
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Fig. 4.2. Survival of the average normalized population (X (t)) (see the text) as a
function of A: (a) A = v = 0,kyzn = 0.3Tps™!; (b) A = 0.1; (c) 4 = 0.2; (d)
A = 0.3. Curves (b)-(d) are parametrized by k = 0.37ps™! and v = 0.05.
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Fig. 4.3. Survival of the average normalized population (X(t)) (see the text) as
a function of v: (a) A = v = 0,k;zn = 0.37ps™%; (b) ¥ = 2.0; (¢c) v = 0.5; (d)
v = 0.1. Curves (b)~(d) are parametrized by k = 0.37ps~! and A = 0.3.

An effective relaxation rate for the decay of R* can be defined in terms
of the linear relaxation time for a nonlinear process (X (t)) :

ko = it = —(x () X2 (4.52)
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which, together with (4.51) yields:

kg = koo 4 ¥ v cosh(I't) + 2I' sinh(I't)
eff = Fren T 5 = L S Sinh(I't) + 2T cosh(I't)

r=rn. (4.53)

In the limit of short times, t — 0, k.g tends to a “deterministic” value,
ke = krzn, whereas for t — oo

keﬁ':krzn‘f‘%“r

1
= krgn + % =57+ 48N Ckpan. (4.54)

So that the stochastic dynamics underlying decay of the photoexcited state
R* decreases the relaxation compared with a single exponential determinis-
tic rate kpzy. The difference becomes small for larger values of «y. For large
values of v, Eq. (4.51) yields:

i 2
(X (t)) ~ e Frant (1 + %i) , (4.55)

with time-dependent dispersion
2tA? _
ok (t) = (X3(t)) — (X (1)) = — Zkrant (4.56)

From the normalized decay curve of (X (t)) one can calculate an average
relaxation time

)= [axen = o (#.57)
0

which can be used to estimate an effective quantum yield ¢

= 7 (4.58)

()™t + e

where 7Tp,. stands for the inverse rate of the non-photochemical process
which competes with the ET. Fig. 4.4 displays ¢ as a function of intercon-
version frequency 7 for different values of the noise intensity A. Within the
range of chosen parameters ¥ and A (i.e. those, which ensure the positivity
of the overall relaxation rate of the process), quantum yield decays with the



1484 Ewa Gubpowska-Nowak

higher values of noise intensities and remains close to unity for increasing
values of 4. As it stands, the model can be easily translated to a model of
a fluctuating barrier [59, 91, 95] by rewriting Eq. (4.47) in the form

d .
o = ~(kran + L)z = e PAY (g = oA BE(),
= —ke~“(cosh B — £(t) sinh B)z, (4.59)

where £(t) stands for a symmetric dichotomous noise. In the limit ¥ — oo,
A — 00, A% /4 = const., the dichotomous process tends to a Gaussian white
noise producing effective Gaussian statistics of the fluctuating barriers (cf.
Section 4.1).
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Fig. 4.4. Quantum yield for the process as estimated from Eq. (4.58). For all
curves k,z» = 0.37ps™1: (a) 4 = 0.01; (b) A = 0.05; (c) A = 0.1; (d) A = 0.2
(e) A=0.3.

4.4. Diffusive ET tunneling in proteins

Electron transfer (ET) occurs over relatively long distances in a variety
of systems. Experimental measurements of electron transfer rates in biolog-
ical and non-biological materials suggest that as the distance between the
donor and acceptor increases, the interaction matrix element becomes de-
pendent on the nature of the intervening medium [96, 25, 26, 9, 27]. Several
methods have been proposed [10, 26, 9, 97, 98] to correlate the electronic
structure of the transfer-mediating material (molecular “bridges” linking
the donor and acceptor or “spacers” distributed within the donor-acceptor
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distance) with the intensity of the effective transfer coupling H;s control-
ling interaction between the chromophores. The usual prediction based on
experimental evidence is that H;s decays exponentially with the number
of spacer units. Conventional ET theory assumes that the electronic cou-
pling depends only on the donor-acceptor distance but not on the nuclear
coordinates. As a result, the coupling term in the “golden rule” expression
for the rate can be separated from the Franck-Condon factor (FC) which
contains only thermally weighted overlap integrals of nuclear coordinates
(¢f. Eq. (2.5)). The Condon approximation is valid for intramolecular ET
in systems with a rigid spacer, but it becomes questionable for intermolec-
ular ET in soft, flexible media [21, 99, 100]. Because the coupling term is
believed to fall off rapidly with distance, McConnell [101] proposed a su-
perexchange model which describes the medium as a source of virtual states
for the long-range electronic coupling. For media characterized by a natural
accessibility of various configurations (which is the case of ET in proteins),
the electronic coupling can fluctuate in time along with the mobile spacer
or the solvent.

For electron carriers bond to a protein, long range interactions may be
viewed as occurring by a superexchange mechanism through the states in
which amino-acid side chains are “oxidized” or “reduced”. The distance
dependence of bond mediated interactions is determined primarily by the
atom types and bond lengths in the transfer mediating bridge [30, 100, 9]
which can be composed of aromatic side groups, peptide chains, porphyrin
groups or just open gaps. The main strategy in understanding the transfer
process is then to search for a dominant set of bonded and nonbonded
interactions within the thousands of protein orbitals. In some cases (cf.
[25, 99]), it is possible to dissect the interactions into “pathways”, smaller
subsets of protein orbitals or effective orbitals.

The ET tunneling matrix element is proportional to the amplitude of
the donor localized wave function which propagates to the acceptor site.
Therefore, the product of the factors by which the wave function falls off
for each block in a pathway is also proportional to H; and prefactors asso-
ciated with details of the structure of the donor and acceptor determine its
numerical value. For example, a reasonable approximation for estimating
wave function decay along the peptide backbone of a protein is [1, 9, 27] to
calculate the product of decays for individual CC, CN and OH bonds.

