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A brief overview is given of recent advances towards extending the
nuclear Boltzmann model to processes exhibiting instabilities and asso-
ciated catastrophic bifurcations, by incorporating the fluctuating part of
the collision term in the equation of motion for the one-body phase-space
density.
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1. Introduction

Many natural processes exhibit catastrophic transformations, in which a
given system undergoes an irreversible change and acquires a qualitatively
different appearance, often leading to a higher degree of complexity. In
physics, this type of phenomenon may be associated with phase transitions,
but its occurrence is much more general. The dynamics of such processes
is further complicated by the presence of instabilities and bifurcations and
the development of appropriate formal descriptions poses significant chal-
lenges. The general topic of catastrophic trajectory branching is especially
important in the context of nuclear collisions, since detailed microscopic sim-
ulations are required for the extraction of the key physics from experimental
data. Figure 1 displays schematic illustrations of catastrophic processes in
nuclear dynamics.

This presentation summarizes recent advances towards extending the
effective one-body description, the nuclear Boltzmann equation, to accom-
modate catastrophic processes, such as occur when the expanding partic-
ipant matter condenses into fragments. By incorporating the fluctuating
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part of the collision term in the equation of motion for the one-body phase-
space density, one obtains the Boltzmann-Langevin model without intro-
ducing any new physical parameters. This extended model produces the
correct relaxation dynamics for both averages and fluctuations, and it also
describes the spontaneous agitation and amplification of unstable collective
modes. Thus, the model appears to provide a physically sound basis for ad-
dressing actual nuclear collision dynamics and may be useful for interpreting
multifragmentation data.
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Fig. 1. Three simple examples of catastrophic transformations in nuclear dynamics.
The top panel shows how the low-energy fission process transforms a hot compound
nucleus into two receding fragments, whose direction of relative motion breaks the
initial rotational symmetry. The center panel is relevant for multifragmentation
at intermediate energies, showing the spontaneous clusterization of dilute nuclear
matter inside the zone of spinodal instability in the density-temperature phase
diagram and the associated breaking of the initial translational symmetry. The
bottom panel illustrates the formation of disoriented chiral domains following a
high-energy collision, in which the effective potential becomes unstable as the sys-
tem cools, causing the chiral field to select a particular orientation in isospace and
thereby breaking the chiral symmetry prevailing at high temperature.
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2. Boltzmann-Langevin dynamics

Over the past several years, the nuclear Boltzmann—Langevin model
has emerged as a promising microscopic tool for nuclear dynamics at inter-
mediate energies. This model describes the one-body phase-space density
f(r,p,t) for the nucleons (and any other hadrons present), as it evolves in
the self-consistent effective one-body field A[f] while subjected to the effect
of occasional Pauli-suppressed two-body collisions,

. P 0 (Vlasov)
frp) = 25— (AL, £} = {I[f] (Boltzmann) . )
I[f] (Boltzmann-Langevin)

In the simplest description the residual interactions are neglected and the
Vlasov equation emerges, the semi-classical analog to TDHF [1]. The effect
of the two-body collisions is described by the collision integral I[f] = I[f] +
8I[f] which can be decomposed into an average part < I >= I and its
fluctuating remainder 41.

The Pauli-blocked average collision integral was first employed by Nord-
heim [2]. Later on, the approach was adapted to hadronic gases [3] and
subsequently augmented with the mean field [4], leading to the nuclear
Boltzmann model. The average effect of the two-body collisions on the
phase-space occupancy is

- - - _d 11
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gain loss

The last factor is the differential cross section for (elastic) nucleon-nucleon
scattering in the medium. Thus the in-medium properties must be known
to allow quantitative results to be calculated. Conversely, in so far as the
calculated observables depend on this physical ingredient, confrontations
with data may help to extract this microscopic information from experiment.

