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An approximate model is proposed for a system of three Schrédinger
particles of equal masses, interacting mutually through a universal two-
body potential. They are assumed to form during their motion a (gen-
erally) varying equilateral triangle corresponding to Lagrange’s exact tri-
angle solution of the classical three-body problem. The resulting wave
equation is formally a two-body Schrédinger equation (in the centre-of-
mass frame). This is applied to three constituent quarks in the nucleon.
The presented model, called “Lagrange triangle of Schrédinger particles”,
may be considered as a nonrelativistic approximation to the much more
complicated “Lagrange triangle of Dirac particles” constructed by the au-
thor a decade ago.

PACS numbers: 12.40. Aa, 12.40. Qq

1. Introduction

Since Lagrange’s golden epoch in analytic mechanics a few special solu-
tions are known for the classical (nonrelativistic) three-body problem with
Newtonian gravitational attraction, first of all, the highly symmetrical so-
lution where three interacting bodies (particles) of arbitrary masses form,
during the motion, an equilateral triangle of (generally) varying size and
orientation in a plane [1]. Then, in the centre-of-mass frame, the parti-
cles describe three coplanar conics, all with the same eccentricity and one
common focus located at their centre of mass.

As is known, Lagrange’s exact solutions appear also in the context of
the restricted three-body problem, where two particles circle around each
other, and are treated as two moving external centres of gravitational at-
traction for a light particle remaining in the same plane. Then, this third
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particle, if situated at (or close to) one of two stable libration points usu-
ally denoted byL4 and Ls, gives exactly (or approximately) two Lagrange’s
triangle solutions. In the context of the solar system dominated by the Sun
and Jupiter as two heaviest bodies, there are two familiar groups of aster-
oids called Trojans, located in proximity of the Lagrange points L4 and Ls
(their total number exceeds 160, ca. 2/3 and 1/3 of them being grouped
around L4 and Ls, respectively).

In the case of universal static two-body interactions other than gravita-
tional (as e.g. the static color attractions between classical quarks forming
pairwise color-antitriplet states), Lagrange’s triangle solution still exists,
but requires the three masses to be equal.

A decade ago the classical triangle solution inspired us to propose an
approximate quantum model for a highly symmetrical configuration of three
Dirac particles such e.g.as three quarks in the nucleon (we called this model
Lagrange triangle of Dirac particles) [2]. Because of its three Dirac bispinor
indices the model is still very complicated, unless some simplifying assump-
tions concerning Dirac’s degrees of freedom are made [2]. In order to make
our idea more operable, we discuss in the present note a nonrelativistic
quantum model that may be called Lagrange triangle of Schrédinger parti-
cles. Then, the model is perturbed by spin-orbit and spin-spin interactions
introduced on the level of Pauli approximation.

The Reader may find in Ref. [3] a recent interesting proposal of appli-
cation of the classical Lagrange points Ly and Ls to the quantum physics
of semiclassical Rydberg atomic states.

2. Schrédinger equation for Lagrange triangle

In the case of equal masses m; = ma = m3 (= m), the centre-of-mass
and relative coordinates and their canonical momenta are

B=3(fi++), F=fi—f, =31 +7) -7, (1)

and

.

P=pi+p+p,P=3f1-5), =B +5:—2), (2)

respectively. The orbital angular momentum and kinetic energy are given
as

L=) #ixpi=RxP+7¥xp+px7, (3)

and

B PP T ®)
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where
myms 1
M= = s = —— = —m,
my+my+my=3m, u —— 2m
y= mtmams 2 (5)
my+mz+mg 3
In the centre-of-mass frame
P=0,p=1(—p), T=p1+52 = —Ps- (6)
The equilateral-triangle condition
I’I‘l—rz‘ !1‘2*?3‘: F3“Fll (E 7‘) (7)

fsﬂ, ( )

where r = |7] and p = |p]. If supplemented by the requirement of coplanarity
of motion, it leads in the centre-of-mass frame, where §7 + p2 + p3 = 0, to
the equalities

