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A systematic construction of the energy-density functional within the
local density approximation is presented. The Hartree—Fock equations
corresponding to such a functional are solved in case of rotating superde-
formed nuclei. The identical bands in 32Dy, 151Tb, and 5°Gd are in-
vestigated and the time-odd components in the rotating mean field are
analyzed.
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1. Introduction
The nuclear rotation is an example of a collective motion for which

time-dependent linear combinations of stationary states of a given spin can
be identified with a rotating wave packet. A description of such states can
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be performed within a mean-field theory in which properties of the system
are determined by the one-body density matrix. Because the time-reversal
symmetry is broken for the rotating states, the density matrix, as well as
the resulting mean field have both time-even and time-odd components.

Properties of nuclear time-even mean fields are known rather well, be-
cause they are reflected in multiple static phenomena which can be studied
experimentally, c¢f. review [1]. On the other hand, very little is known
about properties of the time-odd mean fields. The present study is devoted
to an attempt to analyse properties of these time-odd components in rapidly
rotating superdeformed nuclei. In particular, we aim at studying the phe-
nomenon of identical bands, which may provide a unique information on
poorly known sector of the nuclear effective interaction.

In Sect. 2 we present a construction of the energy-density functional
based on a few simple assumptions concerning its structure. Section 3
presents results of selfconsistent cranking method applied to nuclei in the
A~150 region; it supplements the results of similar calculations presented
in Ref. [2].

2. Local density approximation

The density of nuclear matter in the interior of atomic nuclei has a well
defined value, called the saturation density, which is independent of the
nuclear size. This property of matter composed of strongly interacting nu-
cleons is a basic feature of the nucleon-nucleon interaction which (depending
also on the intrinsic symmetries of the nucleonic states) gives the strongest
attraction at a certain distance and becomes weaker or repulsive at other
distances. Therefore, as a first approximation one can consider a state of the
matter in a given point of the nucleus as given by that of the infinite matter
at the saturation density. In other words, properties of nuclear matter in a
given point weakly depend on other points of the nucleus.

Such an observation underlies the local density approximation (LDA)
in nuclear physics [3]. It has been adopted from similar ideas developed
in atomic physics [4] and reflects fundamental properties of many-fermion
systems. In such systems, the Pauli correlations play a very important
role in defining properties of states near its ground state. To some extent,
details of interactions are less important, and in particular, the local density
approximation can be valid irrespectively of the interaction range.

Because of the finite nuclear size, the simplest version of the LDA has
to be corrected by taking into account not only the density itself but also
its local derivatives. This amounts to extending the Thomas-Fermi approx-
imation beyond its extreme version, or to applying the systematic Wigner—
Kirkwood % expansion [3]. In a phenomenological approach one may use
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the ideas of the LDA to construct the energy-density functionals, and in
what follows we proceed along these lines.
Principal assumptions of such a LDA can be formulated as follows:

o The total energy of the nucleus is given by the integral of the local
energy density H(r),

£= /d3r’H(r), (2.1)

o The energy density depends on the nuclear one-body density matrix
and its derivatives up to the second order.

Neglecting for simplicity the isospin degree of freedom, i.e., considering

one type of nucleons only, the density matrix in spatial coordinates can be
defined by

p(ra,v'c’") = (Bla* (v o')a(ra)|®), (2.2)

where » is the position and ¢ is the spin of a nucleon, while |#) is a many-
body nuclear wave function.

The spin degrees of freedom can be separated by defining the scalar and
the vector parts of the density matrix, p(», »') and s(7, »'), respectively, i.e.,

o(r,7) = Y p(ro, v'o) (2.3a)

s(r,v') = p(ra,r'a’)(d'|o]o). (2.3b)

co'!

