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L. PrROcHNIAK AND K. Zajac

Institute of Physics UMCS
pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland

(Received December 18, 1995)

Low-lying energy levels and electromagnetic transitions in Ba isotopes
were obtained using the new method of solving the general Bohr Hamil-
tonian. Inertial functions and collective potential were calculated within
the cranking approximation with the projected BCS formalism and Seo
parameters for the Nilsson single-particle potential.

PACS numbers: 21.60.Ev

For many years the Bohr~-Mottelson model remains still valuable and
useful in investigations of the nuclear collective motion. Within this model
nuclear vibrations and rotations are described in terms of intrinsic quadru-
pole variables 3, ¥ and the Euler angles §2. The collective Bohr Hamiltonian
can be written (cf. [2, 6]) in the form:

H=T+ Tt +V, (1)
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The mass parameters are denoted as B 86 B By and B.,., while the principal

moments of inertia are expressed as J;, = 4By (8,7)p%sin?(y — 27k/3), k =
1,2,3 and

w = BggByy B/%—y J
r= B]BQB;; . (3)

The eigenvalue problem of Bohr Hamiltonian has been solved in the two
main ways: the first is based on direct numerical solution of a system of
partial differential equations resulting from eigenequation for Hamiltonian
(1) while the second one involves calculation of the matrix elements of (1) in
properly chosen basis and then diagonalization of the resulted matrix. The
construction of such a basis is not a straightforward matter. For example,
the problem of building of the eigenstates of five dimensional harmonic
oscillator as functions of the intrinsic variables (3,7, 2 was not solved (for
arbitrary value of angular momentum) until the half of the seventies. It must
be stressed that basis states do not have be the eigenvectors of a known in
advance Hermitian operator. One example of an application of such states
is an approach proposed and developed by Kumar [3]. Another example,
having greater significance for our considerations is a paper of Libert and
Quentin [4]. The main idea of the method used here can be summarized as
follows: one starts from a set of rather simple functions of variables 3,~, 12
being a basis of an appropriate Hilbert space and then imposes restrictions
coming from various properties of the intrinsic variables and Hamiltonian
(1). As an initial set of functions we take

~Q/24n ) COSMY{ K1 = :m = -2 Oorl, (4
e 8 {sinm7 Dy (2), n=0,1,...; m=mn,n-2,...,00r 1, (4)

where

Q = pp*. (5)
The more general form Q = 3% + p3 3% cos 37 + pa f* with free parameters
[y [3, [tq can also be considered.

Functions (4) form a basis (nonorthogonal) in a space of square in-
tegrable functions of variables 83, v, £2 with respect to the large class of
measures.

Imposing necessary symmetry conditions (as for example invariance un-
der Ry, R; and R3 transformations) and requirement of the proper be-
haviour on 4 = nr /3 axes we finally obtain subset of linear combinations of
(4) which can be used in calculations of matrix elements of Hamiltonian (1).
Let us mention also about two advantages of the method described above.
Firstly, we obtained analytic, compact formulas for the basis (nonorthog-
onal) functions with no use of numerical approximations. Secondly, these
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formulas hold with no limits on n (the meaning of n is close to the princi-
pal number of harmonic oscillator) and with no limits on values of angular
momentum 7.

We plan to apply the method of a diagonalization of the Bohr Hamil-
tonian in systematic investigations of a wide range of nuclei. The collective
potential, mass parameters B, (g,4' = B or v) and moments of inertia Jy
appearing in (2) are obtained microscopically using the cranking approxi-
mation with the nuclear Hamiltonian containing a single particle potential
and pairing forces. We want to study in particular the influence of a choice
of a single particle potential and corrections to the standard BCS techniqge
on the calculated nuclear properties.

The general features of the method applied here are known very well
[6, 6]. Cranking formulas describing inertial functions after inclusion of
the pairing interaction within the BCS formalism can be written [5] in the
following form:
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where £(8) = 1, f(7) = B and

A= A2 (8)
0q

In the above equations H is a single particle Hamiltonian with the
eigenvalues e, and eigenstates |¥> while u, and v, are the BCS variational
parameters, E, = y/(e, — X)2 + AZ is the quasiparticle energy while A and
A are the Fermi energy and the pairing energy-gap parameter, respectively.

As the first area of our calculations we have considered barium isotopes,
which had already been studied in the frame of the Bohr Hamiltonian [5, 6].
The general approach presented here is similar to that from (5, 6], however
we would like to stress two differences. (I) The single-particle Hamiltonian
part: we applied the Nilsson potential containing the shell-dependent cor-
rectional terms Vi, and V)2 with Seo [7] parameters (regarded as the best
fit for the Nilsson potential for all nuclear regions). This parametrization of
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the Nilsson potential has given a remarkable improvement of the description
of nuclear ground states. (II) The pairing interaction part: we adopted the
approximate projection of BCS wave function on the particle number (8,
9]. This procedure is based on the Generator Coordinate Method (GCM)
and the gaussian overlap approximation (GOA) but its results are easy to
describe in terms of standard BCS formalism. The BCS energy and, as it
follows, the total nuclear energy has to be only corrected by subtracting the
zero-point term when the GCM method is used [8]. It was shown [9] that
when the projection on the given particle number is taken into account the
pairing strength parameter should be also corrected in order to reproduce
experimental energy gaps. Our estimation:

_ { g0/ 2213 for protons
" 1 go/(A-Z)*/® for neutrons ’

where go = 0.285 hwy seems to be quite appropriate.

(9)
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Fig. 1. See text.

Results of the diagonalization of Bohr Hamiltonian (1) with microscopic
inertial functions are presented in Fig. 1. Experimental levels are taken from
the NNDC database at Brookhaven National Laboratory (see Refs. given
therein). The comparison of calculated (Th) and experimental (Exp) low-
lying energy levels in Ba isotopes shows that even with the best fit of the
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pairing strength we obtain still too large values of the mass parameters.
The calculated energy levels are in general close to those obtained in [5,
6] with standard pairing strength and we must come to a conclusion that
the new parametrization of the Nilsson potential and approximate particle
number projection are insufficient to improve essentially an agreement with
experimantal data.
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Fig. 2. See text.

It was found in [10] that the systematic shifting of the maximum of the
ground state wave function towards smaller pairing gaps from the minimum
of the potential is connected with the rapid increase of the mass parameters
for decreasing A values. In consequence, this effect is due to the coupling
of pairing vibrations with the nuclear shape oscillations. It seems that this
coupling is too strong to be neglected. So while we are not able to include
pairing gaps Ap, A, and gauge angles ¢y, ¢, into the set of collective
variables, we treat the effect of the coupling with the pairing vibrations in
the static way. Such an effect can be described by systematic lowering the
values of gap parameter. We have repeated our calculations with average
dynamical A (taking 60% of the statical value for each nucleus) with the
effect which is shown in Fig. 2. The density of collective levels is repro-
duced now correctly but many discrepancies still occur in their positions.
More extended calculations including also electromagnetic transitions are
in progress.
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