F-F=0,r=

if =P =53 (=77), (9)

or
p-7=0,p=377, (10)

and
FIXP1 =T XP2 =73 X P3 (= 27x7), (11)

or
FTXP=pXT. (12)

Thus, the kinetic and potential energies of our triangle take the forms

z2 =2

P 2
Tyr = 3 42m, Vit = 3V (\/3~P> 3V(r), (13)

where V(|F;—7}|) (i # j) is a universal static two-body interaction between
particles. Hence, the Schrédinger equation (Tt + Vi1)¢¥ = EpT% reads

[ +avn)] w9 = 3899, Fia =38, (14)

with § = —i0/07. Here, (¥|¢p) = 1 (in its centre-of-mass frame) when
states of the triangle are bound. The wave equation (14) defines formally
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the quantum dynamical system that we propose to call Lagrange triangle of
Schrédinger particles. Note that this equation can be rewritten in the form
of a two-body Schrodinger equation (in the centre-of-mass frame):

o
2pesr

] $(7) = E9(#), (15)

where
Heff = %mv (16)

the constant p.g = %meg being formally the reduced mass of a system of
two particles of equal masses m.g = %m = %mLT- This equation gives, of
course, the radial equation

& 1(+1

(& - g [Bu- V)] fromty =0, 1)
when we insert ¥(¥) = Ypnim,(F) = Yni(r)Yim,(#) with # = 7/r. Then,
E = E,;. Here, the orbital and magnetic quantum numbers ! and m;
pertain to the orbital angular momentum of our triangle which, therefore,
is identified as

Lir =7X p. (18)
It may be expressed also as §'x ¥ due to Eq. (12).

3. Lagrange triangle of quarks

Take for each pair of three constituent quarks in the nucleon, for in-
stance, a Cornell-type potential equal to the static one-gluon-exchange vec-
tor potential plus a linear confining scalar potential i.e.,

2o 1, 1
where r;; = |Fj;| , 755 = 7; — 7j and ag = g% (h =1=c). Then, we get
for our triangle the potential

Vir(r) = 3V(r) = 3 (-g‘-"-i - %0) . (20)

Notice that in the potentxal (19) there is an effective strong coupling con-
stant — ~ast instead of — ——ast as it appears in the case of the original Cornell
potentxal for quarkonia (c .f. the second Ref. [4], p. 265).
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If nonstatic corrections of the order of (p;/m;)? = #? with my = my =
m3 (= m) are taken into account, the sum of three static central interac-
tions (19) is perturbed in the nucleon by the kinetic-energy correction

1 — — —
33 (1714 + P+ P34) (21)
plus the sum of three Breit—Fermi noncentral interactions [4]
— 2 3/ ]- — — - — A —
Vi (7i5) =gast {707 (735) + G [7i - 5 + (P45 - i) (Fij - Bj))

b o [P x ) - (s 4 26)) = (g % 5) - (55 + 280)

1]

8T i 1 =

+ g8 () 8i- it =) (3045 555 55) - 8- 55 }
1, 1 3

- En 2m2 [7‘1_7(1),, +p])—'"'z] (Pi'f‘Pj)]

+ g [P x5 8- (s x 5)- 53]} (22)
2mér;;

Here,
5.,; = ;&’z (23)

are Pauli spins of quarks and #;; = ;;/7;;. In the centre-of-mass frame,
after some calculations, the sum of three spin-dependent parts V;;*'*(;;) of
the interactions (22) reduces for our triangle to the form

2 3 . 5
spm 1—‘») 3V5pm(1—,') _ ga“{m(r X p’) . 5

+ 3;:—263(1-*) (5’2 - 2) gy [3G-8) - ”2]}

m2r3
1,

1 —
~ ok (T xP)- 5, (24)
if this sum is used under the sign of expectation value (Vﬁ,lf‘in ﬂ)ng,jmj in
the unperturbed state Ynlsjm; (7). Such a state is equal to the Clebsch-
Gordan superposition of the products ¥4 jm; ()X sm, satisfying the spin-
independent Schrédinger equation (14) or (15). In Eq. (24)

§LT:§:§1+§2+§3 (25)
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is the spin of our triangle, while m = m, denotes the constituent mass of
quarks in the nucleon (we put mg = m, = my).