Since the density matrix is Hermitian, its scalar and vector parts have the
following properties with respect to exchanging spatial arguments:

p(r,7') = p(v',r), (2.4a)
s*(r,»") = s(r', 7). (2.4b)

On the other hand, the density matrices corresponding to time-reversed
states read:

pT(r, "") = p*("', 1‘,) 3 (2.58.)
sT(r, 7'y = —s*(r,r"). (2.5b)

These properties mean that for the time-even state the scalar density matrix
is a real and symmetric function of spatial arguments, whereas the vector
density matrix is imaginary and antisymmetric. Therefore, the local parts
of the scalar and of the vector densities,

p(f’) = p(ryr), (2’63‘)
s(r) = s(r,7), (2.6b)
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respectively, do not and do change the sign under the time reversal. Hence
the matter density p(») is time-even, and the spin density s(r) is time-odd.

The local derivatives of the density matrix have been defined in Ref. [5]
and are summarized in Table I. (See Ref. [6] for another possible set of
definitions.) A systematic construction [5] of these derivatives up to a given
order consists in acting on the scalar and vector density matrices (2.3) with
the operators (V — V')/2i and setting the arguments equal, »=7', after the
differentiation is completed. This amounts to calculating derivatives with
respect to the relative coordinate »—#' at the relative coordinate equal to
zero. At this point, the derivatives (V+V’)/2 with respect to the total
coordinate r+7' are not considered, because they amount to calculating the
derivatives after setting r=r', see below.

TABLE 1

Local densities of a fermion system up to the second order in derivatives with
respect to the relative coordinate

Type of density Order Definition

Matter: 0 p(r) = p(r,7)

Current: 1 () = (1/29[(V - V)p(r, )]s
Kinetic: 2 r(r) = [V-V'p(r,r")],=r

Spin: 0 ( ) = s(r,7)

Spin current: 1 w(r) = (1/20)[(Vu=V,)su (7,7 Ve
Spin kinetic: 2 T( Y= [V -V's(r, 7 )]r=r

In the first order one obtains two new local densities, the current den-
sity 7 and the spin current density J,,(r), Table L. In the second order
one has to act on the scalar and vector densities with the tensor opera-
tor (V,—V,)(V,—-V,). However, the resulting traceless-symmetric-tensor
density is not interesting, because there is no other zero-order tensor den-
sity with which it could have been contracted to construct the corresponding
term in the energy density, see below. Therefore, only the scalar part of the
second-order operator should be considered. Due to the identity

(V-VVY =(V+V)P-4V.V, (2.7)

the action of (V — V')? can be expressed by that of V - V', and therefore,
following Ref. [5] one uses kinetic densities shown in Table I.

We may now proceed by constructing the local energy density as a sum
of terms depending on the above local densities. Such a construction is
based on the following rules:

o Every term should be quadratic in local densities.
An a priori arbitrary coupling constant can be used in front of every
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term. It is well known that the energy densities which are quadratic in
the matter density do not lead to saturating systems, and therefore, a
density dependence of the coupling constants should be allowed.

¢ The energy demnsity should be invariant with respect to parity,
time reversal, and rotations.
This invariance should be considered in a limit of unbroken symmetries.
In principle, an extension of the functional beyond this limit is arbitrary.

For example, for broken parity symmetry one could use in the functional

. . + -
either the term CPp?, or two independent terms C? p?,_ and C? p%,

where p1=(p+ P )/2, and where p? corresponds to the parity inversed
state. It is obvious that for the unbroken symmetry both choices give

the same result, provided that C?=C ot Moreover, for both choices the
functional is invariant with respect to parity. On the other hand, for
the broken symmetry the first choice gives the following contribution to
the total energy:

/dsrC"p2 = /darC”(pi +p2), (2.8)

and therefore it requires that C? =C ”+, while in the second choice
these two coupling constants can be chosen independently. These am-
biguities are even larger for density-dependent coupling constants. Up
two now, mostly the first choice has been considered, :.e., the function-
als are constructed in the unbroken symmetry limit.

e Terms beyond the second order are not taken into account.
The order of the given term is defined as a sum of orders of both densities
on which this term depends. The requirement of neglecting the terms
beyond the second order is consistent with not considering the densities
beyond the second order, see Table I. This amounts to an expansion of
the energy density up to the second order in relative coordinates.