Essentially, H;; can be viewed then as the sum of contributions from
all possible pathways linking the donor and acceptor. Superposition of the
pathways can effectively have both constructive and destructive interference.
Beratan, Onuchic and Hopfield [10] have suggested a model of long-range
ET in proteins which focuses on chains of chemical bonds that form routes
between the chromophores. The coupling mechanism is formulated in terms
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of states in which one electron is added to or removed from one of the
intervening bonds. The authors derived expressions for the spreading of
an electron onto and off neighboring bonds, and for the attenuation of the
wave function at each succeeding bond in the pathway. Coupling along a
single pathway composed of N covalent bonds and Ng noncovalent links
has been assumed [9] to have the form of:

H}; = ﬁ’ﬂf Hs () H Enc(] (4.60)

Where 3 ’s stand for the exchange parameters, E is the energy measured
with respect to the first orbital (bond) that the donor interacts with, and ¢
describes the decay of a donor wave function along one of the N, covalent
bonds (e.) or one of the Ng noncovalent links (enc).

Fluctuations of the distance between the orbitals of the bridge which
assist ET have been pointed out elsewhere [97, 87, 14] as a possible origin
of a new temperature dependence of the rate. A temperature dependent
electronic factor reflecting temperature-induced conformational changes has
been invoked to explain the significant deviation that is sometimes observed
between the calculated and measured rate temperature dependence of acti-
vationless processes.

The distance dependence of bond mediated interactions is determined
primarily by the atom types and bond lengths in the bridge (cf. also Sec-
tion 4.5). If the appropriate weighted average of the donor and acceptor
orbital energies (determined by Franck—Condon approximation) is consider-
ably closer to the highest occupied bonding orbital energy than the lowest
unoccupied antibonding orbital energy of an isolated bridge, the charge-
transfer process is dominated by a “hole transport”. If the energy is closer
to the lowest antibonding states of the linker, the dominant part of the
process is the electron transport. Depending on whether the electron or
hole tunnelling limit is valid, one expects a different relation between the
decay of the donor-acceptor interaction with distance in a forward photoini-
tiated electron transfer compared to the reverse charge recombination. For
large donor-acceptor distances and in the case of linear bridge comprised
of identical repeating units, H;; decays approximately exponentially with
distance and depends strongly on the topology and energetics of the linker
[14, 10, 99]. The situation becomes especially complex in proteic media
which are known to possess many conformational states. Such conforma-
tional changes may precede or follow the actual electron transfer and can
lead to directional electron transfer in biological systems. Also, the distance
fluctuations within the bonded and nonbonded links in the donor-acceptor
space can affect the rate and its temperature dependence. In our formula-
tion of the problem [14], we recall the H;; coupling element Eq. (4.60) as
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derived in the phenomenological analysis of Beratan et al. [10] based on
a Born-Oppenheimer separation for nuclear modes. The ET rate can be
written as

kv = ZBIZl (| H™ @) 6(E; - EF),  (461)

where By stands for the statistical weight of initial states, Ey and Ep rep-
resent energies of initial and final states, respectively and we have assumed
that the relaxation times of all nuclear modes coupled to the problem are
fast. The initial and final states involved in the ET event are:

@1 = ¥p(z,yr, yP)xF (YR)X, (vP)Br(YN) » (4.62)
O = ¥p(z,yR,yP)X5 (YR — YR)X0 (yP — yB)Bp(yn),  (4.63)

where z is electronic coordinate, y’s are nuclear coordinates with y,y stand-
ing for the ”bridge” (linker) mode. x's are used for local vibrational wave
functions and &'s are used for bridge mode vibrational states. The vibra-
tions of the bridge are included in the rate calculations through the inter-
action Hamiltonian which couples electronic states ¥p, ¥g of reactants and
products. In the Fock representation, it takes the form:

Hint — ZBOE—QI‘/N(@;}QN_;.] + a“}I\}+laN) 5 (4.64)
N

where 3° is the exchange interaction energy of the orbitals N and N + 1 at
separation y%;. The bridge fluctuations enter the formula for the rate by a
matrix element

(Br(yw)| exp(—ayn)|®w(yn)) » (4.65)

which modulates the overall donor-acceptor interactions. When only one
local mode and one bridge mode are considered, the rate Eq. (4.61) yields:

kNA— 2ZB(k T) B(i, T){kle *¥|k)|(i|¢')|*6((i - i')R2-AE),
1,1

(4.66)

where i labels the local mode x, k the bridge mode & and H? if stands for

the matrix element (¥y|H™|¥g). The bridge contribution to this rate can
be easily calculated in the harmonic approximation of the bridge potential:

hw

h
- = 2 t . 4.67
(exp(—2ayn)) = exp (a — coth 2k3T) (4.67)
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Derivation of expectation value Eq. (4.67) follows standard analysis of a
quantum oscillator in thermodynamic equilibrium. Average Eq. (4.67) is
taken with the density operator for a harmonic approximation of the bridge
modes y;y. The high temperature limit of this result is isomorphic with the
derivation for a Brownian-motion model of time variations in the bridge
coordinate [14]. It has been argued [99, 9] that fluctuations of the in-
teratomic distances in covalently bridged donor-acceptor systems are in-
significant and are not expected to have a strong effect on the transfer
rate. In the extreme cases of high or low temperatures, bridge effects
on the rate can be shown [102] to reduce to one effective oscillator with
the frequency of a single vibration. The latter is quite large for typical
bonds, (highest energy vibrational excitations corresponding to localized
stretching modes of C=0 or C-O bonds are in the range of 1500-2000
cm™1, [87, 27, 10]), leaving the temperature effects irrelevant. For a cova-
lent bond mediated tunneling pathway atomic vibrations are of very small
amplitudes [99] and approximating the bridge as a rigid structure is an
acceptable assumption. On the other hand, fluctuations of space distances
yi(t) between intermediary molecules or residues across nonbonded gaps
from their equilibrium values are expected to be relatively large, which
would suggest a stronger dependence of the tunnelling matrix elements
Eq. (4.60) on fluctuations in separation of interacting nonbonded groups.