Of course, the eigenvalues of $2 are s(s+ 1), where s = 1/2,3/2 corre-
spond to j = |l —s|,...,l + s with [ =0,1,2,.... In the case of [ = 0, due
to Ypo(#) = 1/v/47 and xlm,x.,m, = 1, the first-order perturbative spin
correction to the energy level 3E, caused by the interaction (24) is

s lYna(0)|” for s = {;g ., (26)

where ty,0(r) satisfies the radial equation (17) with [ = 0 (in the case of

I = 0 we have ¥p15jm;(F) = Ynim(F)Xem, With j = s, m; = m, and

Ynoo(F) = (1/vV47)Pno(r)). In order to evaluate |1,0(0)|? we may use the
exact formula following from Eq. (17):

3E£7}))u = ( Is,’lf‘in("—"»no.um, =F

T, dv(r)  3m /dv(r)
[%no(0)|? = 2Ileﬁ‘0/7'2 dr Ir [no(r)* = — <—&;—>n00 ) (27)

2

with peg = (3/4) m (cf. the first Ref. [4], p. 147). For the potential (20)

we get
<~—dv(’")> - 20t <35> + L, (28)
dr n00 3 r n00 2

since (Ynim;|¥nim;) = 1. Thus, from Eqgs. (26), (27) and.(28) we obtain

a 1 3x2 1/2
Mnﬂaa =3m + 3En0 F '3—:;:' (ast <;§>n00 + T) for s = {3;2 ) (29)

where .
Mnlaj =3m+3E, + 3E( )

nlsj

(30)

is the perturbed mass corresponding to the unperturbed state ¥,,;(¥) of
our triangle of three constituent quarks in the nucleon.
The mass spectrum (29) implies the following mass relations:

M, 0372372+ Mno1/21/2 = 6m + 6En, (31)

20t 1 3k?2
M, o3/23/2 — M, = (at<—> +—1, (32)
n03/23/2 01/21/2 3m st \ 12 o0 4

and

Mn+10 ss — no ss :3(En+10_En0)

F g% (<;1§>n+100 — <;}5>n00> for s = {;;g - (33)
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Now, apply the relations (31) and (32) to the nucleon-type baryons [5]:

125;/2: N(939) , My = 939 MeV,
1455/, : A(1232), Ma = 1232MeV

228, : N(1440), M} = 1440 MeV,
2483/ : A(1600), MX = (1550 to 1700) MeV ~ 1600 MeV,

where M2 = 1600 MeV is the mass recommended for A(1600) in Ref. [5].
Then

m + E19 = 362 MeV, (34)
m + Eq0 = (498 to 523)MeV ~ 507 MeV,  (35)
202, /1 2
st <—2> + Zth 993 Mev, (36)
3m \r%/ .00

2% /1 i
st () 4+ 2 - (110 to 260)MeV ~ 150MeV.  (37)
3m \72 /200

From Eqs (36) and (37):

202, 1 1

3m (<7‘2>200 <;5>100)
In Egs. (35), (37) and (38) the values corresponding to M) = 1600 MeV
are indicated by the sign ~. Note the minus sign at the rhs of Eq. (38),
consistent with the simple intuition.

