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Radio pulsars — rapidly rotating, magnetized neutron stars — are the
fastest stellar rotators in the Universe. The structure of rotating neutron
stars is determined by the equation of state of matter at supranuclear
densities and the angular frequency of rotation. Results of calculations of
rapidly rotating neutron star models, performed for a broad set of equa-
tions of state of dense matter, are reviewed. The upper limit to rotation
frequency of stable rotation results from the appearance of instabilities in
rapidly rotating neutron stars. Maximum rotation frequency depends on
the equation of state of dense matter, but some general empirical relations
between the maximally rotating and static neutron star models are shown
to exist.

PACS numbers: 97.60. Jd, 21.65. +{, 95.30. Cq

1. Introduction

Neutron stars are the fastest stellar rotators in the Universe. These
compact objects have typical mass M ~ Mg (mass of the Sun Mg =
1.989 x 1033 g) and are expected to have radii R ~ 10 km, so that their
mean density p ~ 10!% g cm™3 (significantly higher than the saturation
density of nuclear matter, pg = 2.7 x 10'* g cm™3, which corresponds to
nucleon density no = 0.16 fm—3). Rapidly rotating, magnetized neutron
stars are observed as the radio pulsars. Radio pulsars were discovered in
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1967, and nearly ~ 600 of them are known at present. The minimum
observed pulsation period (equal to the period of rotation of magnetized
neutron star) is 1.56 ms.

The fastest radio pulsars form a very special group of millisecond pul-
sars, characterized by the pulsation period shorter than 10 ms. The rotation
of millisecond pulsars is extremely stable, the slowing down being typically
~ 107% s per year. First millisecond pulsar was discovered in 1983, and
their number grows rapidly due to the progress in observational techniques
and data analysis.

In view of the very high stability of pulsar period (see above), their rota-
tion should be to a very good approximation uniform (rigid body rotation),
because any substantial amount of differential rotation would lead to dissi-
pation of rotational energy due to shear viscosity of dense matter. In order
to get a feeling about the orders of magnitude involved, it may be useful to
makd simple estimates, assuming M = 1 Mg, R = 10 km, and P = 1 ms.
The kinetic rotational energy can be estimated as Eo; ~ 10°% erg (some
10% of the typical binding energy of neutron star), and the angular momen-
tum J ~ 10%® g cm? s™1. In view of the fact, that neutron star contains
typically some 10°® nucleons, we come to the estimate of some 10'® % of
the orbital angular momentum per nucleon.

Massive neutron star, rotating at P = 1 ms, is a relativistic object,
both because of high speed (velocity at the equator vequator ~ 0.2¢) and
significant space curvature (stellar radius is of the order of ~ 3 Schwarzschild
radii: 2GM/Rc? ~ 0.3). In view of this, theoretical treatment of rapidly
rotating neutron stars is much more complicated than the description of the
non-rotating ones (see Section 3).

The plan of the paper if as follows. In Section 2 problems related to
the equation of state of dense matter, and calculation of the non-rotating
neutron star models, are briefly discussed. Calculations of rapidly rotating
neutron star models are described in Section 3. The problem of the max-
imum rotation frequency of neutron stars is discussed in Section 4, where
some empirical formulae, based on results of exact calculations, are pre-
sented. Finally, Section 5 contains conclusions.

2. Equation of state of dense matter
and static neutron star models

The structure of static (non-rotating) neutron stars (NS) is determined
by the equation of state (EOS) of dense matter. Except for a very short
period after the NS birth, thermal effects on the EOS are negligible. EOS
is thus determined by the functional dependence of pressure and energy
density on the baryon density of matter: p = p(ny), € = €(ny) (notice
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that ¢ includes also the rest energy of matter constituents). Matter density
p = €/c%. Eliminating ny,, we get p = p(p).

It should be stressed, that the actual form of the EOS at p > 2 — 3pg
(which is crucial for the structure of massive neutron stars) is largely un-
known. This is due to the lack of knowledge of strong interaction between
matter constituents, and to the difficulties in solving the many-body prob-
lem for the multicomponent dense mixture of baryons and leptons. Theo-
retically calculated EOS of dense matter diverge at p > 2 — 3pg (see Fig.
1) — this reflects the uncertainty in our knowledge of the EOS of dense
matter. Generally, EOS can be classified according to their stiffness: stiffer
EOS corresponds to higher p at the same value of p.
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Fig. 1. Relation between pressure and density for several equations of state of dense
matter. The equations of state are labeled according to Table I: solid line — 11;
dash-dotted line — 4; short dashes — 10; long dashes — 2.