The correlation function of the collision term was first considered by
Ayik et al. [5]. The inclusion of §I[f], the fluctuating part of the collision
integral, produces a continual rearrangement of the phase-space occupancy
and so is akin to the Langevin force acting on a Brownian particle. There-
fore, an entire distribution of possible phase-space densities emerges, ¢[f].
This obviously presents a formidable task, both formally and numerically.
The analysis is greatly aided by recasting the transport problem in terms
of a generalized Fokker-Planck equation [6],

2
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where s denotes the phase-space point (r,p), with ds = drdp/ h® and
V and D denote the generalized transport coefficients. The drift coeffi-
cient V[f](s) = I[f](s) represents the average rate of change, while the
2D|f](s,s') =< 8ISI' > gives the diffusive growth rate of the correlated
fluctuations. This formulation of the problem has made it possible to de-
velop and test a numerical simulation method on a phase-space lattice [7],
so far the only demonstrably valid approach [8].

It is instructive to study the equilibrium features of the model. Under
suitable conditions of confinement and stability, the BL equation of motion
(1c), as well as the corresponding Fokker-Planck transport equation (3),
yield dynamical solutions that approach stationarity and display proper-
ties characteristic of the associated quantum-statistical equilibrium. Any
physically acceptable simmulation code must also do so.

It is especially simple to consider a uniform Fermi-Dirac gas of nucle-
ons that interact only via their stochastic two-body collisions, because the
correlated equilibrium fluctuations are given by a simple analytical expres-
sion [9], a novel realization presenting a general contribution to statistical
physics. The correlations between the fluctuations in phase space have the
form < §f16f, == f{’ _{’612 - ff ?Slgfz?f—g, where the coefficient 512 can
be expressed as a bilinear form in those observables that are left invariant
by the two-body collision process (density, current, and pressure),

€1 —Ep€2 — €0 Dy P2 (4)

1
S12 = 1 - 3
12 = ¢0 + o o + omee |’

where o‘T & T2 and ¢g = 3 g;. It has been shown explicitly that the

Fokker— Planck equation for the correlation function leads to the appropriate
equilibrium form [9]. This provides an important test of both the transport
model per se and its specific numerical lattice implementation. However,
the method is too computer demanding to be practical for realistic collision
scenarios. Its primary value therefore is to establish a well-based reference
against which to test simpler approximate methods.

3. Triggering of catastrophes in unstable matter

Fluctuations are of crucial importance when instabilities occur. Nu-
clear matter in the unstable spinodal zone of the phase diagram therefore
provides a useful testing ground for candidate dynamical models. Consid-
erable progress has been made over the past few years in understanding the
spontaneous agitation of unstable modes [10].

The problem is most conveniently discussed in terms of the Fourier
components of the phase-space fluctuations § f. Uniform matter is mechan-
ically unstable against density undulations if Fy < —1, where Fy(k,T) =
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®0(po/T)(Ohy/0p) is the generalized Landau parameter [11] associated with
the finite wave number k and the finite temperature 7. The corresponding
spinodal boundaries are displayed in Fig. 2.

Inside the spmodal region there exists, for each wave number k, a pair
of collective modes, _f,c (p). They have an exponential time development
with an e-folding time ¢;, determined by the dispersion relation,

1 - /ggahk k-v 8f°
B h® 3p k-v+it; e

—Fo(k,T) (1 — y4 arctan %) , (5)

where v, = 1/kVpty is a dimensionless measure of the growth rate. Figure
3 shows the growth times and rates for a range of temperatures and wave
lengths, as calculated with a density and momentum dependent effective
two-body interaction that leads to a good reproduction of macroscopic nu-

clear properties, such as densities, bindings, barriers, and optical potential
[11].
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Fig. 2. Spinodal boundary. The region of spinodal instability is delineated in the
density-temperature phase-plane for harmonic density undulations for a specified
wave length A.