If the Dirac magnetic moments ey/2m, are accepted for quarks, then

— in the framework of Schrédinger equation corrected by the Pauli spin
coupling — the experimental proton magnetic moment 2.79¢/2M,, implies
for u quark the constituent mass m, = M,/2.79 = 336 MeV, where 2¢, +
eq = e and M, = 938 MeV (we put m, = mgy(= my) ). Then,

—(183 to 33)MeV ~ —143MeV. (38)

m = mg = 336 MeV, (39)
and so we can infer from Egs. (34) and (35) that
E1o = 26 MeV , Eyo = (162 to 187) MeV ~ 171 MeV.  (40)

Note the positive sign of the “binding energies” (40) which shows that the
confining part of the Cornell-type potential (20) prevails over its Coulombic
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part, as far as the unperturbed energy spectrum E = F,,; is concerned. In
fact, this spectrum may be expressed as follows:

=2
P 2 1 1, 1
Ez:< > - -a <—> + =k P nim, + 2C
" 2ptesr nlmy 3 * r nimy 2 ( >77- ™2

1 <1> 3, 1
== gOst {\ — + —K (r)nl + “07 (41)
*\r nimy 4 ™ 9

3

due to the virial theorem which in this case reads

]

7 dV(r)> < 2ast> 1,
2 =(r = - (—c— +{5K" - (42
<2“eff>nlmz < dr nimy 3 r nim; <2 >nlml ( )

Evidently, in the case of k2 > 0 when the confinement works, the ex-

pectation values (%)nzml and (7)pim, in Eq. (41) should not be exactly
Coulombic:
1 _ (205t /3)pess _ asgm (r) 3 - (1+1)  3n% - I(I+1)
r nlmz” n? T gpz NV /nim T 2(20tst/3) et asem ’
(43)

though in such a case (3/4)x*(r)nim, would be large in comparison with
(1/3)ast(1/7)nim, for (2/27)ad, m? /k? small enough. In fact, for Coulombic
expectation values (43) the formula (41) would give

atm 92 C a? 27 k2 C
Eqg = — -5t Z ~ | -8t ) GeV
10 6 ' daum 2 ( 18 ' 2o, GevZ T 2Gev) °°

with 3m ~ 1 GeV, resulting into 0.026 GeV if Eq. (40) was used. For ag;
and «? as estimated later on in Eqs. (49) and (52), this would imply

26 MeV ~ Eqq¢ ~ (*67 + 483 + ) MeV or % ~ —390 MeV,

2MeV

showing a large negative C/2.

4. Coulombic approximation for spin structure
At any rate, if for the expectation value <%> of the function %
r ™

0
(quadratically singular at » = 0) the Coulombic gependence on n held

approximately,
<—1§> : <—13> ~ ———-—1——-—5 : is (44)
2 [ nt100 \T?/n00 (R+1)° n
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(at least when n = 1), then Eq. (38) would give

2
2% (1N~ (209 to 37.7) MeV ~ 163 MeV . (45)
3m \72/ 00

From Egs. (36) and (45):

ast ﬂz

e (168 to 511)MeV ~ 260 MeV. (46)

If the Coulombic expectation value

_1__ — 2(2(151;/3)2}1:2& — agtm2 (47)
2 ptmy, U 1)n3 2020+ 1)n?

was used approximately, then Eq. (45) would take the form

4
Qg

3

With 3m ~ 1 GeV (as it follows from Eq. (39)) the estimation (48) would
imply that

~ (209 to 37.7)MeV ~ 163 MeV . (48)

agg ~ 1.2 to 0.76 ~ 1.1. (49)
Then, Eqs. (45) and (46) would give, respectively,

1
<ﬁ> "~ (0.076 to 0.032) GeV? ~ 0.067 GeV?, (50)
100
or
1\ 1/2
- ~ (0.28 to 0.18)GeV ~ 0.26 GeV, (51)
2 / 100
and
k% ~ (0.048 to 0.22) GeV? ~ 0.079 GeV?, (52)
or
£~ (0.22 to 0.47)GeV ~ 0.28 GeV. (53)

Of course, the figure (50) follows also directly from the Coulombic expecta-
tion value (47).