Generalization of Eq. (4.60) for these cases would include an explicit average
of the Eq. (4.65)%2

NS '
27
kna= B [](exp(-203:))(FC). (4.68)
=1
Time dependent variations in y;(t) can be described as a stochastic process.
If the dynamic fluctuations in y;(¢) have much shorter relaxation time scale

1 Note that Eq. (4.66) represents a semiclassical approximation and gives the
rate which is an average over the bridge coordinate configurations. Given a
configuration of all slow coordinates frozen at some particular value, one can
calculate the relevant correlation function for all the fast dynamics and derive
expression for the rate at the fixed configuration. The final result should be
averaged over the appropriate Boltzman distribution of configurations. In a
purely quantum nonadiabatic ET process, the times of relevance are propor-
tional to h. This time scale characterizes the time required by a molecule near
the transition state to decide to form a product or to fall back to the reactants
population. Rigorously corrected rate constant for the system can be obtained
as long as the motion along slow coordinates are slower than the “decision”
process (to undergo reaction or to relax within the reactans well) but faster
than the reaction itself. The observed rate is then the rate averaged over these
fiuctuations.
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than 1/k, the average in Eq. (4.68) can be taken over a stationary distri-
bution function of the stochastic process {y;(t)} (provided the process is
stationary and such a distribution exists [64, 47]). As an example, let us
assume that the dynamics of a particular bridge mode y(t) follows a stan-
dard overdamped Brownian motion. The average of the attenuation factor
(cf. Eq. (4.68)) taken with the stationary probability distribution function
pst(y) for that process yields:

(exp(—2ay)) = exp(a®/u) = exp(2a*((6y)?)), (4.69)
where
p= 369", (4.70)
and
((8y)?) = Bmegw? . (4.71)

This result can be compared with the high-temperature limit of Eq. (4.68)
which brings the same expression.

Analytical derivation of Eq. (4.61) with fluctuations imposed on y can
be easily extended to a non-Gaussian diffusion governing the evolution of
{y(¢)}. Let us consider a model in which spatial fluctuations in the dis-
tance y are the sum of independent contributions of variations in cartesian
coordinates {z1,z2,z3}. The latter specify positions of intervening spacers
mediating the transport through the protein. We assume that y has some
“privileged” value which is equivalent to the position of a global minimum
of a potential function in this coordinate (note that in a final definition of
the {y(t)} process, we impose a restoring force which “pushes” y towards its
stationary average). Such a model illustrates breathing modes of globular
proteins which tend to preserve their functional shape. Spatial variations
in either of the directions z1, 23, 23 are further assumed to be described by
independent?? Brownian motions, each characterized by a standard devia-
tion 0% and some constant displacement per unit time, f. The process can
be viewed as a (continuous in time and in space) limit of superposition of
“random walks”, (see [64]) in each cartesian coordinate, separately.

By repeated use of the Ito transformation formula (c¢f. Appendix A), one
can show that the process y(t) is a stochastic diffusion with the “position
dependent” infinitesimal displacement and variance given by:

2

O%.
P(y) = y‘ -ry, (4.72)
oH(y) = o2, = 0%, (4.73)

22 Let us note, that in general dynamic properties of different through space
jumps () do not need to be statistically independent. In such a case, noise
correlation effect will strongly influence characteristics of coherence in the
system at hand [103].
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where r stands for the spring coefficient of the restoring force proportional
to the distance from the equilibrium value of y:

Y=/ :c? + a:g + zg (4.74)

and, for simplicity, we have assumed f = 0. The stationary probability
distribution function ps(y) can be calculated directly by use of the FPE
and it reads:
4r8/2 27,2
pst(y) = my exp(—ry*/o*). (4.75)
Evaluation of the average Eq. (4.61) with the distribution function Eq. (4.75)
yields:

(e™29V) = (20‘?2 + 1) e [1 —erf (-‘%)] - % (4.76)

The above analysis can be generalized to cases which incorporate anhar-
monicity in the force field acting on y, as well as to situations where the
coupling between the y-modes and thermal bath is nonlinear, leading to the
position (“distance”)-dependent infinitesimal diffusion coefficient o%(y).

Suppose that the electron donor and acceptor are imbedded inside a
protein. In such a molecule many bonds can rotate, bend or vibrate leading
to large fluctuations in an interchromophore distance. Random variations of
the latter can be described by a stochastic variable obeying e.g. a diffusive
dynamics like the one described above.

The proper temperature dependent distribution of distance between
contacts can be determined from the molecular dynamics calculations [9,
27, 11, 87]. From experiments [102, 96, 52] comes a rough estimation of
a values (1.0 - 1.7 A~1) for typical exponential decay of ET rate in bi-
ological macromolecules (cf. e.g. models of ET from Zn-porphyrin group
in cytochrome c to a ruthenium atom bond to a histidine residue, [25, 99,
100]). By assuming a mean square displacement {(§y)?) to be of order of
1.0 A%, harmonic approximation in distance fluctuations (Egs. (4.69), (4.70),
(4.71)) yields the rate enhancement by a factor of 300 (P = (e™2%¥) ~ 324);
a mean square displacement lower by one order of magnitute produces only
a twofold enhancement of the rate (P ~ 2.4). A radial approximation to
the potential (¢f. formulae (4.72), (4.73), (4.74)) with the same parametriza-
tion for the dynamic effects estimation leads to P = 0.98 for a = 1.7A-1,
((69)?) ~ 1A% and P ~ 0.84 for o = 1.7A1, ((6y)®)*/? ~ 0.154, i.e.
slightly “reduces” the rate.

A possible realization of conformational changes in the intervening me-
dium can be modelled by a bond rotational isomerization [104] which occurs
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when there exists a permissive bond orientation favoring the ET process.
Treating the bonds as identical and independent and allowing them to fluc-
tuate between the “correct” and “incorrect”, we can formulate a hypothet-
ical model in which ET transfer depends on the number of correct bond
orientations interconverting according to the scheme:

7

AZ B, (4.77)
T2

where 71,72 stand for frequencies of interconvertions between a correct (A)
and incorrect {B) orientations within the group of, say, NV bonds. Sampling
a proper bond in the collection of N independent ones follows a binomial
distribution (N, p;) with p; = (1 — 1)/N + v2(N — i)/N, where 7 is a
starting number of correct bonds. The population of A-type bonds (i.e. the
number of ”proper” bonds, X) evolves in time as a Markov chain process
[90] governed by the transition probability P;;:

P;; = Prob[X(t+1) = jIX(t) = i] = (Jj)pf(l —p)Ni. (4.78)

A vast family of similar models have been used in genetic modelling [64],
description of protein folding [1] and analysis of ion-channel gating [104] in
biological membranes.

