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In the paper the physical quantum numbers labelling the irreducible
representations of the point symmetry Dsp have been derived. Both sets
of labels, obtained in the intrinsic and laboratory frames, have been con-
sidered. This symmetry is related to the octupole deformation of asz-type
which leads to the exotic octupole states of nuclei. The derivations are
based on a group algebra formalism.
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1. Introduction

The point group symmetries and their influence on the shell structure
in the systems that can be treated using a mean field formalism have been
studied by Hamamoto and collaborators [1]. These authors have considered
systems without spin-orbit interactions and therefore more adequate for the
atomic and cluster physics rather than nuclear physics. In particular it fol-
lowed from their study that the symmetry represented by the combinations
Y32 + Y32, giving rise to the T; point group, leads to high degeneracies of
the individual levels.
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Also a C4 symmetry, one other type of the point group symmetries
that may become of importance for the nuclear physics applications has
been discussed recently (2, 3].

A theoretical analysis based on the nuclear average field concept has
shown new types of nucleon correlations. These correlations imply the exis-
tence of exotic forms of the equilibrium deformations and consequently new
shape symmetries [4-7].

All these results encourage us to consider the different types of possible
point symmetries in nuclei and their consequences. One of the most impor-
tant problem is the labelling of the irreducible representations (IR) of point
symmetry groups by the physical quantum numbers and a relation between
the labels in intrinsic and laboratory frames.

In the paper we consider the both problems for Dj; point symmetry
group.

2. Dgy symmetry

Nuclear surface can be described in the usual form [8] which for the
special case of octupole deformation of a33-type [9] can be expressed by the
equation

R(9,¢) = Roc({a})[1 + as3(Y33(d, ¢) — Y3_3(9, ¢))]. (1)

In this case one can expect exotic symmetry represented by the point group
D3y, [9, 6]. This 12 elements group is the simple product of two groups:

D3p = D3 X Xy, (2)

where

D3 = {e,CSacgaz’baué,ué’} (3)

is generated by two operations: C5 which denotes a rotation around z-axis
about the angle 27/3 and U; which is interpreted as a rotation around x-
axis about the angle 7 (U) = C3UC2, Uy = C2U>C3) and T, denotes the
group of reflections o, in respect to a horizontal plain [10].

3. The group algebra QM(0O(3), D3};)

As a tool for further considerations we use the appropriate form of group
algebras. This excellent formalism allows to solve our problem determining
the representations of the symmetry group D3}, in the intrinsic frame and
translate the results to the laboratory one. The elementary theory of group
algebras for finite groups one can find e.g., in [7]. On the other hand, a lot
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of information about group algebras for continuous groups is contained in
[11]. For our purposes we need to introduce a combined structure of both
algebras: for discrete and continuous groups. We will denote this algebra
by QM(O(3),D31), where O(3) is 3 dimensional orthogonal group consisted
of the rotational group SO(3) and two-element group of spatial inversion
C;, 0(3)=S0(3)xC;. Because we do not know the convenient references, we
describe here, in a few words, the structure of this algebra.

The algebra QM (G, G'), where to save typing we have introduced the
abbreviations G =0(3) and G' = D3}, consist of the formal sums:

S=u+a&, (4)

where, u is a function belonging to the space of square integrable functions

L%*(G) and
&= Z a(g)g- (5)
geG

In the equation (5) a(g) is a complex function on the group G. Sum and
multiplication of elements of this type by a complex numbers are defined in
the usual way, but multiplication of the elements is defined by the following
relations (u,v € L*(G) and ¢,91,92 € G'):

(wov)(g") = / dg'u(g")o(g' ") (6a)
G

gou(g') =u(g™¢"), (6b)
u(g)og=u(g's™"), (6¢)

g1 092 = g192; multiplication in G, (6d)

and the distributive law in respect to the addition. Another available op-

eration in this algebra is involution §j, an analog of Hermitian conjugation,
defined by:

§
ug)+ Y alg)g' | =we)+ D et (7)
g'eECG g'eG
Now we can come back to the main problem. Let us consider an even— even
nucleus (for half-integer total angular momentum one needs to extend G'

to the double-group).
First we introduce special elements of the algebra Q M (G, G') connected

with subgroups of D3}, group. Let H C D3, and XS-;) denotes the irreducible
characters of H [7, 6] then

2= 3 B wyh. 8)
heH
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For the most important subgroups of D3, from Eq. (8), we have

X5) = e+ oon, (9)

where the character )Z(zf;h)(a'h) = o = +1. For the group Cy(U;) generated

by U, we get xieL) (U) = py = £1.

