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The time reversal and irreversibility in conventional quantum mechan-
ics are compared with those of the rigged Hilbert space quantum mechan-
ics. We discuss the time evolution of Gamow and Gamow-Jordan vectors
and show that the rigged Hilbert space case admits a new kind of irre-
versibility which does not appear in the conventional case. The origin of
this irreversibility can be traced back to different initial-boundary condi-
tions for the states and observables. It is shown that this irreversibility
does not contradict the experimentally tested consequences of the time-
reversal invariance of the conventional case but instead we have to intro-
duce a new time reversal operator.

PACS numbers: 03.65.-w, 13.20.Eb, 03.65.Bz, 03.80.+r

1. Introduction

Irreversibility in the title refers to intrinsic irreversibility for quantum
physical systems on the microphysical level; this means there exist micro-
physical “states” 1 whose time evolution (generated by an essentially self-
adjoint semibounded Hamiltonian H) ¢ (t) = “e_th/h”ib(O) has a preferred
direction, ¢t > 0, {1]. Time reversal in the title refers to the existence of an
operator AT which is usually viewed as associating to every state vector
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#(t) a state ¢'(—t) = AZ'é(—t) at the negative time —¢ (relative to a dis-
tinguished point of time ¢ = 0). Irreversibility and time-reversibility thus
appear to be in conflict with each other. Here we want to discuss the resolu-
tion of this conflict, based on the empirical fact, that (due to the boundary
and initial conditions) for a given state one can usually not (experimen-
tally) prepare its time-reversed state, and that the experimentally tested
time-reversal invariance (like, e.g., reciprocity relations) refers to the rela-
tions of A7 with the observables and not the action of A7 on the states.

2. Irreversibility, initial-boundary conditions, the time-evolution
semigroup and Gamow vectors

Standard (Hilbert Space) quantum mechanics admits only reversible
time evolution because time evolution is represented by a group (generated
by a self-adjoint Hamiltonian). In contrast to this mathematical theory,
there is ample empirical evidence of intrinsically irreversible time evolution
of microphysical systems, e.g., the decay of quasistationary states or reso-
nances. Truly stationary states of such quantum physical systems like stable
elementary particles are rare. Most relativistic or non-relativistic elemen-
tary particles are decaying states (weakly or electromagnetically) or hadron
resonances. Empirically, stability or the values of the lifetime does not ap-
pear to be a criterion for elementarity. Stable particles are not qualitatively
different from quasistable particles, but only quantitatively different by a
zero or negligible value of the width I". (A particle decays if it can decay
and it is stable if selection rules for some quantum numbers prevent it from
decaying.)

Resonances have a preferred direction of time (arrow of time). If one
takes the point of view that resonances are autonomous quantum-physical
entities and decaying particles are not less fundamental than stable particles,
then one needs a mathematical theory which includes semigroup time evo-
lution. Further, if both stable and quasistable states should be described on
the same footing and, since there are state vectors for stable states, there
should also be state vectors for quasistable states. The state vector of a
resonance, however, needs to have irreversible time evolution.

The standard way in which irreversibility is introduced in quantum
theory is through the master equation [2]

Ip(t)

"a—t_ = Lp(t) ’ (1)

where p(t) describes the state of the system S, the Liouville operator L is
given, e.g., by [2, 3]

Lp(t) =~ [H,p(0)] + 6He. (2)
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For 6H = 0, (1) with (2) is the irreversible time evolution of the iso-
lated quantum system (von Neumann equation). The term 6Hp repre-
sents some complicated external effects upon the non-isolated system. With
this term (1) is the standard way of describing extrinsic irreversibility due
to the effect of an external reservoir R (e.g., measuring apparatus) upon
the system. This irreversible time evolution is described by a semigroup
p(t) = A(t)p(0) generated by the Liouvillian L, A(t) = e'*, t > 0. Equa-
tion (1) has also been applied to the time evolution of such microphysical
systems as the K — Ks meson system [3].