The construction of the energy density is illustrated in Table II. The
first column gives the densities presented in Table I. The spin current density
Juyv is split into the standard scalar, vector, and tensor parts (J(O), J, and

J@), respectively) according to
_ 15(0) 1 (2)
Juw = 3800 + s€pund + Tt (2.9)
where

JO =N"T., (2.10a)
s
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= Z €xuvdpuv (2.10Db)
112%4
= %(Jl“/ + JVI»L) - %6;“/ Z Jmc . (210C)
K
TABLE 11

Construction of all possible terms up to second order in the energy denmsity of a
fermion system (for comments see text).

1 2 3 4 5
Density Derivative  Order Symmetry Energy density
T P space prime dependent
p(r) 0 + + scalar p?
Vp 1 + — vector (Vp)?
Ap 2 + + scalar pAp
(VxV)2)p 2 + + tensor
T(r) 2 + + scalar pT
JO)(r) 1 + — scalar (J(O)) ?
v J©) 2 + + vector
J(r) 1 + — vector J? Veo-J
v.-J 2 + + scalar pV-J
VxdJ 2 + + vector
(VxJ)® 2 + + tensor
J;(Li)(‘r) 1 + — tensor (‘7(2))2
s(r) 0 — 4+ vector 8?
V-8 1 — — scalar (V- 8)?
Vxs 1 — —  vector (V x 8)?
(Vxs)@ 1 — — tensor ((sz)(z))2
As 2 — 4+ vector s-As
J(r) 1 — —  vector 7 J-Vxs
v-3 2 — 4 scalar
Vxj 2 — + vector 8-Vxj
(Vx7)® 2 — 4+ tensor
(r) 2 — 4+ vector s-T

The second column of Table II presents derivatives of the densities from
the first column. The derivatives are constructed in the vector-coupled form.
For example, from the (vector) gradient operator V and the scalar density p
one can obtain the vector density Vp, the scalar density Ap, and the tensor
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density (VXV)(z)p. Since p itself is a zero-order density, the density Vp
is of the first order and the other two densities are of the second order, as
indicated in the third column of the Table II.

The derivatives are calculated only up to the second order. Moreover,

the rank-3 tensors are not taken into account and the derivatives of J‘(,i)(r)
are not included in the Table II, because there are no other densities with
the same symmetries to construct terms in the energy density. Apart from
these two omissions, the Table presents a complete set of densities and their
derivatives which can be obtained within the specified limits.

The fourth column of the Table gives the symmetries of every density in
the unbroken symmetry limit, ¢.e., assuming that p is a time-even, parity-
even scalar density, and s is a time-odd, parity-even vector density. Then
the symmetries presented in the Table result from the fact that the gradient
operator V is a time-even, parity-odd vector operator.

Finally, the fifth column of the Table II presents the terms in the energy
density which can be constructed from the densities listed in the first two
columns. In each case a term is obtained by forming a scalar, time-even,
and parity-even product of two densities, i.e., by multiplying densities hav-
ing exactly the same symmetries. Two avoid the double-counting, a given
density is multiplied only by densities appearing higher in the Table II. The
rule of not including terms above the second order is also respected.

For example, according to this construction scheme, the matter density
p gives the simplest term in the energy density, p?, as shown in the first line
of the Table. Similarly, the derivative Vp gives rise to the term (Vp)2. This
term is listed in the column of “dependent” terms, because for a density-
independent coupling constant it can be expressed by the “prime” term
pAp given in the third line. This can be done by integrating by parts the
integral of the energy density (2.1). The corresponding expressions for five
“dependent” terms are as follows:

(Vp)? = —pAp, (2.11a)

Vp-J=-pV.-J, (2.11b)

(Vxs):=—(V.8)2-s-As, (2.11¢)

S (Vx5 = 2(v-s)?, (2.11d)
1137

J-Vxs=8-Vxj. (2.11e)

Altogether, this construction procedure gives eighteen terms in the en-
ergy density, of which thirteen are “prime” and five are “dependent”. Three
terms correspond to the squares of the spin current density J,,(r) for the
three different values of the intermediate-coupling angular momentum. Usu-
ally, these three independent terms are considered together in the following
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single term:
ZJZ =LY 4 152 4 Z (7)? (2.12)

with a common coupling constant.