For sufficiently large N, the proportion of proper bonds (i.e. the ratio
of the number of A-type bonds to the global number of bonds N, X/N)
becomes a continuous function of time (changes in the proportion of proper
versus incorrect bonds are assumed to occur slowly in time). The associated
stochastic process describes then evolution of a concentration ¥ = X/N,
the unit of time in ¥ corresponding to an epoch of N time units in the
original X process. Let us assume that for large N, frequencies 1,72
scale as y3 = 41/N,v2 = 42/N. For N — oo, the associated process
converges to a diffusion process (cf. Appendix A) with a drift coefficient
#(y) = —Y1y+(1—vy)72 and a variance coefficient o%(y) = y(1—y) (note that
at the level of the Smoluchowski equation description, this model leads to
a position-dependent diffusion coefficient). For long times, an asymptotic,
“non-Gaussian” stationary probability distribution function in y-variable
exists and is given by:

= M 282 ~1(1 _ ., \2%1~1
= T@0res)? | LY (4.79)

leading to the estimation of the P factor in terms of the confluent hiperge-
ometric function:

P = (e72%%) = 1 Fy(252,2(51 + 92); —2a) . (4.80)

Dst
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The estimates of 71,7, should come from molecular dynamics studies or
from experiments. In equilibrium conditions, the ratio 3 /v; can be related
to an energy bias favoring a particular “correct” state of the bonds:

BE = —1In 1%, (4.81)
71

The main conclusion which can be drawn from the model is that,

e in a semiclassical approximation of the ET rate, conformational fluctu-
ations can be crucial in understanding attenuation (or enhancement) of
the tunneling matrix element,

o the overall effect on the rate depends on the particular type of dynamics
underlying the fluctuations of the through space distances (or bridge
displacements).

Phenomenology used in this Section can be applied to realistic ET situa-
tions provided sets of dynamic parameters could be obtained from separate
molecular dynamics studies on particular systems of interest. From the
multiple-pathways models developed by Beratan, Onuchic et al. [10] comes
information of inhomogeneous distribution of through bond and through
space electronic coupling in a long-range macromolecular ET. All of the
methods of calculating H;; described by the authors predict that due to
distribution of chemical interactions, the protein is an inhomogeneous bar-
rier to ET. As such, the electronic coupling is found to be sensitive to the
structure of the intervening medium and the distance between the chro-
mophores.

Our analysis focused on the cases where the molecular processes respon-
sible for variations of the through space distances/ bridge displacements can
be approximated by stationary stochastic processes evolving on time scales
shorter than the ET transfer. Their equilibration has been assumed to be
described by a stationary probability distribution function in the parameter
describing the net distance between the chromophores.

As an example of ET process mediated by the proteic medium, let us
briefly discuss the dynamics of the primary charge transfer in photosynthe-
sis (105, 106]. According to molecular dynamics studies performed on the
models of photosynthetic chromophores [11, 107, 88], the amplitude of the
interchromophore distance fluctuations yields rms values of 0.15A or less.
Given these fluctuations are Gaussian in nature, formulae (4.69) yield esti-
mation of electronic coupling enhancement, P = 1.14 which would suggest
about 14% fluctuations in the kinetic rate. In fact, recent observations of re-
laxation in photosynthetic reaction centers bring evidence of nonexponential
decay (cf. [86, 87] and reference therein).

Weakening the assumption of gaussianity (as in the model of a bond
rotational izomerization) could significantly change the above result (the
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conclusion can be infer from the shape of the stationary probability function,
cf. Eq. (4.79)). The bell-like, approximately Gaussian shape of it can be
obtained in the range of frequencies 43 > 1/2,%2 > 1/2. Otherwise, bond
orientation acts as a gating mechanism for the transfer.

Our discussion of the electronic factor is based on semiclassical ap-
proximation which is valid if there is no phase coherence between the en-
ergy levels of the reaction coordinate. Derivation of formulae Egs. (4.65),
(4.68) requires assumption of the Born-Oppenheimer separation of all nu-
clear modes. In a transition between two states, there is a probability that
multiple attempts at the transition will add coherently. Such a situation
would correspond to a molecule passing through the transition state, hav-
ing some amplitude to mix from reactants to products and then waiting for
a complete oscillation of the reaction coordinate back to the transition state
configuration. If the damping in the reaction coordinate is sufficiently low, it
is possible for the molecule to return to the transition state with a “memory”
of the phase of the wave function on the previous pass [108]. The vibrational
coherence effect has recently been observed in the fs time resolved absorp-
tion spectra of photosynthetic reaction centers by Vos et al., [105]. Together
with observations of nonexponential relaxation in photosynthetic reaction
centers, the findings have spurred speculations about the mechanism of the
primary charge transfer in photosynthesis [83]. The underdamped vibra-
tional motions with periods about 2 ps that seem to explain experimental
observations of coherence have been also identified in molecular dynamics
studies of Gehlen et al., [87]. It has been concluded, however, that they
are of little consequence to the ET process, as they are weakly correlated
with fluctuations in vertical energy gap determining kinetics of the transfer.
Rather, in according to the models presented here and in agreement with
findings of Marchi et al. [11}, motions affecting H; s must be responsible for
the nonexponential relaxation. The issue of quantum coherence in ET pro-
cesses could be addressed by exact quantum dynamical calculations based
on spectral densities produced in molecular dynamics (MD) calculations.

Relaxing the assumption of an adiabatic elimination of molecular mo-
tion in the dynamics (i.e. in the net distance between the chromophores)
used in the above analysis would require evaluation of the kinetic rate by
direct incorporation of the fluctuation-correlation time which would go be-
yond a standard golden-rule approximation [37, 108].

4.5. ET in the primary steps of photosynthesis

The conversion of light energy to chemical energy during photosyn-
thesis involves the transfer of electrons between pigments embedded in a
membrane protein. Interest in the chemical physics of photosynthetic re-
action centers (RC) has been spurred by X-ray crystallographic elucidation
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of the structures of two such systems [109]. In the purple bacteria Rps.
viridis, the RC is composed of two symmetrically related branches of pig-
ments (chromophores), L and M, and proteic subunits which provide the
necessary scaffolding to hold the chromophores in place (cf. Fig. 4.5). The
pigment molecules include four bacteriochlorophylls (BChl), two bacterio-
phyophytins (BPh) and two quinnone molecules. Two branches of RC are
joined by a bacteriochlorophyll b dimer, the so called special pair (BChl),.

