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The motion of a particle with a spin in spherical harmonic oscillator
potential with spin—orbit interaction is discussed. The attention is focused
on the spatial motion of wave packets. The particular case of wave pack-
ets moving along the circular orbits for which the most transparent and
pedagogical description is possible is considered. The splitting of the wave
packets into two components moving differently along classical orbits re-
flects a strong analogy with the Stern-Gerlach experiment. The periodic
transfer of average angular momentum between spin and orbital subspaces
accompanying this time evolution is called the spin-orbit pendulum.

PACS numbers: 03.65.5q, 03.65.Ge, 32.90.+a

1. Introduction

The recent development of short and intense laser pulses renewed the
interest in wave packet dynamics. In atomic systems electrons can be excited
to a coherent mixture of many Rydberg states and move almost classically
for many Kepler periods [1]. Long range time evolution of such wave packets
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exhibits spreading and revivals according to the universal scenario described
in [2]. These quantum effects arise from nonequidistant spectrum of energy
levels in the Coulomb field.

In our paper we want to point out another interesting feature of wave
packet dynamics which shows up when strong enough spin-orbit interaction
is present in a physical system. The detailed theory of the phenomenon is
given in [3-5], here we only give the brief description and explanation of
main results. The physical system, which properties we want to discuss, is
one fermion in a spherical oscillator potential with a spin-orbit interaction,

H=Hy+V,=Ho+x(-&). (1)

In the spin—orbit part a constant form factor « has been assumed. This
model is a simplified version of the Nilsson single-particle model [6] exten-
sively used in nuclear physics to describe the properties of deformed nuclei.

For pedagogic reasons we discuss here the motion of a special family of
states, corresponding to classical particles moving on circular orbits. The
general case of elliptic orbits is discussed in [4]. As the initial condition we
assume the coherent state of the harmonic oscillator multiplied by the spin
state, the eigenstate of s, operator (¢ — arbitrary axis). More precisely,
we focus our attention on the particular case in which the @ direction lies in
orbit’s plane, i.e. 4 is perpendicular to orbital momentum. In this particular
case the effect we want to discuss is most pronounced and not obscured by
additional details. Such initial states are pure in both subspaces, ordinary
and spin ones. Explicitly, we choose (without any loss of generality) Ozy
plane as the orbit plane and Oz as the initial spin direction. Then the initial
states take the following explicit form

1
7

where the eigenstate of s, is expressed explicitly by the eigenstates of s,
operator (|+) and |—)) and |N) is the coherent state of spherical harmonic
oscillator corresponding to a circular orbit. In configuration space it has
the form

[#(t =0)) = [N, &) = [N) —=(I+) +1-)), (2)

(FIN) = 7% exp (~3{(z - 20)? +4° + 2%]) exp(ipoy).  (3)

As operators Hy and V), commute, the evolution operator connected
with the Hamiltonian (1) can be factorized as

U(t) = Up(t) Upy(t) = e—tHo e=it(F) | (4)

where the appropriate time units are chosen to absorb « and A.
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2. Motion in spin subspace

Equations (7-9) of [5] describe time evolution of the system in the
Heisenberg picture. During this evolution the state (2), initially pure in
both spin and ordinary subspaces, becomes mixed. Analytical calculations
of the expectation values of spin operator given in [3] show that they un-
dergo fast collapse, then stay close to zero and are approximately restored
(with spin reversed) at ¢ = Tj,/2. The evolution in the second half of the
spin-orbit period is symmetrical to that in the first half, with exact revival
at t = T},. At revivals the purity of the state in both subspaces is also re-
stored. As the total angular momentum is conserved, the above oscillations
must be accompanied by the corresponding oscillations of orbital angular
momentum. This phenomenon, periodic transfer of the average angular
momentum between spin and orbital subspaces, is called by us spin—orbit
pendulum. The exact motion of (5) and (Iy for the particular case N=8 (N
stands for the average value of n quantum number) and time range [0, 1o Ty,]
is given in Fig. 1 (periodicity makes the motion in the second half of the
period symmetric to the shown one).

N=8

Fig. 1. Motion of (3) and (I} during ¢t € [0,7},/2] illustrating oscilations and
exchange of angular momenta (spin-orbit pendulum). Symbols show the equidistant
time steps Tj,/500.
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3. Motion in configuration subspace

The full understanding of this phenomenon needs the complementary
description in terms of motion in the configuration subspace. The sep-
aration (4) which is exact if Hy commutes with the spin-orbit potential
allows to consider the full motion of the system as a superposition of two
independent, periodic motions. The motion induced by the Uy operator is
analogous to the motion of a classical particle, Uy shifts the wave packet
along the classical orbit without any change of its form. On the top of this
‘classical’ motion there is another one due to Uj, operator. Briefly speaking
this motion consists in the opposite motions of the spin-up and spin-down
subpackets. The spin collapse is explained in this picture as loosing the
overlap of the subpackets, what leads to vanishing of average values of all
components of 3 operator. Revivals are understood as meetings of the sub-
packets on the orbit at times Tyey = nT}4/2. During the motion subpackets
do not remain identical, some components of one of them are periodically
partially shifted to the other and backwards. The projection of the full
motion of both subpackets onto the plane of the classical orbit is shown
in Fig. 2 for N = 8 case. This representation of the time evolution fails,
however, in showing the motion in the third coordinate. To see it we display
the 3-dimensional trajectories of the subpackets’ maxima in Fig. 3. It is
clear from this figure that the spin-up subpacket changes it’s orbit plane
two times within ¢ € [0, 7},/2], which reflects changes of (I} shown in Fig. 1
when (3) vanishes and revives with reversion. For more details see [5].

4. Perspectives for experimental verification

Nuclear systems, although suitable because of the strong spin—orbit in-
teraction, are too weekly bounded to allow for an excitation of a required
wave packet (which must be built from several states with diferent n quan-
tum number). The unconveniency of atomic systems is due to the week
spin—orbit interaction which makes T},/Tkepler Very large. This ratio can
be strongly reduced, however, for atoms (ions) with high Z number. For such
systems one can apply our approach in the first order perturbation theory
at least for circular orbits [4]. Our estimations show that such systems could
be promising candidates for experimental attemps to detect effect predicted
by us. '
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Fig. 2. Motion of the wave packet with N=8 in time range [0,7},/2]. Shown is
[@(2)|? = |@y(t)]> + |P-(t)|? integrated over 8 as the function of coordinates on
the plane of the classical orbit (marked by the thick circle). The strength of the
spin-orbit interaction is chosen to ensure Ty, = 2 Tp.
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Fig. 3. Trajectories of the maxima of the spin-up subpacket (solid line) and the
spin-down one (dashed line) on the sphere (thin circles) with the radius equal to
the radius of classical orbit for N = 8 case.
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