Hydrostatic equilibrium of a static (non-rotating) NS corresponds to an
exact balance of gravity and pressure forces, at each point of the star. So-
lution of general relativistic equations of hydrostatic equilibrium combined
with EOS of matter, leads then to a one-parameter family of spherically
symmetric NS configurations, parametrized by, e.g., central density, p. (see,
e.g., [1]). Such a family of equilibrium models forms a set {M*t2t}. Global
parameters of NS, such as total (gravitational) mass M, and stellar radius,
R, are then determined as M = M(p.), R = R(p.). These relations depend
on the EOS of dense matter. Some examples of the M — p. curves are shown
in Fig. 2.

It should be stressed, that under standard assumptions concerning thermo-
dynamics of dense matter (full thermodynamic equilibrium), configurations
to the right of the maxima of the M — p. curves are unstable with respect
to small radial perturbations (see below), and therefore do not exist in the



112 P. HAENSEL

M [Mo]

Il’llll[llll

0 .
14.5 15 155 16

logiolpe) (g Cm—s]
Fig. 2. Relation between mass and central density for non-rotating neutron star
models, calculated using four equations of state from Table I (we use labels from
the first column of Table I). Configuration to the right of the maxima, indicated
by filled circles, are unstable with respect to small radial perturbations.

Universe. Both the existence of the maximum mass within the set {AM5t2t}
(which corresponds to the maximum central density of the stable equilib-
rium model, pc max, and maximum baryon number, A4, of stable neutron
star, A = Amax), as well as the instability with respect to radial pertur-
bations are consequences of general relativity. Under standard assumptions
(complete thermodynamic equilibrium, 7' = 0) the static criterion of the
stability of configurations belonging to {M®%**t} is dM/dp. > 0; it is sat-
isfied for pc < pc,max. Configurations with p. > pc max are unstable with
respect to small radial perturbations.

TABLE I
Equations of state
Label Model of EOS Reference
1 model II Diaz Alonso 1985 [2]
2 neutron matter Pandharipande 1970 [3]
3 model TH Bethe & Johnson 1974 [4]
4 model “0.17” Haensel et al. 1981 [5]
5 “case 17 Glendenning 1985 [6]
6 “case 27 Glendenning 1985 [6]
7 “case 37 Glendenning 1985 [6]
82 FP(UV14+TNI) Friedman & Pandharipande 1981 (7]
9° AVis +UVII ‘ Wiringa et al. 1988 [8]
10* UVi4 +UVII Wiringa et al. 1988 [8]
11 UV14 +TNI Wiringa et al. 1988 [8]
12 AR L +HV Weber et al. 1991 [9]
13 ideal Fermi gas of neutrons

* Non-causal within central cores of massive neutron star models.
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TABLE 11
Static neutron star models with maximum allowable mass, 2,ax and Ppin

EOS-label Max(stat) Rpyax(stat) Rmax Poiin

(Mo) (km) (10% s71) (ms)
13 0.7199 10.403 0.6405 0.98
6 1.777 11.29 0.8289 0.76
4 2.827 13.68 0.8526 0.714
5 1.803 11.15 0.8653 0.73
7 1.964 11.30 0.8848 0.71
12 1.967 10.97 0.9293 0.68
1 1.928 10.93 0.9331 0.68
3 1.850 9.915 1.067 0.67
11 1.836 9.5885 1.1425 0.59
82 1.960 9.410 1.238 0.55
10¢ 2.187 9.903 1.244 0.51
2 1.6574 8.537 1.286 0.49
9¢ 2.1235 9.455 1.318 0.48

¢ EOS is non-causal within neutron star models.

At given central density, the mass of NS increases with the stiffness
of the EOS. The maximum allowable mass, Myax, depends thus on the
EOS of dense matter. The value of Mpy,ax increases with the stiffness of
EOS and combined with the value of the radius of the maximum mass
configuration, Rpmax, constitutes an important characteristics of EOS. The
values of Mpyax(stat), Rmax(stat), calculated for a very broad set of EOS
of dense matter (the list of EOS, together with references, is given in Table
I), are displayed in Table II (we add label “stat” to stress that we deal with
static NS models).

