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GIANT MONOPOLE RESONANCES AND THE
COMPRESSIBILITY OF NUCLEAR MATTER*-**
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(Received December 18, 1995)

The procedures to deduce the incompressibility modulus of nuclear
matter, Ko, from the measured energies of the Isoscalar Giant Monopole
Resonances, EgMR, are critically reviewed. A simple model is developed
in which the isoscalar density oscillations in finite nuclei are described as
being due to the coupling of two modes: the bulk (scaling) mode and
the surface mode. Two energy solutions are obtained for the coupled
mode: the low energy solution, which is presumably the one observed
experimentally, and the high energy one, well above the range of the
present experiments.

PACS numbers: 24.30.Cz

1. Introduction

The observed giant monopole energies, hw, contain information on the
compressibility coefficient of nuclear matter, Ko. The relation between hw
and Ky is not, however, straightforward on two counts. First, the com-
pressibilities K 47 of the finite nuclei A, Z for which fw is measured can
be considerably different from K. Second, the determination of the lowest
mode of monopole oscillation of a finite nucleus is not easy, except under
the assumption of a ”scaling” mode, which can be quite inaccurate.

The first difficulty appears to have been largely resolved in [1], where it
is argued that the ratio K 4z/K is well approximated by E/Eg, E being
the binding energy per particle of the finite nucleus in question and FEjy
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the binding energy per particle of nuclear matter. On the other hand,
the often used scaling assumption for the monopole vibration represents a
constrained solution (see e.g. [2]) and as such it is bound to overestimate the
true frequency. For example, in the hydrodynamical model of a compressible
fluid drop with a sharp surface, the ratio of the constrained scaling frequency
to the true frequency is v/15/72 = 1.22 ([1]). This overestimate is due to
the disregard in the scaling solution of the deviations from uniformity of the
bulk density during the monopole oscillation. Another degree of freedom
on which the scaling assumption imposes an arbitrary constraint is that
associated with variations of the surface diffuseness during the oscillation.
As discussed in Refs [3] and [4] this latter effect can lead to a significant
lowering of the calculated value of w, especially for light nuclei.

Our objective is to study systematically the giant monopole frequency
in a macroscopic model which includes the above three principal degrees
of freedom: scaling, diffuseness changes and bulk non-uniformities. The
present contribution is an interim report on a first step in this direction
which still disregards the bulk non-uniformity degree of freedom.

2. The model

We parametrize the density of the oscillating diffuse nucleus by start-
ing with a uniform generating density inside a sharp radius Ry and then
diffusing the density by means of a short-ranged folding function given by
a spherical form factor f(r), equal to 1 for » < ag and zero for 7 > ag. By
scaling all linear dimensions by a scaling factor A and simultaneously chang-
ing the range of the folding function according to a = a/ag, we obtain a
two-degree-of-freedom family of density distributions, specified by the time
dependent variables A(t), aft). Explicitly, the following expression is found
for the density p(r, A, &) of a spherical nucleus:

p(rs X, )
Po -
Xlg for » < A(Rg — aayg)
1_16,(c 1)*[¢ ;3((?;22))&83/ 1 for A(Ro + aag) > r > M(Ro — aap) » (1)
0 for r > A(Ro + aag)

where y = Rg/aag, { = (r — ARg)/Aaag and pg is the equilibrium density
in the bulk.

In order to find the normal modes of small oscillations of the density we
need to write down the potential energy as function of the small deviations
of A and « from their original (equilibrium) values A = 1, a = 1, viz,,

Epot = 3K11(A— 1)’ + K12(A—=1)(a - 1) + 1 Kpp(a - 1),  (2)
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where K11, K12, K22 are appropriate stiffness coeflicients. Similarly the
kinetic energy is written in the form

T = 1M1 3% + Mighé + IMp62. (3)

where My1, My, Moo are the inertia coefficients.
The inertia coefficients are found by deducing the (irrotational) current
j from the continuity equation

V(o) = -2 ()

with the result: § = pv = j€,., where

. po (€% —1)%(¢* + 6y¢ +6y* — 1)

- : A, 5
T m (v + 0P dosEre 2

for —1 < ¢ < 1 and j = rp) otherwise. Using the equation

j2
T = %/aﬁr7 (6)

one obtains the following expressions for M7 and Mj3:

_§ 2 40 \2
My = 5MR0(1+ (Ro) )
My, = gMaoz (7

and a more complicated expression for Mz, which, however, can be easily
computed numerically. Here M is the mass of the nucleus. The coefficient
M3, can be approximated by a calculation in which, instead of the spherical
geometry, one considers an infinite slab of width 2R for which the diffuse
density as a function of the normal distance z from the middle of the slab
is given by:

P\ a) _
Po
1 for z < A(Ro — aao)
2
G052 o ARy + aan) > > MR - ats) O
0 for z> A(Ro + aay)



558 J. BLOCKI ET AL.
In this case

3(10

Mi?® = MRj(1 + E(fz;

),
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22 sz, (91n(3) 3) (9)

The leading term in Mjy (Eq. (7)) is, of course, the correct one to
be used for the spherical geometry. The corrections of order (ag/Ro)? in
Eqs (9) are, as expected, in agreement with Egs (7), while Eq. (9) for M2
is a good approximation to My, calculated for the sphere.