Co(Us)
ié‘;(ﬁz) =e+ pils. (10)
And for the group Cs generated by C5 rotations, (where ¢ = e~%27/3 and
the character xc (Ca) = €#, u = 0,+1) we obtain
)Z(c‘:) =e+e *C3 + e“C?. (11)

The structure of the IR of the group D3 is more complicated. For the
representations Al, A2 (both one dimensional) and for two dimensional
representation E'1 we obtain, respectively

Wy = D 95 (12a)

g€D3
< (A2) _ 2 ] "
) — e Ca+ CF - (th + U + 1), (12b)
and B
Ao =2¢ - 03 - C3. (12¢)

After some algebraical considerations one can derive the following element
of our group algebra

v ~(E1
x(mopl) — ( ) X(CI;ZLLL) ng ) (13)
which together with the elements (operators in a Hilbert space of quantum
states) (9-12) allows to write down the appropriate basis for the IR of the
symmetry group Dsj;. The results are summarized in Table L. In that table,
the label p can take only two values +1.

After straightforward, but lengthy calculations one can see that for
labelling of IR for D3} we need a set of 3 quantum numbers I' = (|ul|, g, 0),
where |p| = 0,1, g, and ¢ = £1. || = 0 and || = 1 corresponds to one
dimensional and two dimensional irreducible representations, respectively.
For two dimensional case u is irrelevant and can be chosen either u; =1
or y; = —1. The label 4 = +|u| distinguishes the appropriate basic vectors
within the representation.
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TABLE I
Basis for Dj3; irreducible representations
ZN R 42 H4 o 3
v{Al w{—1 J(A2 (=1
B Xg)s Yo X(Eh ) B2 ngs Yo Xgha )
Bl X(we=1) o 3) E2  X(wa=1)o gD

4. The physical quantum numbers for D;; symmetry

The physical quantum numbers are introduced by the orthogonal group
O(3). They are: the total angular momentum J, its projection K onto in-
ternal axis and the parity « related to the group C;. Because the symmetry
Dy}, is referred to the intrinsic frame a description of the irreducible rep-
resentations cannot depend on the third component of the total angular
momentum M.

The matrix elements of irreducible representations of the orthogonal
group O(3) can be written as products of usual Wigner functions Dy, ()
for SO(3) group and the characters ch) (s) of the inversion group isomorphic
to Eh: '

D) (s2) = X6 (5) Dk (2). (14)
To find relations between the internal labels T' = (|u|, x|, o) and g, and the
quantum numbers in the laboratory frame one can calculate

K,J)* o s, JJyx o

D" 0 (C3 0 X)) = xI(C3)DYF" 0 %41, (15a)
K, J)* o i k)% o

DD 003]OX(C§)):€ 2n /3K [p(]) ox(c‘;)]- (15h)

Comparing both equations we get the following relation between the internal
label 4 and the quantum number K:

—i2n/3K _ (w)
e = x¥(Cy). (16)
In similar way one can get other relations:
(-1)%% = x5 (on) (17)
and for |y = 0, in addition, we have:
J_ (1)
(~1)7 = x4, (Wh). (18)

The equations (16-18) allow to classify the spectra of the hamiltonians
invariant under D3} symmetry using the measurable quantum numbers J,
K and parity k. The results are shown in the Table II.
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TABLE II
Quantum numbers for Dsp irreducible representations

IR ) o J K*
Al 0+1+1 even 0t £3~ 6+ £9- 12+
B1 0+1—1 even 0~ 3t +6- +9% +12-
A2 0-1+1 odd 0t +£3- +6+ £9- +12%
B2 0-1-1 odd 0~ £3% +6~ +9F £12-

-1 +1 —4t -1~ 2% 5~ 8+
F1 even, odd

+1 +1 —5- -2+ 1 4+ 7~

-1 -1 -4~ -1t 27 5% 8~
E2 even, odd

+1 -1 —5+ 27 1t 4- 7t

This way we have obtained a classification of nuclear states for nuclei

with Dj3p internal symmetry.
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