270
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cytochrome

ﬂ HE periplasm

membrane Q O
BPh
BPh

- cytoplasm
0q P Qp
i
Fe2*
H

Fig. 4.5. Structural arrangement of the chromophores in the reaction center of Rps.
viridis with the L, M, H and cytochrome protein subunits. The BChl and BPh
abbreviations stand for the bacteriochlorophyll b and bacteriopheophytin b, HE for
haeme groups, @4 for menaquinone and Qg for ubiquinone. The electron transfer
half-lifetimes (kg,}) are averaged values from recently published experimental data
(105, 106].

The primary charge separation is the process of the electron transfer
from the photoexcited special pair to the bacteriopheophytin at the L side
of the system. There are many remarkable aspects about the process. The
quantum yield of ET is close to 100% and about 40% of the input photon
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energy is stored in the transmembrane charge separation. Despite a large
center-to-center distance ~ 174, the observed ET rate is at least 10° times
faster than the expected rate over that distance in a vacuum. The primary
ET step, although far from being thermally activated, speeds up as the tem-
perature is lowered from 300 to 10 K. The forward and backward rates differ
by many orders of magnitude. Further, even with the near-C2 symmetry of
the RC, the reaction occurs only along the L branch. These features are the
primary concern of the molecular modeling, theoretical and experimental
efforts aimed at understanding photosynthetic electron and energy transfer.

Structural information alone is not enough for the analysis of the dy-
namic process in a complex system like the RC. In order to apply the theory
of ET rates we need much more information on

¢ electronic couplings that depend on electronic states, intermolecular
distances and intervening medium molecules

e averaged Franck-Condon factors that depend on the medium vibronic
structure and fluctuations

¢ intramolecular vibronic properties

e medium relaxation.

Such information is only partially available. The best way to proceed is to
use all available experimental information for the construction of the models
along with the guidelines of the basic theory.

The photophysical properties of chlorophylls depend on the electronic
configuration of their valence orbitals in the ground and excited states.
Knowledge of these configurations is required for understanding of the ET
dynamics. The wave functions and orbital energies of the various states are
sensitively probed by spectroscopic methods (cf. [85, 86, 110, 17]). In order
to properly analyze optical and high-resolution EPR and ENDOR spectra
and derive information about electronic configurations, reliable quantum
mechanical calculations are indispensable.

The fundamental theoretical approach for the electronic structure would
be parameter-free ab intfzo quantum mechanical calculations of the wave
functions and energies. This type of calculations are not, however, feasi-
ble for large biological systems. As an alternative one has rather to re-
sort to semiempirical molecular orbital methods which rely on an adequate
parametrization of specific interaction integrals defined by a specific Hamil-
tonian and pertinent many-electron functions (see Appendix B).

Recent structural data for porphyrins and their derivatives, the bac-
teriochlorophylls (cf. Fig. 4.6) have demonstrated the skeletal flexibility of
chromophores [111, 19, 83]. Experimental redox and optical results for
puckered porphyrins have also established that such conformational varia-
tions can affect the highest occupied (HOMO) and the lowest unoccupied
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Fig. 4.6. Comparison of a porphyrin (a) a protoheme (b) with a chlorophyll (c) and
a bacteriochlorophyll (d). The r system of each macrocycle composed of conjugated
carbons has been shown as the shaded areas. Molecular z and y axes are defined
by positions of nitrogens of rings II and IV (X-axis) and the nitrogens of rings I
and III (Y-axis).

(LUMO) molecular orbitals of the chromophores and thereby modulate their
light absorption properties.

This concept has been applied by the author [17] to study models of
photosynthetic chromophores with the aim to delineate the factors con-
trolling their electronic properties. The calculations on models of bac-
teriochlorophyll molecules (BChl) and on original crystallographic struc-
tures, employed the “spectroscopic INDO” method (c¢f. Appendix B) de-
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veloped by Zerner and coworkers [112]. Ground electronic states were
obtained as closed-shell molecular orbital (MO) wavefunctions in the Re-
stricted Hartree-Fock (RHF) framework. Low-lying excited states whose
energies are available from spectroscopic data [88, 83] were approximated
by configuration interactions (CI) among configurations generated as single
excitations from the RHF ground state.

It is helpful in this context to consider the 4-orbital model of Gouter-
man [110], Fig. 4.7 which focuses attention on the two highest-lying MO’s
(HOMO, HOMO+1) and the two lowest-lying unoccupied MO’s (LUMO,
LUMO-1). Gouterman has shown that single excitations involving these
four orbitals provide a good CI basis for approximating low-lying Q-bands
of porphyrins in visible and near-infrared region.

LUMO +1 — byglyz)
LUMO —— bagixz)
HOMO —H—  aylxyz)
HOMO _..H___ b1u {z)

Fig. 4.7. Schematic representation of the molecule orbitals involved in the four-
orbital model of porphyrins. The indicated orbitals refer to the D, subgroup
appropriate {o the idealized conjugated framework of the BCL molecule (pyrrole
rings I and III are bi sected by the yz plane and rings Il and IV by the zz plane.
The transformation properties of the four orbitals are indicated in parentheses by
appropriate functions of cartesian coordinates.

While the crystallographic coordinates of natural BChl molecules dealt
with have no rigorous symmetry elements, it is useful for schematic purposes
to assume an idealized D,; symmetry for the conjugated BChl framework
(see Fig. 4.6) and accordingly, the four orbitals are assigned to the ap-
propriate irreducible representations in the D,j subgroup of Dyy. In Dyy
symmetry, the HOMO is the a, orbital and the lower of the unoccupied
bzg, b3g pair is the bz, orbital. The dominant contributions to the lowest
excited state are expected to be a, — by, with some contribution from
byu — bag. Since these configurations can only be coupled to the ground
state by y-polarized light under electric dipole selection rules, the transi-
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tion to this state is designated Q,. The other two excitations arising in the
model are expected to provide the major contributions to the @, transition.