It turns out that each density, or a derivative of the density, gives rise
to at most one “prime” term in the energy density, and these terms and
coupling constants can be conveniently labelled by the corresponding den-
sities. We then obtain the following expression for the interaction energy
density:

Hint(r) — Heven(r) + HOdd('r) , (2.13)

with

—2 ;
HEVR(r) = CPp% + CPPpAp+ CTpr +CTJ +CV7pV - T (2.14a)
Hod(r) = C*8% + CA%s-As+ CTs - T+ C 52
+CVj3,(v X j)+CV3(V.S)2_ (2.14b)

Each of these terms can have the isoscalar and the isovector form, and the
kinetic energy density has to be added to obtain the total energy density of
a nuclear system.

Apart from the last term in H°3d(#), all these terms appear in the en-
ergy density corresponding to the Skyrme interaction [5, 2]. The additional
term in Eq. (2.14b) can only be obtained if the tensor interaction is added
to the Skyrme force, i.e., when the results of Ref. [7] are generalized to the
case of broken time-reversal symmetry. In the following we do not consider
such a possibility, and we set CV*=0.

By varying the total energy (2.1) with respect to the single-particle wave
functions one obtains the Hartree—Fock time-even and time-odd mean fields
(5]. In the convention corresponding to the energy density of Eq. (2.14),
the relevant expressions are given in Ref. [2] and will not be repeated here.
Instead, in the following section we present the results of the Hartree—Fock
cranking method applied to the description of superdeformed bands.

3. Superdeformed bands in *?Dy, *1Tb, and 5°Gd

In Fig. 1 we show the results of calculations for the yrast superdeformed
band in 13?Dy and for the first excited band in 15! Tb, denoted by 152Dy(l)
and 1°1Th(2), respectively. Details of the calculation methods can be found
in Ref. [2]. The coupling constants of the energy-density functional have
been determined from the parameters of three Skyrme forces, SkM* (8],
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SkP [9], and SIII [10]. The left-hand-side panels show the results obtained
for the complete functionals, while those at the right-hand-side correspond
to omitted time-odd terms H°394(r)=0, i.e., to

ct=Ccr=¢cT=¢c'=¢cV =0. (3.1)

For the 151Tb(1) and !°Gd(2) bands, the analogous results are shown in
Fig. 2.
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Fig. 1. Calculated dynamical moment J(?) for the yrast band of 132Dy, part (a), the
relative dynamical moment §.7(?) calculated for the 1Tb(2) and **?Dy(1) bands,
part (b), and the relative alignment 61 between these two bands, part (c). Left-
hand-side panels show the results for complete Skyrme functionals of the SkM¥*,
SkP, and SIII interactions, and the right-hand-side panels show the results with
omitted time-odd terms. The experimental points are denoted by asterisks. Note
the scale in (b) expanded five times as compared to (a).

The omission of time-odd terms in the Hartree-Fock approach is analo-
gous to the standard phenomenological rotating mean-field approach where
the selfconsistent changes of the mean field due to rotations are not taken
into account. Results of latter type calculations, for the same SD bands as
considered in the present study, can be found in Refs [11] and [12].
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Fig. 2. Same as Fig. 1, but for the % Tb(1) band, (a), and for the differences
between the °°Gd(2) and '*!Th(1) bands, (b) and (c).