Static (£2 = 0), spherically symmetric NS models are a very good ap-
proximation to slowly rotating neutron stars. Rotation may be considered
as slow, if the velocity at the equator is much smaller than the velocity of
light (2R < c) and if the centrifugal force is negligible compared to grav-
ity pull (22R < GM/R?). Let us mention, that even the most rapid of
the observed radio pulsars, PSR 1937+214 (period P = 1.56 ms), can be
treated within the slow rotation approximation, provided it is reasonably
massive (M > 1 Mg), in view of 2R = 0.13- (R/10 km) - ¢ . Within the
slow rotation approximation, the effects of rotation can be calculated using
perturbational approach, and keeping only lowest order terms in the small
expansion parameter, {2R/c; the effect on the bulk neutron star parame-
ters is then quadratic in 2R/c. However, such an approach cannot be used
for a precise determination of the maximum frequency of rotation of neu-
tron stars, where the effects of rotation are very important (see [10] for a
discussion of this point).
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3. Rapidly rotating neutron star models

One can point out two astrophysical scenarios, which could produce
rapidly rotating neutron stars. The first scenario involves collapse, while
the second one — accretion of matter onto neutron star surface. Neutron
star is born as an outcome of gravitational collapse of degenerate core of
a massive, evolved star (e.g., a read giant or a red supergiant), or in a
gravitational collapse of a mass accreting white dwarf. In both case, initial
(pre-collapse) configuration is expected to rotate (albeit slowly). Rapid
contraction, on a timescale of a fraction of a second, combined with (at
least partial) conservation of the angular momentum of collapsing core,
leads to formation of a rotating neutron star, with 2 much larger than that
of the pre-collapse configuration (example: the Crab pulsar, formed in the
SN 1054, which has at present P = 33 ms). In the second scenario, neutron
star in a close binary system accretes matter from its evolved companion
star. As accreted matter has non-zero angular momentum with respect
to neutron star (actually, it is expected that accretion takes place via an
accretion disk), accreting neutron star increases not only its mass, M, but
also its angular momentum, J (and therefore angular frequency, £2). It
is currently believed, that the most rapidly rotating neutron stars — the
millisecond pulsars — were formed in this way, by spin-up via accretion of
old neutron stars in a sufficiently long lived close binary system.

A natural question arises: what is the maximum frequency of stable
rotation of neutron star? For the reasons, discussed in the Introduction,
one can restrict to the case of rigid rotation. Clearly, for the rotation to
be stable, the value of {2 cannot be larger the "mass shedding limit”, 2p,s,
such that for 2 = 2, the gravity pull at the equator is exactly balanced
by the centrifugal force. For 2 < 2,5 gravity pull within the star can be
balanced by the combined pressure and centrifugal forces, and stationary
equilibrium can be obtained. For 2 > f2,,; mass will be shed from the
equator of neutron star, and therefore 2,5 constitutes an absolute upper
bound on {2 of stationary rotation.

The stationary configuration of uniformly rotating neutron star should
be stable. The potentially most important instabilities in rapidly rotating
neutron stars are those induced by the axi-symmetric perturbations (axi-
symmetric (AS) instability), and the non-axisymmetric ones, related to the
gravitational radiation back-reaction on oscillating neutron stars (gravita-
tional radiation reaction (GRR) instability) (see, e.g., [11]). Notice, that
both AS and GRR instabilities have no counterpart in Newtonian theory
of gravitation. Let us mention also, that AS instability of rotating neutron
star corresponds, in the £2 = 0 limit, to the Mp,ax instability with respect
to the small radial perturbations, mentioned in Section 3.
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In Newtonian theory of rapidly rotating self-gravitating fluid stellar
mass bodies, classical “shape instabilities” (Maclaurin spheroid — Jacobi
ellipsoid, Maclaurin spheroid — Dedekind ellipsoid) set in at sufficiently
high values of Ero1/|Egrav| (see, e.g., [1], Ch. 7). It is interesting to notice,
that for realistic models of massive, rapidly rotating neutron stars these
instabilities do not appear for 2 < (2,s. This is due both to the impor-
tance of relativistic effects (which make gravity stronger compared to the
Newtonian case), and to finite compressibility of dense neutron star matter.
Notice also, that both Jacobi and Dedekind modes would be unstable due
to gravitational radiation.

The GRR instabilities are quite efficiently damped by viscosity of neu-
tron star matter (see [12, 13] and references therein), so that the practical
limitation on {2 comes from the mass shedding criterion and the AS stability
condition.