The values (l/rz):ég and &, as estimated in Egs. (51) and (53), are both
of the same order of magnitude 0(0.1) GeV, and become roughly equal for
the recommended value M% = 1600MeV [5]. Note that the asymptotic
behaviour of the wave function in the case of Cornell-type potential (20) is
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Ynim, () ~ exp [—(K\/m/?»)r"'/z] at r — 0o, what suggests for our system

the confining radius ~ (3/x?m)!/3. Thus, with 3m ~ 1GeV and M} =
1600 MeV

1/3 2/3
confining radius ~ (—-—3—-) o~ (3 GeV) GeV™! ~4.9GeV?,

Kim K
(54)
and so, it is of the same order of magnitude as the relative effective Compton
wave length 1/p.g = (4/3)(1/m) ~ 4GeV~!. Note that with 3m ~ 1 GeV
and the estimation (49) for ag: the Coulombic expectation values (43) would
give the numbers

1\"! 6 9 1
<—> ~ — GeV™! > 55GeV™!, (r)yo0 > — GeV ™! = 8.2GeV ™",

100 st Qgt
(55)

the first of them being an effective “Bohr radius”.
Of course, a systematic numerical discussion of the Schrédinger equation
(15) dependent on four free parameters u.g = (3/4)m, as, «* and C,

r i c) $(7) = (), (56)

is the only direct way to check (in the case of potential (20) ) the appli-
cability of our Lagrange triangle of quarks to the physics of nucleon-type
baryons and/or Q-type baryons. The latter contain three strange quarks
which, as heavier, are more comfortable than v and d quarks for nonrel-
ativistic approximations. Alternatively, harmonic-oscillator potential may
be considered. We intend to proceed with such a program.

Appendix

The radial part of the Schrodinger equation (56), viz

1 [d I1+1)] , 2a¢ 1 2 )
{2/‘eﬂ' [5—2—_ r2 ] +§-r_.—2 +Enl"“c}7‘tf)nl(r)_0,
(A.1)

where peg = (3/4) m, can be rewritten in the following scale-invariant form:

d? {l+1 A
[Ej‘— (52 )+Z_6+5n1_6jl£‘pnl(5):09 (A'2)
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with
= (nzﬂ‘eﬂ')l/sr, A= %ast (#eﬁ.)z/s ’
g\ 1/3 g\ 1/3 .
6= (I:,f) C,en=2 (if) Ent, (A3)
and
eni(€) = Fwnz(r), 0/ d€|épni(€)® = O/ drlrpa(r)|* =1.  (A4)

In the special case when a5, — 0 and I = 0, Eq. (A.2) becomes the
Airy equation

d2
(8;7—5_ )wno(n+£n0—5):0, (A5)
with
N=€—eno + 8, wno(€) = Epno(£) - (A.6)
Thus,
wno(n + eno — §) = NpAi(n), (A.7)
where

1
du cos(un + §u3)

e
S
i
|-

g

- [J 1/3(z n*/? )‘*"71/3.(z n*/?)

= w—@K aCn7?) (4.9)

is the Airy function [6]. Then, the regularity condition at £ = 0 for the
radial wave function £¢,,;({) requires the equation

0= wno(O) = Ai(—é‘no + 5) (A.9)
to be satisfied for £,9. This shows that
Eno = ~Nn+ 6, (A.10)

where 7),, are zeros of the Airy function: Ai(7,) =0(n=1,2,3,...). As s
known, 7,, are negative:

m = —2.3381, 7 = —4.0879, 3 = —5.5206, ng = —6.7867,... (A.11)
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(cf. Ref. [6] and the first Ref. [4], p. 142). Thus, due to Eq. (A.3), the
energy spectrum in the case of asy — 0 and [ = 0 is given as follows:

1 K 4/3 1
n0 — 5 Me n P 12
Eno 2#ﬁ(“ﬁ> |7I|+2C (A.12)

€

Hence, we calculate
K2 =~ 0.034GeV, 1C ~ -168 MeV, (A.13)

if 3m ~ 1GeV (i.e., 4pesr ~ 1 GeV) and the values (40) are used for Eq
and Ej¢. The figure (A.13) for x% implies the confining radius (¢f. Eq.
(54)) 10% larger than the estimation (54).

