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The surface vibrations in nuclear Fermi liquid are studied within a
phase space approach which is based on the Landau-Vlasov kinetic equa-
tion. The linear response theory is used. We focus on the damping of low
frequency surface vibrations and discuss their friction coefficient.
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1. Introduction

The nature of nuclear dissipation is still not completely clarified. The
one-body friction (the wall formula) [1] is derived disregarding any traces of a
collision term. All the derivations we know of involve the macroscopic limit:
one first looks at a finite system and lets its size go to infinity afterward, as
is done for instance in [2].

The question we are touching here is very closely related to how one
introduces irreversibility into a dynamical description. We shall be able to
perform the transformation to the macroscopic limit in two ways, firstly
by simply letting the size of our system go to infinity, and secondly by
performing energy or frequency smoothings keeping the size of the system
finite.

The dynamics inside the bulk will be described with the Landau-Vlasov
equation. It will have to be accomplished by an appropriate treatment of
the surface. We look at the friction coefficient for surface motion of a slab
of nuclear Fermi liquid [3] in Section 2. We extend our investigation by
studying surface vibrations in the Fermi liquid drop in Section 3. Finally,
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in Section 4 the consequences are discussed for the understanding of the
nature of dissipation in real nuclei.

2. Slab model

We discuss surface modes for an analytically solvable model of a slab in
the hope that with this model we simulate some effects of the nucleus being
a finite system. The latter is defined as a Fermi liquid bound by the two
surfaces

L
z:::i:§+Z(FJ_,t) (1)

parallel to the zy— plane and, in equilibrium, a distance L apart. Here and
below 7} = (z,y,0). The macroscopic variable Z(#,t) describes the local
displacement of the surfaces from its positions in equilibrium.

A change in Z induces motion of the fluid particles inside the slab. The
latter is represented by the distribution function én(7, p,t) in the particle’s
phase space which is described by a linearized Vlasov equation

d6n(75t) O [ ... dno R
HninBY 52, 6n(r,p,t)——zl—zfo/dpﬁn(r,p,t) 0. (2)

The Fp stands for Fo = Foh®/(47nmpF), where Fy is the Landau parameter.
This equation, valid inside the slab at —L/2 < z < L/2, is accomplished
by "mirror reflection” boundary conditions at the moving surfaces (1) [4]

[6n (F’ P1yPzst) — 607, P1, —Pas t)]

_ dno 8 N
= ~2p.—> = Z(FL,1). (3)
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Like in the case of a finite nucleus, the motion of the surface must
be determined “self-consistently”. This can be achieved by asking for the
following ”subsidiary condition” [5, 6]:

1
o Pzz _’,t - P —’at
2( (r )‘z=g+z(ﬂ,t) 22 (7 )]z=—%+Z(ﬂ,t))
2
=0 5 Z(7,t) — F(7,t). (4)
or%

Here, o is the surface tension and P,,(7,t) is the normal component of the
momentum flux tensor, see [7]. In (4) we have included an ezternal force
F(#.,t). For obvious reasons, the F(7,t) is written in the following form

F(7,t) = F(k,w)cos(wt — k7 )exp (t). (5)
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Of interest are those solutions of Egs. (2)-(3) which are tailored to the
special form of the external force (5). Thus we may write:

Z(71,t) = Re[Z(k1,w)exp[—i(wt — k7))]], (6)
(7, 5,1) = S Relfe, o(z)expl-ifwt —Eum)]). (1)

We may now parametrize the solutions (6) in terms of response functions.
The latter may be defined as [8):

Z(k1,w) = —R(Ey,w)F(F1,0). (8)
With the help of (4) the R(k ,w) is found to be:
— — 2 -1
R(k_l.’w) = [_Xint(klvw) + ok, ] ’ (9)

where

2
Xint(k L, w) = h3L Z / de — szpz) —. (10)

n——oo kJ_'l)_J_—knvz-|-1,6

The poles of this function determine the possible surface modes of our sys-
tem.