In the ZINDO calculations all single excitations involving the highest
15 occupied and the lowest 15 unoccupied MO’s were included as a ref-
erence level to test the four-orbital model. Analysis of the calculated CI
coeflicients has revealed that > 90% of the @, excited state is accounted
for by the HOMO—-LUMO excitation. Much of the remainder is provided
by the HOMO-1—LUMO +1 excitation, and the individual contributions
from the other 223 excitations included in the CI calculations are all < 1%.
Since the @, transition is so dominated by a single configuration, it is not
surprising that a good linear correlation (regression coefficient of 0.99) is ob-
tained between the total excitation energy and the difference in HOMO and
LUMO eigenvalues (even though the excitation energy is a many-electron
quantity). Analysis of the HOMO and LUMO atomic orbital coefficients?3
shows that, in general, the pattern of r-orbital phases for a given nearest-
neighbor pair of conjugated atoms is the same for each of several different
conformational variants of BChls observed in the antenna protein complex
of Prosthecochloris aestuarii (cf. [17] and references therein). The bonding
or antibonding nature of the AO interaction in the HOMO and LUMO is
generally independent of the particular BChl. The primary exception to
this rule arises in the case of C — N bonds in rings I and III, where the
signs of the excited state bond-order contributions from the HOMO and
LUMO vary among the different BChls structures, suggesting that the @,
transition is especially sensitive to conformational deformations associated
with these bonds.

Despite the lack of rigorous symmetry, calculated transition dipole di-
rections deviated by less than 5° from the y-axis passing through the ni-
trogens of rings I and III, and the change in state dipole moment upon
excitation?? is found always to be along y-axis to within 10° of accuracy.
Conformational effects on the spectra have been studied by use of the bare
skeleton model, where all side substituents have been replaced by hydrogen

23 We have focused on the m-type AOs of the conjugated atoms, taken as p,
orbitals, antisymmetric in the z,y plane containing the four nitrogen atoms
{cf. Fig. 4.6).

24 The calculated excited state is not strictly orthogonal to the ground state
determined variationally in SCF calculations. That leads to an extra overes-
timation of electrostatic effects in INDO method. We have corrected calcula-
tions of the excited state dipole by using orthogonalized excited state orbital
1¥s) = (|8) —a|¥,))/(1—a?)!/2. In the last expression, a stands for the mixing
between final{excited) and initial{ground) states.
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atoms. Distortions from planarity of the conjugated macrocycle have been
found to be a source of about 50 nm shift towards the red portion of the
spectra.

The influence of substituents has been further analyzed by removing
axial ligands and checking calculated spectral sensitivity to changing ori-
entation of the side groups. We have found by ZINDO calculations that
rotation of ring I acetyl group from an in-plane to an out-of plane configu-
ration (¢.e. the acetyl group is taken out of conjugation with the w-system
of the porphyrin) leads to a blue shift of 680 cm™! in the calculated spectra.
This result, supported by experimental evidence [17] and references therein)
can thus partially explain distribution of excited states observed in natural
reaction centers [83, 88].

To help assess the possible role of the surrounding protein medium in
influencing the @, excitation energies of the BChl subunits in P. aestu-
arii complex, we have carried out additional calculations. The amino-acids
can affect the BChls through a number of mechanisms, including both long-
range (involving induced and permanent multipole contributions) and short-
range interactions. Amino-acids with aromatic groups #° might be especially
effective in modulating @, transition energies. Since several amino-acids are
found in the immediate vicinity of one of BChls in P. aestuarii complex, we
carried out calculations on structural models of the chromophore extended
so as to include all aromatic residues containing atoms within the distance
of 5.5 Afrom the center of the chromophore?®. No significant rotation of the
transition dipole was observed, and the overall blue shift of ~ 1150 cm™?
could be attributed almost entirely (80%) to the nearby positive charge as-
sociated with the charged group of the arginine residue. Focusing, therefore
on amino acids with charged moieties on their side chains, we then carried
out calculations for all chromophores, including such amino acids by using
suitable point charges obtained from ZINDO calculations for the separate
residues 27. Our results show that the charged amino acid side chains can
cause shifts in ¢}, energy transitions®® of as much as 2000 cm ™1, i.e. at least
as large as the effect of acetyl group orientations and comparable in mag-

25 Presence of such groups with delocalized 7 type orbitals gives rise to additional

interactions within the x system of chromophores.

26 Flectrostatic effects have been found to be of negligible amplitude beyond that

limit, cf. [17).

The charged residues are negatively charged aspartic and glutamic acids and
positively charged bases, histidine, arginine and lysine.

27

28 The shifts can be either towards red or blue regon of the spectral lines, de-

pending on the sign and location of the residue charges relative to the ground-
and excited-state dipole moments of the BChls.



1500 Ewa Gupowska-Nowak

nitude to the overall spread of transition energies exhibited by the isolated
chromophore molecules.

We shall note that the calculated environmental and electrochromic
shifts should be interpreted as upper limits, since the calculated differences
in ground- and excited-state dipole moments appear to be systematically
exaggerated?®.

To sum up, theoretical calculations on structural data of natural chro-
mophores indicate that axial ligands, hydrogen bonds and neighboring resi-
dues from the proteic media help to define a scaffolding that in turn con-
trols the conformations of the molecules. ZINDO calculations on individual
conformationally distinct, bacteriochlorophylls and chlorophylls predict dif-
ferent optical and redox properties that reflect crystallographically observed
conformational variations among the molecules. The evidence of macrocy-
cle distortions which are consonant with crystallographic results comes also
from series of experimental ESR and NMR data [111, 85, 86, 19]. To esti-
mate costs of conformational variations, we have performed ZINDO calcula-
tions on several synthetic porphyrins (cf. Fig. 4.6) in which different periph-
eral substituents were added in order to deliberately introduce steric crowd-
ing [19]. Best examples of this approach were severely saddle-shaped Zn(II)
tetraphenyl-octaethyl (ZnTPOEP) and NiTPOEP porphyrins. ZINDO cal-
culations predict that the puckered molecules are easier to oxidize wheras
reduction is fairly insensitive to distortions3?. As the temperature raises,
fluctuations of the skeleton cause the different resonances to coalesce, yield-
ing a free energy of activation for the inversion (or “flattening”) of the
macrocycle. We have further performed MD studies of the molecule by
using a modified CHARMM force field (113, 75, 80, 19]. The calculated
energy difference between the puckered and planar relaxed configurations
yield 20.6 kcal mol™!, the value to be compared with a difference of 9.8
kcal mol~! between the most puckered and planar BChls in the antenna
system of Prosthecochloris aestuarii, [19]. Relaxing of chromophores from
their crystallographic positions towards planarity shrinks that energy to
1.7 kcal mol ™1,

In conclusion, our analysis suggests that protein micro-environment de-
fines structural scaffolding and determines available conformations of mole-
cules. Site-directed mutations may alter then the protein pocket and in-
directly affect properties of natural chromophores whose optical and re-
dox properties are responsible for directionality and rate of ET in natural
biomolecules.