It is interesting to note that in the complex plane each two of the
triplet of solutions Ai(z) , Ai(ze2”i/3), Ai(ze_z"i/3) to the Airy equation
(d?/d2z? — z)w = 0 are independent, determining the third [6] through the
“equilateral-triangle relation”

Ai(z) + X3 Ai(2e?™H3) 4 7273 Aj(2e 273 = 0, (A.14)

where, of course, z + ze2™/3 4 2¢~27/3 = (. In the case of Eq. (A.5)
Rez = n, Imz = 0. Also the solution [6]

Bi(z) = €2™/6 Ai(2e2™/3) 4 e 727/6 Ai(2e727/3) (A.15)

is independent of Ai(z), giving
Ai(zet?mi/3) = 1e2mi/3 [ Aj(2) T iBi(z)] (A.16)
from the “equilateral-triangle relation”. One can establish a correspondence
between this triplet of solutions to the Airy equation in the complex plane

and three vectors ¥y — 72, ¥3 — 71, 72 — 73 in the plane of motion forming
three sides of our equilateral triangle of quarks. Then,

|2 = [(K*peqr)'/* |71 — 72| — €no + 61, (A.17)
and e il
+27i/3) 2 1/3 ) T3 — 71| | _
| ze | = |(K* presr) { 7y — 7] } Eno + 6| , (A.18)

as =€ — €n0 + 6 and £ = (K2 peg)!/3r with r = |7} — 7).
Comparing Eqgs. (41) and (A.12) we can infer in the case of asz — 0

that
1/3|77n| s (A.19)

(7'>n00 = %(K’Z.u'eff)_
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what gives for (r)190 the figure 6% smaller than the Coulombic number (55),
if 3m ~ 1 GeV (i.e., 4ptegr ~ 1 GeV) and «? has the value (A.13). The result
(A.19) follows also directly from Eq. (A.12) through the Feynman-Hellmann

theorem,
2 WOEMIWO) = ¢(A)| |¢(A (A.20)

for a parameter-dependent energy-eigenvalue problem

H(A)$(A) = E(A)$(A), (¥(M)|¥(A)) = 1. (A.21)
In fact, for our hamiltonian
p2 1 1
H(k?) = 21’;: +5rMr 4 5C (A.22)
it gives
i} O0E,
(Phnan = 2525 (H (oo = 222200 = 22,y o], (A.29)

where Eq. (A.12) is applied (the constants x? and C are independent).
Notice, by the way, that for the second derivative the theorem

52 0*H(X)
W(¢(A)|H(A)|¢(/\)):<¢(A) ox2 .¢(A)>

+2< ()|E(A) H(A)|8¢(A)> (A.24)

holds.
Now, in the general case of arbitrary ag¢ > 0 and [ = 0,1, 2,.. ., rewrite
Eq. (A.2) in the hamiltonian-type form

2
BOP(E,N) = s(N)pl6, ) with KN = —¢Tze+ TED - 2o e,
(A.25)

where

5()‘) = Enl(A) 3 <P(£a A) = <Pnl(£a }‘) » /62 d&l(p(f, /\)|2 =1,

0
w(é" ’\) = wnl(Ea A) = E‘Pnl(ﬁv }‘) . (A'26)
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Hence,
¢(A) = (V) = / €2 dE o™ (€, NA(\)p(E, ), (A.27)
0

and then

af?(,(\) - <a’(;():\)>A =- <§>A == ]oEdffea(&w\)lz (A.28)
0

from the counterpart of Feynman-Hellmann theorem. Thus,

e [ar (1) qma(2) e (1) b (1)
0

(A.29)