To define the friction coefficient we consider the rate of energy trans-
fer from the external force (5) to the system in the terms of the response
function (9) [9]

dE(Z(71,t), & Z(FLt)] R'(kL,w) = 00 g
dt TEER+ R ELap e )
l R”(E_L,Lu‘) _3_ - 2
W [R(kL,w) + [R"(kL,w)]? [Bt g l’t)}
(11)

If we then average over one period the first term on the right of (11)
vanishes. However the second one will survive. It is associated with the
irreversible transfer of energy. We concentrate on the coefficient in front of
the (Z)?, which we want to call v(ky, w), and will calculate the latter in the
so called “zero frequency limit”. The friction will be given by evaluating

v(kL,w) at w = 0:

Ye(ky) = 7(ki,w) o (12)
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One can find:

oo

T(k1) = e LN Y (ent 1?4 (P20 ig)

n=-—oo

This formula shows that for small sizes of the slab when k| L <« 1 the
friction coefficient vanishes to leading order in (k) L)*. On the other hand
for a large system, replacing the sum in (13) by an integral one finds

Yee(k L) = Ywogos ki L>1. (14)

We recover the wall formula as the macroscopic limit of nuclear dissipation.
The friction should not be expected to occur for systems whose modes
have a finite spacing. It is necessary to employ some statistical averaging in
the sense of an energy or frequency smoothing before it becomes physically
meaningful to speak of a friction force.
In the spirit of [10, 11] we define for quantities like 7(/? 1,w) the fre-
quency average as

(y(Fr,w)}y, = f 40 £20( 2,0, 7a0) 7R L, 2) . (15)

The fay(£2,w,Vav) is the weight function, which we will choose to be given
by a Lorentzian with the averaging parameter 7,y. This allows an analytical
calculation.

One can find that the averaged friction coefficient is smaller or equal to
the wall formula for any value of the averaging parameter vay

{7fr(0)}av < Ywi. - (16)

3. Fermi liquid drop

Our approach can be extended to study surface vibrations in Fermi
liquid drop [12]. We consider a Fermi liquid bound by the surface

r =R+ 6R(V,p,t), (17)
which is the sphere with radius R in equilibrium. The macroscopic variable

§R(9, ¢, t) describes the local displacement of the surface R(d, ¢, t) from its
equilibrium position.
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To study small vibrations in this model we use linearized Vlasov equa-
tion (2) supplemented by boundary conditions like (3) and (4) on the moving
surface and choose the external force in the form

Fr(9,¢,t) = > FLmYrm(9, @) cos (wt) exp (¢t). (18)
M

To find solutions it is convenient to change variables (7, ) to a new set of
variables (r,¢,l,a,3,7) as proposed in [13]. The new variables are particle
energy ¢, particle angular momentum ! = | # x 7|, radius » and Euler angles
(a,B,7)-

In the same way as in Section 2 we can find the collective response
function and then determine the averaged friction coefficient. It can be
found that the response function reads as

o(L-1)}(L+2)]
xaw) = | xhalo) + TEEE D) (19)
with the intrinsic response function given by
60w T o, 2
X (w) = - STr1¥ Z Yen(5,35)l
oo 1 — 2 1/2
X » / A - (1= A7) :
"o ~ (vp/R)(nm+ N arccos Am) /(1 — A2)1/2 4 4e
(20)

Here L is the multipolarity of vibrations, Py = (2/ 5)6 rpo and A = I/(prR).
Using (19) we can calculate the averaged friction {7£(0)}av like (12) for the
slab model. The numerical results show that for octupole vibrations (L = 3)
in a system of A=208 nucleons the averaged friction coefficient approaches
the wall formula when v,y is of order 10 MeV. For quadrupole vibrations
Yav should be larger: the averaged friction coefficient amounts about 70% of
the wall formula when v, &~ 10 MeV and approaches the latter for yay > 40
MeV.

4. Conclusions

We have been able to prove that the macroscopic limit can be obtained
for the finite system if we apply an appropriate frequency averaging. This
result has some important conclusions with respect to the real nuclei. It
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appears evident that nuclear dissipation cannot be of pure one-body nature.
The presence of the width v,, in formulas represents some uncertainty in
the single particle energies of our fluid. This has been introduced by way of
our smoothing procedure. But this 4,y may also be understood to simulate
effects of couplings from the 1p-1h excitations to more complicated ones.
Indeed, had we taken into account a collision term in a simple relaxation
time approximation the v,y would be nothing else but the inverse relaxation
time. Certainly, a realistic treatment of the effects of collisions will be much
more involved.
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