For the complete Skyrme functionals, the dynamic moments J () of
the 152Dy(1) band obtained for SkM*, SkP, and SIII interactions are very
similar, see part (a) in the left-hand-side panel of Figs 1 and 2. This is not
the case when the time-odd terms are omitted, as show in the corresponding
right-hand-side panels. For SkM* and SIII, the omission of the time-odd
terms significantly decreases the values of 7(2), while for SkP the changes of
J?) are much smaller. This feature is related to the values of the isoscalar
nuclear-matter effective mass, which for SkP is equal to the free nucleon
mass, m*=m, while for SkM* and SIII is smaller by the factor of 0.79 and
0.76, respectively. As a consequence, for SkP the isoscalar coupling constant
C] is equal to zero [2], and the modifications introduced by omitting the
time-odd terms, Eq. (3.1), do not influence J(?) in a very strong way. On
the other hand, whenever this coupling constant is relatively large, as is for
SkM* and SIII, the corresponding changes in J(?) are well pronounced.

These results illustrate the importance for the rotational properties of
the nucleus of the 52 term in the energy density. The cranking term mainly
induces the nonzero flow of nuclear matter, as given by the current density j,
which influences the time-odd nuclear mean field provided the corresponding
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coupling constant C7 is nonzero.

In spite of the strong influence on the values of J (2), the omission of the
time-odd terms has a very small effect on the sameness of J(?) in pairs of
identical bands. In parts (b) of Figs 1 and 2 we show the relative dynamical
moments §.7(2), i.e., the differences between the values of J (2) calculated
for two pairs of identical bands 13! Th(2)-'52Dy(1) and 1*°Gd(2)-1°1Th(1).
One can see that the omission of the time-odd terms influences the values
of 73 in a very similar way for both members of each pair. Even if the
values may change by as much as 15 A%/MeV, the relative values are always
well below 2 A%/MeV. This shows that the sameness of J (2) is not governed
by the time-odd terms in the mean-fields, but rather can be attributed to
general geometric properties of the underlying orbital #[301]1/2(r=+1).

A different patterns is obtained for relative alignments shown in parts
(c) of the figures. Here the omission of the time-odd terms leads to impor-
tant changes of the relative alignments, and also different relative alignments
are obtained of the three Skyrme forces studied.
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Fig. 3. Similar as in Fig. 1, but for different time-odd terms omitted in the energy
density, see text.

In Figs 3 and 4 we present a detailed analysis of the time-odd terms
appearing in the energy density for the SkP interaction. As shown in the
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Fig. 4. Same as Fig. 3, but for the *'Tb(1) band, (a), and for the differences
between the '*°Gd(2) and **1Th(1) bands, (b) and (c).

legends, the results presented in the left-hand-side panels correspond to the
following conditions: (i) the complete functional, (3) Cf = C{ = 0, (iii)
CAs =T =¢CJ =0, and then (iv) C§ = CA* = CT = C/ = 0. In the
right-hand-panels, in addition to the last of these conditions we set to zero
either one, or both of the C7 and C'V7 coupling constants.

As discussed above, the value of the effective mass m*=m renders the
dynamical moments 7 (2), the relative dynamical moments, and the relative
alignments §I almost independent of the CJ coupling constants. (A weak
residual dependence results from a non-zero value of the isovector coupling
constant C7, see Ref. [2].) On the other hand, the values of the relative
alignments strongly depend on the C'V7 coupling constants, and are closest
to the experimental data when these coupling constants are equal to zero.
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4. Conclusions

In the present study we have presented a systematic construction of
the energy-density functional in the frame of the nuclear local density ap-
proximation. Such a construction is based on a few simple prescriptions
and leads to the functional identical to that obtained by using the Skyrme
effective interaction. The only exception is the term given by the square of
the divergence of the spin density, which can only be obtained if the tensor
component is added to the Skyrme interaction.

Following Ref. [2], we have here presented the analysis of the time-odd
components of the mean field of rotating superdeformed nuclei. Special
attention has been devoted to properties of the SkP Skyrme interaction
which is characterized be the effective mass m*=m. In g)articular, we have
shown that the sameness of the dynamical moments J 2) does not depend
on whether the time-odd terms are, or are not taken into account. On
the other hand, the sameness of the corresponding alignments does depend
on these time-odd terms. Therefore, one may expect that a systematic
investigation of the rotational alignments may serve as a tool for establishing
the properties of time-odd component of the rotating nuclear mean field.
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