Fe

Fig. 3. Schematic representation of two stability limits relevant for stationary
rotating neutron star models. Solid curves represent relation between mass and
central density for stationary configurations at fixed angular momentum of neutron
star. Lowest solid curve corresponds to non-rotating models (J = 0). Angular
momentum increases upwards. Dotted curve corresponds to the mass shedding
limit. Dashed line connects mass maxima: configurations to the right of this line
are unstable with respect to small axi-symmetric perturbations.

For a given EOS of dense matter, one can calculate possible uniformly
rotating, stationary NS models. They will form a two parameter family of
models, which can be parametrized, e.g., by the values of central density,
pe, and angular frequency, £2, of rigid rotation: M™*(p., 2). Configura-
tions {MT°t} form surfaces J(pc, 2), M(pc, 12), A(pc,2), where A is the
total baryon number of neutron star. On these surfaces, one may construct
lines, which correspond to neutron star sequences with constant J or A.
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A schematic representation of the J = const. lines in the M — p. plane is
shown in Fig. 3. At fixed J, mass shedding limit determines lower bound
on p. and M for stably rotating configurations. The ridge of a maximum
M at fixed J marks the onset of the AS instability with respect to collapse
[14]. Models stable against collapse correspond to (8M/8pc)s > 0 (notice
that for J = 0 one recovers the static stability criterion for non-rotating
models, Section 3). Among all stable models {M*°(p., 2)}, one can pick
up that with maximum value of 2, {2,ax, and that with maximum mass,
Mpax(rot). Numerical calculations for realistic EOS show, that rotating
configurations with 21,5 and M ax(rot) are very close to each other; they
were even believed to coincide for quite a long time [11]. Only recently,
the application of very precise numerical techniques for the determination
of maximally rotating configuration (2max) and that with maximum mass
(Mmax(rot)) showed, that they do not coincide [15,16]

In practice, the precise determination of 2max(EOS), for realistic EOS,
turns out to be difficult. At 2 ~ 2, deviations from spherical symme-
try are significant (typically, Requator ~ 1.5Rpole). The formulation of the
problem within general relativity turns out to be quite difficult {dragging of
inertial frames by the rotating fluid, conditions at infinity, efc.). Uniformly
rotating configurations are axially symmetric, and the numerical calcula-
tions can be reduced to solving a 2-D system of nonlinear, coupled partial
differential equations, combined with appropriate boundary conditions at
the star center, stellar surface, and at infinity. It should be stressed, that
the calculation of 2,4« is additionally difficult, because it requires a very
precise determination of the surface of the star at the brink of the mass
shedding instability. Because of these difficulties, precise and reliable cal-
culations of 2max for the broad class of realistic EOS of dense matter have
become feasible only quite recently [18, 19, 20].

Numerical calculations show, that Mpyax(rot) =~ 1.2Mpax(stat) (i.e.,
rotation increases maximum allowable mass by about 20%). Configura-
tions with 2max (0r Mmax(rot)) are quite flattened spheroids: Requator =
1.5R0le; their equatorial radius turns out to be typically some 30% larger
than that for M™2%(stat) [19, 20]; see also Section 4).

In Table IT we show the values of 2,4, calculated in [20, 22} for a broad
set of twelve realistic EOS of dense matter, listed in Table I, supplemented
with a schematic free Fermi gas model of neutron matter. Within this broad
set of EQS, the minimum value of the rotation period is Pmyin = 27/ 2max =
0.48 ms. It increases to Pyjn = 0.49 ms, if non-causal EOS are excluded.
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4. The empirical formula for the maximum rotation frequency

Let us estimate first the maximum rotation frequency for a simpler case
of Newtonian gravitation, and neglecting the rotational deformation of the
star. The mass shedding limit, which represents the upper bound to {2, is
determined from the condition of the exact balance of gravitational pull and
centrifugal force at the equator of rotating star, of mass M and radius R.
Within our approximations, this leads to

. MN\Y?; R \73?
QNewtoman = 1.1 1 4 B ( ) -1 . 4.1
max Px 100 g 10 km * (4.1)

Exact calculations of the neutron star models with realistic EQS show,
that at f2 ~ (2nax neutron star is significantly flattened by the effect of
rotation, so that Requator ~ 1.5Rpole- In exact calculations, the stationary
equilibrium configuration at 2 ~ (2. results from a delicate interplay
of effects of rapid rotation, and those of (strong) gravitation. Notice, that
neutron star model should be stable with respect to the axi-symmetric per-
turbations (see Section 3), and the axi-symmetric instability is a general
relativistic effect. It seems thus difficult to expect the existence of a simple
untversal (i.e., independent of the EOS of dense matter) relation between
the mass and radius of non-rotating model with a maximum allowable mass,
M;ztat (EOS), and the value of 2max(EOS), which is a maximum value of £2
for the stable rotating models M™*(EOS). Let us remind, that maximum
mass allowed for M*°* is some 20% higher, while the corresponding equato-
rial radius of the configuration with maximum allowable mass is more than
30% larger, than those for the non-rotating models M52 (see Section 3).

