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A report is presented on some developments of the author’s recent con-
jecture that a change of the overall particle number in a localized physical
process induces in its neighbourhood a small deformation of the time run.
This is a hypothetic quantum effect caused by a thermodynamic-type
mechanism not present in the Einsteinian classical theory of gravitation,
but natural if the familiar analogy between the thermal equilibrium and
the unitary quantum time evolution is accepted as a physically profound
correspondence.

PACS numbers: 11.10. Lm, 11.90. +t, 12.90. +b

1. Introduction

We describe in this paper some developments of the recent conjecture
[1] that a change of the overall particle number in a localized physical pro-
cess induces in its proximity a small deformation of the time run. It is a
hypothetic quantum effect caused by a thermodynamic-type mechanism not
present in the Einsteinian classical theory of gravitation, but natural if the
familiar analogy [2] between the thermal equilibrium and the unitary quan-
tum time evolution is assumed to be a physically profound correspondence.

In order to express more precisely our idea let us consider first a classical
particle moving in an interval of time along the trajectory

7=7(t). (1)
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Then, we can speak of the particle’s density and current given by the
distributions

p(Ft) =8 (F—F(t)), J(7t)=r ()6 (7F—7(2)). (2)
It is easy to see that they satisfy the local conservation equation (continuity
equation):
9p(7, 1)

ot

Now, let us ascribe to the classical particle the ability of appearing or
disappearing at a moment of time ¢ = t5 and point of space ¥ = #5. Then,
we may write

p(7t) = 0[+(t — 15)]6° (F— 7(1)) , T(7,t) = 6 [(t — 15)] 7 (£)6° (7 — 7"(2)))

4
in the first or second situation, respectively. Here, 6(¢t) = 1, 0 for t > 0,
< 0, while #(tg) = 7s. In this case, the continuity equation (3) is not valid,
being modified by a source term:

+ divy(7,¢t) = (3)

Bp(a:; 28 | divi(r ) = £6° (7 — 7)) (¢ — ts), (5)

respectively, because of df(+t)/dt = +8(t). Hence, for a fixed spatial region
V including the point 75

/d3 7 p(7, 1) /d% 7(7t) £ 8(t — ts), (6)

8V

respectively. When V becomes the whole space, the surface integral, as con-
taining d’¢ = 7(7)d%0 — (7/r)r?dQ, vanishes since at ¢ fixed §% (¥ — 7(t))
— §3(F) with r — oo.

If in a physical process Ng classical particles disappear at a moment g
and point 75, and N§ classical particles appear at the same moment and
same point, then Eq. (5) is generalized to the form:

dp(7yt)
ot

T divy(7,t) = (N - Ng) 8 (P - 7s) 6t —1s).  (7)

Thus, only when N{ = Ng the overall particle number

N = [ &5 (8)
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is conserved. In general, Eq. (7) implies

dN(t)

= (NG - Ns)a(e — t5). (9)

In the case of the current modified as in Eq. (4), the particle’s velocity
along the trajectory is replaced by

0 [+(t - ts)]7 (1), (10)

so that its acceleration becomes
0+ (t — ts)]7 () + 6(¢ — ts)7(2), (11)

making the Newton equation m# = F to be modified into the form:
6 [£(t - ts)] [mF(t) - F| = T8t - ts)m# (2). (12)

Then, also the d’Alembert principle (I:” - m;':') - 67 = 0 takes the modified
form:
8[£(t - ts)] [F‘ - mi"(t)] 67 = +8(t — ts) m7 (L) - 67. (13)

It means that the classical dynamical equilibrium expressed traditionally
[3] by the d’Alembert principle is violated at the moment ¢ = tg when the
particle appears or disappears. Notice, however, that this event has no
consequences at all for the dynamical equilibrium in the interval ¢ > tg or
t < tg where Egs. (12) and (13) reduce to the conventional forms mi = F

and (F — mr) - 67 = 0. The fundamental reason (or assumption) leading
to such a conclusion is that in the motion of a classical particle the sharp
moment tg of time transition is always well defined (as a limiting concept),
even on the energy shell.

When passing to a quantum particle, the situation changes drastically
due to Heisenberg’s uncertainty relation for time and energy. This rela-
tion, when applied to the moment of time transition, makes such a moment
uncertain.