The stiffness coefficient K11 was taken from the Thomas-Fermi expres-
sion Eq. (29) in [1], which represents the nuclear matter compressibility
Ky = 234 MeV multiplied by the ratio of the binding energy per particle of
the nucleus in question to the binding energy per particle of nuclear matter
(—16.24 MeV). In practice this gives for K 4z a value close to 150 MeV
except for the lightest nuclei (Ref. [1], Table II).

The coefficients K12 and K3, can be numerically calculated by using
the energy density underlying the Thomas—Fermi model of [7], applied to
the density distribution given by Eq. (1). These coefficients, being asso-
ciated with the surface region, are approximately proportional to A2/3,
Typical values were K12 = 59A42/3 MeV, K33 = 11A2%/3 MeV for °°Zr
and K1z = 674%/3 MeV, Kj; = 114%/3 MeV for 2°8Pb. One should not
take these estimates too seriously since there are reasons to expect that
quantum corrections beyond Thomas-Fermi model will increase stiffness
coefficient K2, and probably also K12. At the moment we adopted the pro-
cedure of treating K12 and K32 as independent parameters whose values
are established by a fit to experimental data.

The equation for the normal modes w of the system defined by Egs (2),
(3)is

(K12 — Mypw})® (K12 - Miaw?)?

2 2 2 .2 ?
wy —w wy —w

det |M(w} — w?) = (10)

where w; and w, are the frequencies of the scaling and diffuseness modes in
the absence of coupling, i.e.

_ [on [
I ML) T M) (1)
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Fig. 1. The two solutions of eq.10 are illustrated graphically by the intersections
of the full curves with the dashed horizontal line.

The solution of Eq. 10 is illustrated graphically in Fig. 1 in the case of
07r. The full curves give the right hand side of Eq. (12) in its dependence on
w. The dashed horizontal line is the left hand side (a constant independent
of w). The intersections give the two normal mode frequencies or energies
(frequencies multiplied by k). One is a little lower than the energy fw;
shown by the left vertical dotted line, the other very much higher than the
energy hw, (the right vertical dotted line).

2. The data

The data included in the fits presented below were selected from the
systematics of Refs [5, 6]. In selecting the entries we have followed the
procedure suggested in [6], in which the errors assigned to each data point,
OGMR, Were related to the observed fraction of the energy weighted sum
rule, f, according to the formula

oaMmr = (02, + (2(1 - f))z)l/2 ; (12)
where gexp is the error of the centroid, Eexp, of the observed Giant Monopole
Resonance, GMR. The data points with errors exceeding 1.2 MeV were re-
jected. The adopted GMR energies were corrected for the measured widths,

I', according to
2\ 1/2
2 r
hw = (Eexp +3 (ﬁg) ) (13)
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(a correction typically of about 200-300 keV).

The measured GMR energies for deformed nuclei were shifted downward
by the amount resulting from introducing into the liquid drop formula for
K 47 a deformation dependent term K4.rf32 with the value Kgor = 35 MeV
adopted from [5).

4. Results

The triangles in Fig. 2 demonstrate the lowering of the resonance en-
ergies resulting from unfreezing the surface diffuseness mode. The dots are
the measured energies. The values of the stiffness coefficients K13 and K2
obtained from a fit are equal to 50A42/3 and 25A42%/3, respectively. For the
diffuseness a9 we have taken the value as to reproduce experimental root
mean square radii along the periodic table. This gives for ag a value of 2.2
fm. A more nearly unambiguous comparison with measurements awaits the
inclusion of the bulk non-uniformity degree of freedom. Fig. 3 illustrates the
trend of the second, high energy monopole resonance energy corresponding
to the second solution of Eq. 10.
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Fig. 2. Measured giant monopole resonance energies (dots) and calculated values
using only the scaling degree of freedom (squares). Triangles show the lowering of
the calculated resonance energies resulting from unfreezing the diffuseness degree
of freedom.
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Fig. 3. This is like Fig. 2 drawn to a different scale in order to show the trend of

the second, high energy giant monopole resonance energy (asterisks).

6. Summary

The use of a scaling assumption in the interpretation of giant monopole
resonances is bound to overestimate the resonance energies. The inclusion
of a diffuseness degree of freedom lowers the energies to the vicinity of the
measured values. Since the present results point only to the possibility of
reproducing GMR energies by fitting K12 and K33 it still remains to be
seen if the inclusion of the bulk non-uniformity degree of freedom combined
with some nonambiguous calculation of the stiffness coefficients will lead to

a correct physical description.
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