From quantum mechanical calculations we are able to estimate the
electron-transfer integral H;; for various pairs of chromophores and pre-

2° Numerically estimated change in state dipole for excited- versus ground-state
ranges from 2 to 10D wheras experimental estimate is less than 3.D.
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dict relative contributions of environmental factors to the donor-acceptor
coupling intensity. MO numerical analysis allows also to assign values of
partial electrostatic charges and their distribution in the complex before
and after ET process. In a particular case of photosynthetic systems, quan-
tum mechanical models of porphyrins and their derivatives give a better
understanding of the principles of the harvesting of solar energy and its
high yield conversion into final biochemical products. MO calculations are
part of the project to design synthethic systems that mimic the efficiency
and selectivity of the biological reaction. This step of theoretical modelling
is a hallmark for further molecular dynamics studies which aim to evaluate
the strength and relaxation properties of state-energy fluctuations in the
ET systems.

Theoretical evaluation of the rate constants requires some assumptions
on the range of parameters involved in the description of ET process (cf.
Egs. (2.8), (2.17)). The existing information sources are experimental data,
MO calculations, MD simulations and phenomenological models of kinetics
in complex systems based on e.g. the theory of stochastic processes. The
latest allow to incorporate the nonequilibrium effects of fluctuating medium
polarization and set up conditions for adiabatic/non-adiabatic ET process.
A full description of the ET rate at the level of biological systems is, however,
a formidable task and remains an area of active theoretical development.

5. Summary

Theoretical problem of quantitatively understanding electron transfer
processes in complex aperiodic macromolecular structures such as proteins
remains a fascinating technical and scientific challenge, for which we have
tried in this overview to outline the available tools and methods. For theo-
reticians who probe the control of quantum electronic tunneling in proteins
and the interplay of classically treated nuclear degrees of freedom, there is
still a long way to go. One of crucial arguments to be resolved in biolog-
ical ET is whether the protein acts as an inhomogeneous or homogeneous
electronic coupling medium. This question can be addressed by theoret-
ical calculations of parameters involved in the kinetics: the transfer inte-
gral H;¢ which couples donor-acceptor states, energetics of initial and final
states, their sensitivity to structural perturbations. An important goal is to
combine complementary methods stemming from a statistical theory of rate
processes with quantum mechanical estimates of ET dynamics in complex
polar medium.

Our theoretical calculations on structural models of photosynthetic ET
systems strongly suggest (Section 4.5) that conformational variations ob-
served for porphyrin derivatives can provide a mechanism for altering optical
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and redox properties. Such effects, in combination with additional modula-
tions induced by protein residues (or solvents) (Section 4.4 an d 4.5), thus
provide an attractive mechanism for fine-tuning the electronic properties of
the chromophores in vitro and in vivo. By constructing phenomenological
models of ET transport in natural reaction centers (Sections 4.2, 4.3, 4.4) we
have shown occurrence of nonexponential kinetics observed in the systems
(cf. (4.40), (4.41), 4.53) and pointed out possible sources of “non-standard”
(non-Arrhenius) temperature and free energy dependence of ET reactions
(cf- Egs. (4.37), (4.38)). We have discussed also shortcomings of the phe-
nomenological approach based on the use of the theory of a dissipative two-
level system (Sections 2.2 and 4.2). Nonadiabatic kinetic rate derivation for
such systems lose their reliability when, due to system inhomogeneity, the
characteristic relaxation time of the solvent becomes enhanced changing the
degree of “nonadiabaticity” of the reaction (cf. Egs. (2.17), (4.37), (4.38)).
An exciting challenge in the field is to determine what qualitative differ-
ences might arise in the ET rates as protein secondary and tertiary struc-
ture vary along with donor-acceptor redox potentials and inter-chromophore
distances. To answer those questions, large-scale molecular dynamics cal-
culations are needed with reliable sets of electronic structures energies es-
timated from prior quantum mechanical calculations. Future work should
address also dynamical issues of the medium whose relaxation properties
can overlap with the inherent time of the ET. We believe that further in-
vestigations of biologically relevant but structurally simpler systems could
help to discriminate among various models of ET in proteic media.

The study of biomolecules has been an important contribution to the
physics of complexity. We hope, that within the scope of this review we were
able to provide the reader with some insights into the protein “paradigm”
for complex systems with a diversity of connections between structure, dy-
namics and functionality.

This paper is a compendium of a series of papers written at the Brook-
haven National Laboratory and at the Université Pierre et Marie Curie,
Paris. Thanks to a fruitful collaboration with Jack Fajer and Marshall D.
Newton I have been introduced to enigmas of electron transfer processes in
natural systems. Michel Moreau, Bernard Gaveau and Daniel Borgis are
kindly acknowledged for sharing their enthusiasm and interest in defining
kinetic rates in stochastic medium. My special gratitude is devoted to Prof.
Andrzej Fulinski for his constant help and encouragement throughout this
work.
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Appendix A
Ito transformation formula
A continuous time parameter Markovian process, for which the sample

paths {z(t)} are continuous functions of time, is called a diffusion process.
The stochastic diffusion process is fully determined by two moments:

lim % < ARX(D)IX(t) = 2 >= ¢(z, 1), (A1)
lim + < {AXOPIX(0) = 2 >= o¥(z,1), (A:2)

where z € 2, A, = X(t + h) — X(¢). The functions ¢(z,t) and o%(z,t) are
called expected infinitesimal displacement (drift coefficient) and infinitesi-
mal variance, respectively. In addition to infinitesimal relations (A.1), (A.2)
higher order infinitesimal moments are zero. Based on (A.1) and (A.2), it
can be shown [90] that the probability density function for the process fol-
lows the evolution equation:

OP(z,t'|y,t OP(z,t'ly,t) 1 ?P(z,t'|y,t
— ( ’at ty’ ) :¢(2,t’) ( ézly’ )+§0’2(Z,t') (8;2 iy’ ) (A3)
A continuous, strictly monotonic function g with continuous derivatives g’
and ¢g” may be used to transform an arbitrary stochastic diffusion process
{X(t)} into another diffusion process {Y(t)}, y = g(z) by use of so called
Ito transformation formula [90]. Infinitesimal parameters of the transformed
process are:

oy (y) = 30%(2)g"(2) + d(2)g'(z) (A.4)
oy = o*(z)[g'(z))?. (A.5)
Appendix B

Principles of INDO method

INDO (Intermediate Neglect of Differential Orbitals) is one of com-
monly used semiempirical molecular orbital (MO) methods. The Hamilto-
nian for the outer electrons in a molecule is written as