From the conceptional viewpoint, the phenomenon of changing the par-
ticle number is perfectly described by the procedure of field quantization.
However, our classical argument presented above suggests that in processes,
where the overall number of particles changes, the quantum dynamical equi-
librium expressed (in the Schrédinger picture) by the unitarity state equa-
tion
dy(t)

ih—>= = HE(t) , H'=H (14)
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may be in principle violated. Accordingly, it was conjectured recently [1]
that this equation, always accepted in the quantum theory of closed systems
[4] and then implying the unitary time evolution, undergoes a slight modi-
fication in processes with a change of the overall particle number. Thus, in
such processes tiny departures appear for physical systems from their quan-
tum dynamical equilibrium. Such departures should manifest themselves as
small nonunitary deviations from their unitary time evolution characteris-
tic for this equilibrium. So, the last can be conveniently interpreted as a
thermodynamic-type equilibrium with the physical spacetime treated as a
“minimal” unavoidable surroundings of all so-called closed systems which,
therefore, are always “minimally” open. If the conjectured departures from
the quantum dynamical equilibrium really appear, this interpretation is not
only a way of speaking.

As is well known, there is a far-going formal analogy [2] between tem-
perature of an open system persisting in a thermal equilibrium with a ther-
mostat (or heat reservoir), and time that parametrizes quantum evolution
of a so-called closed system:

kT & 2. (15)

If taken earnestly, this analogy can strengthen and make more specific the
thermodynamic-type interpretation of quantum dynamical equilibrium as a
temporal equilibrium of physical systems with the physical spacetime playing
here the role of a chronostat (or energy-width reservoir). By definition, this
guarantees equal run of time at all space points (in a Minkowski frame). Of
course, such a thermodynamic-type interpretation has a phenomenological
character: it abstracts from the physical nature of spacetime, and does it in
an analogical way as the thermodynamics abstracts from the physical nature
of the body playing the role of a thermostat. This causes, by definition,
equal distribution of temperature. Hence the term “chronostat”. The term
“energy width" is also of a thermodynamic origin.

In fact, our thermodynamic-type interpretation of time evolution im-
plies, due to Eq. (15), the following eztension of the first law of thermody-
namics:

dU = §W + 6Q — i6T. (16)

This includes an imaginary term —:6I’, where I' is a new thermodynamic-
type quantity providing us with an analogue of heat @ when —ih/t takes
over the role of k7. We call it energy width transferred to the system from
the physical spacetime as from its surroundings. Consequently, the internal
energy U of the system is generally complex. In the temporal equilibrium
or =0.



Possible Deformation of Time Run... 1515
2. Equation for time deformation

In analogy with the thermal-nonequilibrium temperature field THT (7, t)
we can speak of the temporal-nonequilibrium time field ¢ + §¢(7,t). Here,
the identity §t(7,t) = 0 characterizes the temporal equilibrium much like
the identity §T(7,t) = 0 specifies the thermal equilibrium. Then, the tem-
perature — time analogy (15), when assumed to be a physically profound
correspondence, suggests for the inverse-time-deformation field

_r 1
t+ 6t(7t) ¢t

(1) (17)

a conductivity equation of the form:

(A _ %%) o(Ft) = 0. (18)

This is an analogue of the familiar conductivity equation for the temperature-
deformation field §7'(7,t). Here, A > 0 is an unknown length-dimensional
conductivity constant (in the vacuum). Obviously, ¢(7,t) = 0 in the tem-
poral equilibrium.

The conductivity equation (18) can be considered as a nonrelativis-
tic approximation for a tachyonic-type (and so ultraluminar) Klein-Gordon
equation of the form:

1 92 1
— 4 7. t) = 0. 1
(A T + 4)\2> x(7,t) =0 (19)
In fact, the substitution
(7,t) = o(F,t) ex (—“t) (20)
X b - <P b p 2A

gives
1 92 1 ct 162 198
(A‘c—za?+m) X=exp(5x) (A‘c—z‘aﬁ“zé‘i) v
ct 10
= exp (ﬁ) (A‘;a) ¢ (21)

if |(1/Ac)dp/0t| > |(1/c*)8%p/0t?|. Thus, in this approximation, (7, t)
appearing in Eq. (20) can be identified with the field ¢(7,t) satisfying the
conductivity equation (18).
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Making use of the Tomonaga—Schwinger spacelike hypersurface o taking
over covariantly the role of flat time ¢ [5], one may introduce by means
of its unit normal field n(z) = (nu(z)) (n(z)? =1) the inverse-time-
deformation field (17) in a covariant way (in the sense of special relativity):