In view of this, it was quite surprising to find, that a simple empirical
relation

Miax(stat)) /2 (Rmax(stat))_a/z
Dmax = s 4.2
¢ ( M@ ) 10 km ( )

after a suitable choice of C' (independent of EOS !), holds with a remarkable
precision for realistic EOS of dense matter [21, 11, 22]. The form of Eq. (4.2)
is identical to that of Eq. (4.1). However, the numerical value of C should be
chosen by fitting the formula (4.2) to the values of f2,ax, obtained in exact
calculations for a possibly broad set of EQOS of dense matter. In what follows,
we will use numerical results, presented in Table II, and taken from [22]. If
we restrict ourselves to EOS, which are causal within neutron star models
(speed of sound vsouna = (dp/dp)t/? < ¢), we get Ceausal = 0.77 X 10* 571,
the relative accuracy of the fit to the exact results of Table II being better
than 5% ! This fit is visualized in Fig. 4. Non-causal EOS should be
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Fig. 4. Empirical formula fit to the exact results obtained for EOS of Table I, with
C = Ceausal = 0.77 x 10* s~1, Small filled circles correspond to EOS which are
causal within neutron star models. Numerical results for EOS which are non-causal
within central cores of massive neutron stars are represented by small open circles.

rejected as non-physical. In view of this the value of the empirical constant
C, recommended in [22],is C' = C.pysa1 = 0.77 X 10% s~ 1.

It is interesting to note, that this recent value of C, obtained in [22],
coincides with the original value, proposed by Haensel and Zdunik in 1989
[21], which was based on the set of older results for rapidly rotating neutron
stars, obtained by Friedman et al. [23]. The values of C based on the exact
results of other groups turn out to be rather close to those obtained in [21,
22]. Namely, exact results of Lattimer et al. [18] lead to C = 0.76 x 10% s ™1,
while the causal subset of results of Cook et al. [19] corresponds to C =
0.78x10* s™1 (see [22] for a detailed comparison of C’s obtained by different
authors).

The empirical formula, Eq. (4.2), establishes thus a rather precise corre-
spondence between two extremal configurations: one from the set {M®5t2t},
and the other from {M¥°t}. While the form of empirical formula, Eq. (4.2),
is identical to Eq. (4.1), its physical content is thus very different. It is
interesting to note, that the empirical value of C is 2/3 of the Newtonian
coefficient, appearing in Eq. (4.1).

The practical importance of empirical formula consists in allowing a
rapid and precise determination of 2,,x (With typical error of only a few
percent), using easily available (calculated) parameters of the non-rotating
maximum mass model. This was actually the motivation behind the intro-
duction of the empirical formula by Haensel and Zdunik [21], but it should
be stressed that the precision and universality of the formula by far exceeded
the original expectations of these authors. In practice, the empirical for-
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mula for 21,.x was widely used for the calculation of the maximum neutron
star rotation frequency for EOS, for which only results of static calculations
were available (see, e.g., [18, 24-27].

It turns out to be possible to derive other empirical formulae, relating
the masses and equatorial radii of the extremal configurations from the
{M>t2t} and { MOt} sets.

Recent analysis shows, that for realistic EOS of dense matter one has
Mpmax(rot) = 1.18 Mpax(stat) and Rige " (rot) = 1.34 Rpax(stat) [10].
These empirical relations hold within the relative error of only 3% and 4%,
respectively !

5. Conclusions

Limiting mass shedding frequency for uniformly rotating, stable neutron
star models, 2 ax, calculated for realistic EOS of dense matter using precise
numerical methods, is represented, within better than 5 %, by an empirical
formula, relating it to mass and radius of static configuration with maximum
allowable mass.

The value of £2,,x(EOS) is an important parameter characterizing the
EOS of dense matter. An EOS, which yields 2ax such that 2p.x <
27/ Pobs min (Where Py 1nin is the shortest observed pulsar period) should
be rejected as inconsistent with observations. Future detection of sub-
millisecond pulsars may thus be expected to put interesting constraints on
the EOS of superdense matter.
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