H = Heore + Z 7',’.;'1 (Bl)
1<
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using the Born-Oppenheimer approximation and neglecting spin-orbital,
spin-spin and relativistic effects. H.ore stands for the sum of the kinetic
and potential energies of all outer (valence) electrons in the field of the core,
and the double sum is the total energy of the Coulomb repulsion of all pairs
of electrons ¢ and j (the elementary charge e entering the Eq. (B.1) is set
to 1 in atomic units). The full wavefunction of the system is approximated
by using a finite linear combination of antisymmetrical functions of MO’s
&1; (the index K labels a particular electronic configuration):

K
U= AeBi(Pr1,r Prn) s (B.2)
k

and the coefficients A are determined by the application of variation prin-
ciple to minimize the total energy

(P|H|?)
E=XY_"1 (B.3)
(¥]?)
The functions & are represented by determinants
ék = det lékl, ...an{ (B.4)

of MOs of electrons in different configurations. The number (K) and type
(k) of configurations admitted in Eq. (B.2) determines the degree of config-
uration interaction (CI) considered. By limiting considerations to the closed
shell systems, one can introduce an effective one-electron Fock operator F:

Fé; =¢;%;, (B.5)

which is self consistently constructed by applying N atomic orbitals (AO)
to build a molecular orbital

N
$; = Z Cim®m » (B'G)
m

with the square of coefficients c;,, representing the electron density in the
atomic orbital ¢,, in the molecular orbital #;. In this formalism, the Fock
matrix can be represented as

N

Fuy =hu + Y Pro [(#1Ae) - (pAlvo)] , (B.7)
Ao
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with h,, standing for the core integral
s = [ Su(1) Heone (1), (B.8)

(pv|Ao), (uA|vo) representing two-electron Coulomb integral and the ex-
change integral, respectively,

(o) = / / 6, (V)du(V)r1162(2)do(D)dmdry,  (B9)

and P,, being the electron density matrix

occ

Py =2) c3icoi- (B.10)
=1
The variation principle applied to a closed-shell system

OFE .
Be 0 Vi (B.11)

leads to the set of Roothaan—Hall equations:

N
Z(pr - 5i5pu)civ =0 (B.12)

v=1

for the set of orbital energies £; and MO coefficients ¢;,. The elements of
the matrix S, are the AO overlap integrals [ ¢,¢,dr.

Equation (B.12) is solved iteratively until a self-consistency is reached.
The final SCF solution 3! yields desired MOs &; and their orbital energies
¢;. The ground state (B.4) electron configuration is produced by filling the
orbitals with all electrons in the order of increasing energy.

The SCF calculations done with a set of M basis functions requires the
computation of M* matrix elements. In order to make a treatment of large
molecules possible, one has to reduce the complexity by either replacing the
effect of inner core electron s by effective (pseudo-) potentials or by applying
the semi-empirical SCF method which neglects most of the matrix elements
(pv|Ao) and parametrize the remaining ones.

31 Quantum chemistry distinguishes between the SCF equation, which hold for a
finite basis set, and the Hartree~Fock limit, obtained when the asis set becomes
complete.
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The common MO methods differ mainly in: the type and number of
AOs admitted to Eq. (3.5), the degree of neglect of the numerous two-
electron Coulomb integrals in the Fock operator (Egs. (B.7), (B.9)), the
determination of the core integrals, the degree to which self-consistency of
Eq. (B.12) is carried out and the t ype and number of electron configurations
considered in Eq. (B.2). The zero-differential overlap approximation (ZDO)
is the one which assumes a vanishing “differential” overlap

budpdr =0 (B.13)

between different AO basis functions in all points of space. In consequence,
only two-electron integrals of the form

(mplvv) = yuv, (B.14)

involving only pairs of AOs have to be retained. The ZDO approximation
requires a semiempirical treatment of short-distance behaviour of y,, and of
all diagonal and off-diagonal core integrals h,,. The INDO method includes
all valence orbitals. The term “intermediate neglect” points to the reten-
tion of one-center-two-electron exchange integrals (uv|pv) (cf. Eq. (B.9)).
Within the Zerner’s version of INDO (ZINDO) approximation [112], basis
orbitals ¢; are envisioned to be strongly orthogonal and

(WvPCoP) = 8apton [ [ oW HS )8R @irdr,
= (pvA|A4et) A=C
= (pvAA%e%) A #C, (B.15)

where ¢f} is the atomic orbital centered on atom A. In order to maintain ro-
tational invariance, two-center integrals (A4 # C) are evaluated over atomic
orbitals q;ﬁ that are s symmetric but have the same exponents and expan-
sion coefficients as qb;‘f. Equation (B.15) also suggests that all one-center
integrals are maintained in this approach.

The main difference between ZINDO (designed to deal with optical
spectra of porphyrin derivatives) and INDO is a modified parametrization
of one center core integrals h,, and “resonance integrals” (i.e. the two-
center terms h,,, commonly called §,, integrals). The resonance integrals
are taken proportional to the AO overlap 5,,:

ﬂuu = ﬁABSuu s (B‘]-G)

where 3,4p depends only on the chemical nature of the atoms A and B
carrying the AOs ¢,, ¢,. In ZINDO method the one-center core integrals
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h,, are obtained from ionization potentials and the resonance integrals are
purely empirical parameters set to reproduce experimental spectra.

The ground state SCF calculations reported in the text (Section 4.5)
have been followed by a configuration interaction (CI) of lowest single-
excited configurations between some number of HOMOs and LUMOs. All
calculations have been calibrated by calculating @, transition energies for
analogues of BChls, whose spectra are available from experimental data.
The single Bchl model contained about 100 atoms, 240 basis functions and
200 valence electrons. The coordinates of heavy atoms utilized crystallo-
graphic data of chromophores obtained from the Brookhaven Protein Data
Bank. Hydrogens were placed at standard distances and checked to ensure
that no unacceptable steric interactions were generated.

All calculations were performed on a local Sun-Sparc station and on the
Cray Y-MP located at Florida State University, Tallahassee, USA.
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