C &

A= ) et s ) e .

where z = (z2*) = (ct,7) and éz(z) = (6z#(z)). Then, the field x(z) =
x(7,t) satisfying the relativistic equation (19) is assumed to be identical
with

Xo(e) = vlo(e) exp| M2 (29)

Thus, x[o](z) = x(z) is independent of o, what implies

olol(z)exo| 22| = om0y exn (55 ) (24)

due to Eqgs. (20) and (23). For the special choice n(z) = (1,0, 0,0) one gets
plo)(z) = ¢(7,t) as given in Eq. (17). In general, the coordinate spacelike
hypersurface o may be arbitrarily deformed and so must not be mistaken for
the dynamical hypersurface t-+6t(7, t) or its covariant version n(z)-[z+8z(z)]
(the field x(z) describes only an arbitrary timelike projection n(z) - §z(z)
of éz(z) in terms of n(z) -z and z but, by construction, does it in the same
way for all n(z)). A formal hydrodynamic analogue of the field ¢ n(z) is the
field of four-velocity u(z) = (u,(z)) normalized as u(z)? = ¢ [6]. However,
this is related to a coninuous matter medium. Then, u(z)/c = (1,0,0,0) in
the so-called comoving frame of reference.

Since it was conjectured that departures from temporal equilibrium
appear in processes where the overall particle number changes, it is natural
to assume that the field equation (19) takes in the presence of matter sources
the following inhomogeneous form:

182 1\ .. Op(Ft) .. ..
(A - c—za? + :{XE) X(T, t) = —4r gA T + le_’] (7’, t) . (25)

Here, g > 0 is an unknown dimensionless coupling constant and (cp,7) =
(7#) denotes the matter four-current. In the case of quantum particles, this

can be defined as
j#(z) = (Z()TH()]Z(t))av (26)

where ()ay stands for the spin-averaged expectation value (in the state
¥(t)) for the operator J#(7) of overall particle-number four-current (here,
¥(t) and J#(7) are taken, for instance, in the Schrédinger picture). Since
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the overall particle number is no constant of motion, the continuity equation
O0p/ 0t + divy = 0 does not hold in general, and so matter sources in Eq. (25)
are generally nonzero. They vanish in states ¥(¢) where the overall particle
number does not change, what allows for the temporal equilibrium: x(7,t) =
0. We are aware of the infrared problem which exists, when photons are
included in the matter sources (i.e., in J* and so j#), as they should be
from the standpoint of our conjecture.

In the nonrelativistic approximation, Eq. (25) reduces to the following
inhomogeneous form corresponding to the conductivity equation (18):

(A - %-g—t) o, 1) = —4mgA [ap(”t) + di ](r,t)] exp( ;;) (27)

when Egs. (20). and (21) are invoked.
The Feynman-type propagator for the field x(z) satisfies the equation

(D + 4)\2>AF(:C ~z') = —4xb(z - 2'), (28)

with O = A — (1/¢%) 8%/8¢%, and is specified by the formula
dik exp([—ik-(z — 2')]
(27m) k24 S tic
3 —O
=4nif(z zo)/ (d £ exp(ik - (F — 7))

oot

Ap(z —2')=—4r

-\ exp[~kol(z0 — Zo)]
+'9(Z,\_2 "kz) 2| ko : }ko:\/m

+ (2o(—>20). (29)

Here, with k = |k| one may write

&3k » T kdk sin(k|F— 7'
/(2 7 explik - (F = #)){...} = 2 2] "?r‘_rl Dy 3
0

B oo kdk Sin(k’i‘_ ,’-:r])
- ./ (27)2  |F -7 {..}, (30)

hade +]

as {...} depends on k2.
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The general solution to the field equation (25) can be presented in the
form:

x(z) = x9(z) + g)\/d4:c'AF(z - 2')a,i*(="), (31)

where 0, = 3/0z* and

(E] + 4—/\5) xO(z)=0. (32)