That a fundamental concept like irreversibility should be caused by ex-
trinsic influences has been considered unsatisfactory by many people work-
ing on irreversibility and statistical physics. According to Prigogine’s ideas
(4], irreversibility should be intrinsic to the dynamics and should have its
origin in the resonances (Poincaré resonances) rather than being caused by
merely external effects of a quantum reservoir or the irreversible act of a
measurement apparatus. This requires also a dynamical semigroup which,
however, should be generated by the Hamiltonian H, p(t) = e~*Htp(0)e*H?,
and not by a Liouvillian like (2).

The idea of intrinsic irreversibility and the empirical facts of resonances
can both be accommodated by a new mathematical theory which is simi-
lar to the standard (von Neumann) quantum mechanics (nonrelativistic or
relativistic) but uses a different mathematical idealization [5].

The interpretation of this new quantum theory is, like the Hilbert space
idealization, based on the Copenhagen interpretation of quantum mechan-
ics, but it makes a much more distinct separation between the state and the
observable. The state is defined by a preparation apparatus that prepares
the state and is described mathematically by a statistical operator (density
matrix) or a state vector. The observable is defined by a registration appa-
ratus that measures its values in the state and is mathematically described
by self-adjoint operators and their projectors (in place of the projection
operator | ¢¥)(¢ | one can also take the vector ¢ up to a phase factor to
describe this observable).

The mathematical formulation of this new quantum theory uses also a
linear topological space, but instead of von Neumann’s Hilbert space it uses
the Gelfand triplet (also called rigged Hilbert space (RHS)).

Rigging the Hilbert space may turn many people away from this subject
because it may appear to some as an unnecessary mathematical complica-
tion (or even a disreputable practice).

This is really not the case, because on the level of the mathematical rigor
employed by the physicist the RHS formulation of quantum mechanics is
like Dirac’s bra- and ket-formalism. When physicists talk about the Hilbert
space they mostly mean a pre-Hilbert space, i.e., a linear space ¥ with a
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“scalar product”, denoted by (¢, F) or (¢ | F) without worrying about
its topological completion. The Hilbert space of mathematicians is a much
more complicated structure, its elements being represented not by func-
tions but by classes of functions whose elements differ on a set of Lebesgue
measure zero, a mathematically complicated and physically useless concept
(because the apparatus resolution is described by smooth functions). The
RHS is the same linear space ¥ only with different topological completions:
one completes ¥ with respect to a topology that is stronger than the topol-
ogy given by the H-space norm (e.g., one uses a countable number of norms)
to obtain the space & C H and considers in addition the topological dual to
&, i.e., the space of continuous antilinear functionals of & denoted by $*.
Then one obtains the triplet

Gelfand triplet: ¥ ¢ & CH=H*C &~

3 113 » [43 ” e 6 M (3)
with elements “bra” and “ket (¢ | | )
or “ket” and “bra” | ¢) (F|

A widespread example for @ is the Schwartz space.

The vectors ¢ € @ (in their form as kets | @) or bras (¢ |) represent
physical quantities connected with the experimental apparatuses (e.g., state
¢ defined by a preparation apparatus or an observable | ¥)(¢ | defined by
a registration apparatus (detector) fulfill ¢,v € &), the vectors (F | or
| F) € ¢* represent quantities connected with the microphysical system
(e.g., “scattering states” | E') or decaying states | E —iI'/2)). H itself does
not have any special physical meaning.

A general observable is now represented by a bounded operator A in @
(but in general by an unbounded A or A in #) and corresponding to the
triplet (3) one has now a triplet of operators

Afls c At c A%, (4)

In here Afis the Hilbert space adjoint of A (if A is essentially self adjoint
then AT = A), At |s denotes its restriction to the space @, and the operator
A* in @* is the conjugate operator of A defined by

(Ap | Fy = (¢ | A*F) forall ¢ € ®and all | F) € &*. (5)

By this definition A% is the extension of the operator A' to the space
¢* (and not the extension of the operator A which is most often used in
mathematics). A very important point is that the operator A* is only
defined for an operator A which is continuous=bounded in @, then A* is a
continuous (but not bounded) operator in ¢*. It is impossible in quantum
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mechanics (empirically) to restrict oneself to continuous=bounded operators
A in H, but one can restrict oneself to algebras of observables {A,B...}
described by continuous operators in @. Then A*, B* ... are defined and
continuous in . If A in (5) is not self-adjoint then A% | need not be a
continuous operator in @ even if A is, but one can still define the conjugate
A* which is continuous in $*.