The collective part of the density fluctuations can be expressed as

M t) = AL (O (p) + AL (WS (). (6)

The time development of the amplitudes is governed by dAY/dt = vA{ [t +
FY, where the stochastic force F} arises from the Langevin part of the
collision term. It agitates the mode and thereby exposes it to amplification
by the unstable selfconsistent effective field. The Langevin term vanishes
on the average, < F} >= 0, and so the amplitude A} will remain zero
on the average if we start from uniform matter. However, its correlation
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coefficients give rise to source terms, D} ’, which govern the rate at which
the magnitude of the density fluctuations grow,

v+
133

d ’
2 o) = ¢+ e, (7)

where 0" "=< Ay AZ' > are the correlation coeflicients. The density fluctu-
ations are described by the density-density correlation function, o(r12) =<
dp(r1)8p(ry) >. It is instructive to consider its Fourier transform,

/dr eik'ra(r) = ZUZ”', (8)
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which is displayed in Fig. 4 at various times.
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Fig. 3. Collective amplification rates. The top panel shows the e-folding time
tr characterizing the amplification of harmonic density undulations having the
particular wave length A = 8 fm, as a function of the relative density p/po and for
various temperatures T'. The bottom panel shows the corresponding characteristic
energy Fi = h/t; for the particular density p = 0.3pp, as a function of the wave
number k = 27/ and for the same temperatures 7'
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For early times, a broad range of wave numbers are present in the fluc-
tuation spectrum, reflecting the fact that the collision integral is local in
space and so produces white noise. As more time elapses, the most rapidly
amplified modes grow progressively more dominant (recall that the plot is
logarithmic), so that only a relatively narrow band of wave lengths remains
significant by the time the amplitudes have grown beyond the regime of lin-
ear response. This feature may suggest that the spectrum of final fragment
sizes is correspondingly narrow. In actual nuclear collisions, this would mean
that the massive fragments tend to have the same size, an effect that can be
subjected to experimentally verification by means of modern multidetector
arrays.
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Fig. 4. Growth of density fluctuations. The evolution of the average magnitude
of the density fluctuations is illustrated by plotting the (logarithm of the) Fourier
transform of the density-density correlation function o defined in (8) for various
times ¢, either as a function of density p for a fixed wave length A = 8 fm (top) or
as a function of wave number k for a fixed density p = 0.3py (bottom).

4. Memory time

Current models of nuclear dynamics are all time local. In particular,
the collision térm in the one-body approaches is assumed to be local in
both space and time, in accordance with Boltzmann’s original treatment for
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dilute gases. However, the fastest-growing collective modes have fairly high
characteristic energies E; = h/ty, as is evident from Fig. 3. Consequently,
one must expect non-local effects to be important. Recently, the collision
term in the Boltzmann-Langevin model was augmented by a finite memory
time by Ayik [12].

The inclusion of a finite memory time leads to a rather simple mod-
ification of the feed-back equation (7) governing the collective correlation
coefficients [13],

4
dt

v+

o’ (1) = 2DY (1) + o’ (1), (9)

where the time-dependent coefficients xZ”I (t) express the effect of the mem-
ory time.

This modulation of the effective source terms causes the evolution of
the covariance coefficients o¥” (t) to deviate from what would be obtained

without a memory time, U’I;”I(t) =0 ZV’(t))‘(%"'(t). These deviations can be
significant, particularly in the domain of fastest growth, as is illustrated in
Fig. 5. It, therefore, appears important to incorporate such memory effects
in dynamical simulations. Fortunately, this can be done without increasing
the computational effort significantly.
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Fig. 5. Memory correction factors. The correction factors )ZZ”’(t) determining the
time dependence of the covariance coefficients describing the agitation of collective
modes in unstable nuclear matter, for the density p = 0.3p9 and two temperatures,
T =4, 6 MeV. The arrows indicate the values approached at large times, ¢ 3> 1.
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5. Concluding remarks

Significant progress has been made over the past several years towards
extending the nuclear Boltzmann model to scenarios in which the dynamics
displays catastrophic bifurcations. The ensuing Boltzmann-Langevin model
appears to be on solid formal ground, with physically reasonable properties,
and the efforts are now being focussed on the practical implementation the
model for the purpose of applying it to nuclear collisions at intermediate
energies where multifragmentation phenomena provide a promising area of
confrontation between theory and experiment.

This work was supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, Nuclear Physics Division of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
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