As is seen from Eq. (29), the propagator Ap(z — z') contains both the
ultraluminar time-oscillating part with

v |k
kozlkol s —-E%>1

©

and the time-damped part with

v _ |k _ I

-

ko::ilko| ) sz(_)_ lko‘

For A — oo the first part becomes luminar, v/c — 1 + 0, while the second
vanishes. If 8,5#(z) = c6*(z — zs), Eq. (31) gives

x(z) = xV(z) + grc Ap(z - z5). (33)

The static solution to Eq. (25) is provided by the formula:

X(7) = g / g el 7o *I'll/ 2X) giv'7(7) . (34)
Then, from Eq. (20)
o(7,0) = x() exp( -5 ) (710) = (7). (35)

If divj(7) = (1/7)83(F — #s) where 7 > 0 is a time-dimensional constant,
Eq. (34) gives
g/\ cos( |7 — r5|/2)\)

|7 — 75|

x(7) = (36)

Here, the constant 1/7 may be interpreted as the overall number of particles
produced per unit of time by a spherically symmetric stationary source.
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If the source is a pointlike target in an accelerator during its stationary
run, then one may use the mathematical model, where

- 1 . cos(|7 — Tg|/2A) (t+1)
di = 2|87 - E

(37)
with Zlm, ¢1m;Y1m,(0,0) = 1 and ¥ — 75 = (|7 - 75,7, ). This gives

Acos(|F — Fg|/2X

x(7) = DTS2 $~ v 90), (38)

T |7 — 75|

lmy
as then one can check directly that
1

A+ — = — ivi(7). 39
( + 4/\2) x(7) = —4m gA divj(7) (39)

Also in this case 1/7 is the overall number of particles produced per unit of
time, since

/dzé"-j’ 7) = /d%‘"divj‘(r‘) =1 (40)
in virtue of

T p27
{1+ 1)/ / sin 9 dd dp Yim,(F,9) = 0. (41)
0 0

3. Equation for quantum time evolution

In analogy with the familiar law for heat (valid when §W = 0)
6Q / d*7Fp(F)kd[T + §T(7)], (42)
we may put for the energy width
1
—q 35 - —_— 43
usmx/d (7 zh)d[t+6t(17)}, (43)

if we take earnestly the temperature — time correspondence kT « —ih/t.
In consequence, we decide to assume the formula

I(t) = gh / &3 p(F, 1) x(7 1) (44)
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or its covariant version

Ile] = gh/daauj“(a:) x(z), (45)

where d30, = n#(z)d*c and d®g¢ = (1/c)d>7, while g > 0 is the coupling
constant introduced in Eq. (25). At this point we use (in the present paper)
the function x(7,t) rather than ¢(7,t) = x(7,t) exp(—ct/2A), since — for
the former — static solutions x(7) exist as e.g. that given in Eq. (38).

Then, consistently with our extended first law of thermodynamics (16),
it is natural to introduce (in the Schrodinger picture) the temporal-
nonequilibrium quantum state equation in the form:

@) _

i
Tt

[H —i1l(t)|¥(t), H' = H, (46)
where 1 stands for the unit operator. Of course, in the temporal equilibrium
x(7,t) = 0 and thus I'(t) = 0, what reduces in this case Eq. (46) to the con-
ventional state equation (14). In general, however, the nonunitarity state
equation (46) includes small nonunitary deviations from the conventional
temporal-equilibrium time evolution (the coupling constant g > 0, appear-
ing both in Eq. (25) and (44) is expected to be small enough, probably
extremely small, in order not to contradict the heritage of the conventional
quantum theory). Note that eliminating x(7,¢) from Eq. (44) by means of
Eq. (25) (which gives Eq. (31), where now x(®)(z) = 0) we obtain

r@) = g2A/d3F/ die' p(z)Ap(z — )0, 54 (2"). (47)

Concluding, we have constructed a mixed set of two coupled equations.
On one side: Eq. (25) for the parameter-valued field x(7,t) describing the
hypothetic departures of time from its conventional flat run ¢ (induced by
changes of the overall particle number). On the other side: Eq. (46) for
the quantum state vector ¥(t) including deviations from its conventional
unitary time evolution (introduced there by the former time-run depar-
tures). It is important to note that these time-run departures from its
conventional flatness have physical causes different from those active in the
Einsteinian classical gravitation theory, viz. possible nonzero divergence of
matter current ,j*(z) in the former case versus generic nonzero matter
energy-momentum tensor 7#¥(z) in the latter. A priori, both effects are
not connected and so may have different orders of magnitude.

