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Nuclei with extreme neutron to proton ratios, which are in most cases
not accessible to experimental investigations, play an important role in
astrophysics. For such nuclei near the particle drip-lines new structure
effects are expected. Hartree-Fock-Bogoliubov (HFB) calculations with
the SkP interaction show modified nuclear potential wells which may be
simulated by a Nilsson potential with vanishing £>-term. The influence of
this modification on the 8-decay properties of very neutron-rich nuclei is
studied within the framework of the QRPA.

PACS numbers: 21.10.Dr, 21.60.Jz

1. Introduction

Nuclear structure data, such as masses and 3-decay properties, are re-
quested by various disciplines; e.g. by astrophysics [1]. Properties of nuclei
needed for these applications are in most cases not known experimentally;
hence, they have to be taken from theoretical models. Until recently, inter-
nally consistent data on a large number of nuclei (several thousand) could
only be obtained from global macroscopic—microscopic models, such as the
FRDM [2] and the ETFSI [3] approaches for nuclear masses or the quasi-
particle random phase approximation (QRPA) [4] for 3-decay properties.
In the QRPA are used nuclear input parameters (such as decay energies
(Qs, Sn) and nuclear shapes (¢2)) which were derived from the mass mod-
els. As the parameters of these models are fitted mainly to stable nuclei,
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unprecedented extrapolations are required to predict the structure of nu-
clei far from stability. A good test for such extrapolations is provided by
calculations which aim at reproducing the nucleosynthesis by the rapid neu-
tron capture process, which involves mostly unknown neutron-rich nuclei.
Within the standard nuclear models, FRDM or ETFSI, the general features
are well reproduced, but there remain some deviations which can be at-
tributed to an overestimation of the shell strengths near the magic neutron
numbers N = 82 and N = 126 [5, 6].

2. Nuclear masses from mean field models

Quenching of the spherical shells at N = 20, 28 and 50 has been shown
experimentally and has also been indicated by the HFB calculations with
the SkP force within a selfconsistent treatment of the pairing (see discussion
in Ref. [7]). Since the centrifugal barrier pushes up states of high angular
momentum j, the low-energy continuum contains mainly the low-j states.
In light and medium-heavy nuclei, these low-j continuum states, which are
located right above the shell gaps, enter these gaps and effectively lead to
quenched shell effects [8].

Therefore, new insights into drip-line effects may be obtained from
masses derived from state-of-the-art mean-field models applying various
density-dependent nuclear effective forces. Due to the enormous computing
time needed for the calculation of thousands of nuclei, until now only the
less demanding, spherical-shape calculations are available for neutron-rich
isotopes. By substituting the FRDM masses by the HFB ones for N ~ 82,
the r-process calculations could, indeed, be improved considerably in the
A ~ 120 mass region [7]. A further essential breakthrough is expected, if
also B-decay properties (Ty /3, Pn) will be calculated with the HFB wave-
functions. Following a suggestion of Dobaczewski et al. [8], a first estimate
of these effects can be obtained by simulating the HFB potential in terms
of a modified Nilsson potential.

3. Neutron-skin formation in extremely neutron—-rich
isotopes simulated by a modified Nilsson potential

In the case of nuclei near the neutron drip-line, the high neutron to
proton number ratio would have led to unrealistic high central neutron den-
sities, if the spatial extensions for neutron and proton distributions were
identical. Therefore, the neutron distribution should extend further out
than the proton one, forming a neutron skin [9, 10]. To a first approxi-
mation, this leads to a more diffused neutron potential well, which can be
simulated by a Nilsson potential with vanishing £%-term [8]. In the present
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study, we calculate the single-particle energies using (2) the parameter set
of Ragnarsson—Sheline [11] and (i) a modified set obtained by reducing the
strength of the £2-term to 10% of its original value. An expected feature
of this modified potential is, for example, a change in the level ordering (in
analogy to the HFB calculations mentioned above), see Fig. 1. To get an
idea about the effect of these modified single-particle energies on 3-decay
properties, the half-lives T} /; and neutron emission probabilities P, for nu-
clei in the r-process path have been calculated with the QRPA applying
masses from the HFB and wave functions derived from the two Nilsson po-
tentials. In Fig. 2, these 3-decay properties are compared with the standard
values derived from the FRDM. The nuclei up to mass 114 with N < 72
have deformed nuclear ground-states, so that they cannot be adequately
described by the spherical calculations presently available. The predicted
trend of longer half-lives in the mass range 115 < A < 130 seems to be in ac-
cordance with recent experimental values for neutron-rich Ag isotopes [12].
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Fig. 1. Single-particle energies for neutrons in a “classical” Nilsson potential (left
part) and in a well where the £2-term (the parameters p,) is reduced to one tenth
of the standard value.
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Fig. 2. Ratios of 3-decay properties of very neutron-rich nuclei around the magic
N = 82 gap (upper part Tj/,, lower part P,). Values obtained with masses and
Nilsson-model wave functions from the FRDM are applied as reference. For these
nuclei around the magic N = 82 gap, the FRDM masses were replaced by the
spherical masses from the HFB. The use of the Nilsson potential with reduced
£%-term leads in most cases to longer half-lives T} /2 and higher neutron emission
probabilities P, close to N = 82 (filled circles), as compared to those obtained with
standard Nilsson potential (open circles).

4. Summary

The nuclear-structure signatures near the neutron drip line, which had
been inferred from astrophysical requests [5], are substantiated by the HFB
calculations. In the present study we have attempted to analyze the influ-
ence of changing shell structure on the 3-decay properties of neutron-rich
nuclei. By decreasing the magnitude of the £2-term in the Nilsson single-
particle Hamiltonian we have obtained an increase of the half-lives as com-
pared to the results obtained using standard single-particle spectra.
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