(- @A e o

In the spectrum (A.29) the term £(0), equal to —7,, + § in the case of I = 0
according to Eq. (A.10), is an eigenvalue of the operator £(0). The cor-
rection given by the integral over A is caused by the Coulombic operator
h(A) — h(0) = —A/€ whose expectation value is evaluated in an exact eigen-
state (€, A) of h(A). This expectation value can be expanded in powers
of A ~ a4 /nz/ 3 with coefficients calculated by means of ¢(£,0) and all
derivatives of @(§,A) with respect to A at the point A = 0. In particular,
the approximate form

where

£(A) = €(0) — M(})o with £(0) = 1 + 6 (A.31)

corresponds to the first-order perturbative formula with respect to the
Coulombic operator —\ /¢ treated as a perturbation in Eq. (A.25).
From Egs. (A.25) and (A.28) we can also write

9e(r) 1
o A

[e(A) — (R(0))A) » (A.32)

>

(R(A) = R(0))x =

and so the following linear inhomogeneous first-order differential equation
for e(A):
9e(A)

’\a/\“

£(A) = —(R(0))» - (A.33)
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Its general solution expressed in terms of its inhomogeneity (h(0)) reads

e(A) = —e(,\) / dx' hf\(f)z , (A.34)

where the value () at an initial point Ag is a priori an arbitrary constant

with respect to A. Expanding (h(0)) in powers of A ~ as;/x2/% we obtain
(B(O)x = (PNIRO)|p(N) = e(0) + 1RO+,  (A35)
where making use of the series
o(6,2) = (€, 0) + Ap'(6,0) + IN2"(6,0) +...  (A36)
we calculate
(R(0))o = 0 , (R(0))g = 2(¢'(0)|R(0) — £(0)|¢'(0)) , .... ~ (A.37)
Then, from Eq. (A.34)
e(A) = €(0) + /\—,\0 [e(Xo) — €(0)] — %/\()\ — X ){R(0))g + ... (A.38)

Hence, for Ag — 0
o(3) = £(0) + Xe'(0) = FAMR(O)) +
=€(0)—,\<%>0 - %’\2<h(0)>3+... . (A.39)

Note from the counterpart of theorem (A.24) and Egs. (A.28) and (A.37)
that

1 !
~(F) = "(0) = 2 O(0) - HOI(0) = ~(HO);,  (A40)
as it should be. But, it is not necessary to take in Eq. (A.38) the limit
Ao — 0 where the initial value £(\g) corresponds to the purely confining
case. In contrast, in the opposite limit A\¢g — oo the initial value £(Aq) is
related to the purely Coulombic case, if A9 — oo means reg — 0 while ag
and p.g are fixed. In fact, in this limit we get

2
’\0
agt eff

E(Ao) N _(2ast/3)2”’eﬂ' _ __agtm , 6(/\0)

_9
2n? T 6n? 8

E(AQ) — —00,
(A.41)
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when we use Egs. (A.1) and (A.3). This shows that in the nearly Coulombic
case the effect of confining potential manifests itself through an asymptotic
expansion in powers of 1/),.

Finally, it is interesting to notice that, because the Schrédinger equation
(15) for our triangle is formally a two-body wave equation, the number n;
of bound states having a given orbital angular momentum ! (in the case of
a central potential V(7)) obeys the Bargmann inequality [7]:

oo

2peqr

< o 1 /rdrIV(rﬂ (A.42)
0

(then, obviously V(r) — 0 at » — 00). Thus, if the integral in Eq. (A.42) is

finite, our triangle has certainly a finite total number Y, n; of bound states,

since all n; are finite and

o

n;=0 for 214+1 > 2}Leﬁ‘/’rd’er(7‘)l . (A.43)
0
Of course, in the case of our triangle of quarks with the Cornell-type poten-

tial (20) the integral in the Bargmann inequality is divergent to oo (both
because of the Coulombic term and confining term).
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