Strictly speaking, the set of Eqgs. (25) and (46) is nonlinear and nonlocal
with respect to the state vector ¥(t), so it slightly violates the superposition
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principle, fundamental in the conventional quantum theory (valid in the
temporal equilibrium). However, this set becomes linear and local in the
approximation, where in Eq. (26) defining j#(7,t) the state vector ¥(t) is
replaced in the zero order by ¥(°)(t) satisfying the temporal-equilibrium
state equation (14). This gives j(o)“(f", t) and then, in the first order, Eqgs.
(25), (44) and (46) lead to

192 1 3plO(7, )
AT B ¢ ) I~ SPA R 9P\ ) | qivi (O (7
(A 250 + 4/\2) x\(rt) = 47rg/\[ 5t +divj (r,t)] , (48)
() = gn / &7 (7 )X (7, 1) = 0(¢%) (49)
and )
i dwdt ) _ [H _ ilF(l)(t)] gD(). (50)
The last of these equations implies
) t
FD(t) = #(O(t) exp [—g/dt' F(l)(t')] , (51)
10
where .
FO(¢t) = exp [- £ H(t - t0)] #"(t0), (52)

with #(%)(ty) = ¥y being the exact state vector in the Heisenberg picture,
if the Schrodinger and Heisenberg pictures coincide at t = ¢ .
We can see that the norm of the state vector ¥(1)(t), given by

FDFD(1)) = (Fr|En) exp [—% / dt'r“)(t')] L)

to

changes slightly in time in the interval, where x(l)(i’,t) # 0 and so, due
to Eq. (49), I'V)(t) # 0. This is originated by the fact that the physical
system is always open to the physical spacetime as to its surroundings and,
when 9p(9) /8t + divj(®) # 0, the temporal equilibrium between both is
perturbed: x(1)(7,t) # 0 and thus, in consequence of Egs. (17) and (20),
§t(D(7,t) # 0. The nonunitarity behaviour (51) (and so (53) ) of the state
vector ¥{1)(t) should manifest itself among others [1] in slightly violating
the optical theorem for the § matrix [7].

In a future fully dynamical quantum theory — which, hopefully, would
describe together with our matter system also the physical spcetime in a
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quantal way — the Hilbert space of the matter system would be only a
subspace of a whole Hilbert space. Then, the state vector of the mat-
ter system could be interpreted as a projection of the whole state vector
onto this Hilbert subspace and so, according to the general formalism [8],
should evolve in time nonunitarily, displaying a half-width dependent on the
matter-system state. Obviously, a proper version of the quantum gravity
would be included in this fully dynamical quantum theory. The theory de-
scribed in the present paper may be considered as a thermodynamical-type
approximation to such a future theory, working in the experimental situa-
tion, where the physical spacetime can be treated essentially as a chronostat,
but small deviations from the corresponding temporal equilibrium may be
allowed.

4. Hydrogen gas in proximity of a big accelerator

Consider a sample of hydrogen atoms situated in the proximity of a
pointlike target 7 of a big accelerator producing 1/7 particles of all sorts
per unit of time. Then, during its stationary run it excites the inverse-
time-deformation field

xex(i_') — QCOS(IF_ FSl/zA)

T IF— Fsl

Z C] mllflml('ﬂa <P) ’ (54)

lmy

playing the role of an external field for the sample of hydrogen atoms. In
Eq. (54) the mathematical model described by the formulae (37) and (38)

is used.
This external inverse-time—deformation field modifies the temporal-
equilibrium wave function

O (7., 7p) exp [~ £ E (t — to)] (55)

of any hydrogen atom of the sample, leading in the first order to the modified
function as given in Eq. (51)

t
PO (7., 7p) exp [—%E(t-to)] exp -% /dt’]’(l)(t') . (56)
to

Here, the stationary run of the accelerator is switched on at the moment to
and still lasts at the later moment ¢. In our case

PO = [ 87 [ @O B 87~ 7 + 807 )
v |4
2

:“7 for FE V, (57)
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where ) .
- = > - 13 24
WO, Tp) = 907 - 7)) exp (?:P ‘ R) (%)
with V being the volume of the sample. Thus, from Eq. (49)
2
F(l) — 2_?/,2 /d3,’?xeX(1—,‘) ~ 2gTAh COS((;/z)\) . (59)

\ %4

Here, d = (|7 — 75|) denotes the average distance of the sample from the
target, while the configuration of the sample is such that the average angles
vanish, (9) = 0 and (p) = 0. Then, Eqgs. (56) and (57) give

pD(7, 1) = ‘z/exp [—%F(l)(t —to)] for FEV. (60)

Of course, p()(7, o) = p(O)(7).

On the ground of Eq. (60) we can conclude that in consequence of the
varying norm of modified wave function (56) the average number of hydrogen
atoms in the sample slightly decreases in time during the stationary run of
the accelerator. In fact, we get

N b
pa(?,anple(F) = NH%P(O) = —Vi{- for 7€V, (61)
Nygh
T e = Nudr® = I [drsex(a), (62)

and

(1)
(1) gy Ny 2 N()

Psample i) = 7—6]{}) [ h sample(t - to)] =

for 7€V, (63)

where Ny = 2.69 x 10°V/cm® (in normal conditions) is the Loschmidt
number multiplied by V. Hence,

2
NO(t) = N exp [~E s(alr)nplc(t —tp )] . (64)

In order to find an estimation for the exponent in Eq. (64),

2 2g% ANz cos(d/2A

) (65)
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take (somewhat like for the Tevatron) the luminosity ~ 10%'cm ™2 sec™?,

the pp total cross-section ~ 100 mb and the average particle multiplicity ~
100, what leads to 1/7 ~ 108 sec™! for the particle-production rate. Then,
expecting that A > d and taking for example V/d ~ 100 cm?, one obtains

(1) . 1028 2’\ Vi- 30 2 A t—to
P 0 I dem® sec ~10%g cm sec (66)

Unfortunately, the constants g > 0 and A > 0 are completely unknown from
the very beginning (only, g < 1 and A > d were expected).

Among a priori various options for the order of magnitude of the length-
dimensional conductivity constant A there is one extreme, where )\ ranges
to the present cosmological scale: A ~ ¢ X age of universe ~ 10?3cm (here,
the age of the universe is put equal to 1.5 x 101%yr). Of course, in this
option the “negative mass square” —1/4)? can be neglected on the lhs of
the time-deformation field equation (25) in all present experiments, except
possibly cosmological observations. On the other hand, the coefficient A on
its rhs strengthens (at g fixed) the action of matter sources inducing time
deformations. Then, exp(—ct/2)) ~ 1 in Eqs. (20) and (27). This is true
even if the physical time ¢ is counted from the Big Bang as from its natural
beginning (in such a case, the analogy between the absolute temperature
T > 0 and the inverse of cosmological time t > 0 really appeals to our
imagination). For such reckoning of time one gets ¢t = age of universe and
so exp(—ct/2)A) ~ 0.6065 when A ~ ¢ x age of universe.

In the case of the extreme cosmological option where A ~ 10%® cm,
Eq. (66) gives
t—1
pM) ~ 1058422 — 2 (67)
sec
Hence, e.g. for the run-time ¢ — typ = 1 month ~ 108 sec one gets
P ~ 108492 . (68)

Then, if e.g. g% ~ 10785 to 10768, the decrement factor in Eq. (64) is

exp(—pV) ~ 1 - (0.01 to 0.0001), (69)

depending on the value ascribed to g2.

In contrast, if A < ¢ X age of universe (though A >> d), then in Eqs. (20)
and (27) exp{—ct/2)) < 1 for the cosmological time ¢ = age of universe,
what implies a practically vanishing ¢(7,¢) and also such 6¢(7, ).
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