A generalized eigenvector F’ € &% of an operator A is defined by

(AP | F) =(¢p| A*F)=w(¢| F) forall g € &, (6)

where the complex number w is called the generalized eigenvalue. This is
also written as

AX | Fy=w| F). (7)

For an essentally self-adjoint operator AT = A (= closure of A) this is often
also written as
A|F)=w|F) (8)

especially if one suppresses the mathematical subtleties and acts as if one
has just a linear scalar product space ¥.

Calculating just in the pre-Hilbert space ¥ — as physicists usually do
— the RHS formulation is really not more difficult than the Hilbert space
formulation. One just has to use a slightly more general set of rules for
these calculations. This has always been done in the Dirac formalism of
bra’s and ket’s. In addition to the rules of the Dirac formalism, the RHS
provides a mathematical justification for additional rules of mathematical
manipulations. The most important of these are:

1. the eigenvectors of self-adjoint observables A (i.e. with AT = A) in (8)
can be complex

2. the time evolution for some of the solutions of the Schrodinger equation
can be given by a semigroup and not by a reversible unitary group

3. some vectors can decay exponentially (as envisioned by Gamow).

Dynamical equations (laws of nature) are the same in both the Hilbert
space and the RHS formulations, namely given by the Schrodinger equation

91¢(t))

th 5t

= H|¢(t)) . (9)

or the von Neumann equation (2) with 6 = 0. But in the RHS formu-
lation different initial and boundary conditions than in the Hilbert space
formulation allow for a greater variety of solutions; (this goes back to Dirac
(kets | E)), Gamow (exponentially decaying “state” vectors | E — iI'/2))
and Peierls (purely outgoing boundary conditions). These new vectors are
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in the rigged Hilbert space, | E),| E — i['/2) € &% D> H D &, but not in
the Hilbert space H. Distinct initial-boundary conditions for state vectors
(e.g., in-states ¢T of a scattering experiment) and observables |¢~)(s ™|
(e.g., so-called out-states ¥~ of a scattering experiment) lead to two dif-
ferent rigged Hilbert spaces [1], whose precise mathematical properties had
been defined earlier [6]:

&_CHCPX, for ensembles or states, (10)
o, CHCPE, for observables or effects. (11)

The Hilbert space H is the same in both RHS’s (10) and (11) and & of (3)
is®d=d_+ P, withd_Ndy #0.

In (10), @_ describes the possible state vectors (preparation apparatus,
e.g., " or ¢T of a scattering experiment) and &, in (11) describes the
possible observables (e.g., [#°"*)(¥°"] or [ 7)(¥ 7| of a scattering experi-
ment).

For the typical scattering experiment the physical meaning of #_ 3 ¢T
is depicted in Fig. 1. The in-state ¢ (precisely the state which evolves from
the prepared in-state ¢'™ outside the interaction region where V. = H—Hy is
zero) is determined by the accelerator. The so called out-state ¢~ (or ¥°")
is determined by the detector; | ¥°"*){(¥°"* | is therefore the observable
which the detector registers and not a state. In the conventional formulation
one describes both the ¢' and the ¥°" by any vectors of the Hilbert space.
In reality the ¢'™ (and ¢1) and ¢°"t (and ¥ ™) are subject to different initial
and boundary conditions and should therefore be described by different sets
of vectors.

These distinct initial-boundary conditions for state vectors and observ-
able vectors are stated as an “arrow of time” in the form [1]:

The state ¢(t) € ¢_ must be prepared before an ob-
servable |1} (4| (with ¥ € &) can be measured in that
state; i.e., if t = 0 is the time before which the prepa-
ration is completed and after which the registration
begins, then ¢(t) must be prepared by a time t < 0. (12)

The property of spaces in (10) and (11) can be derived from a mathematical
formulation of the “arrow of time” (12) using the Paley-Wiener theorem [1].
It turns out that ¢_ is the space of well behaved Hardy class vectors from
below and @ is the space of well behaved Hardy class vectors from above
[7]. These are the same mathematical properties that had been obtained
earlier [6, 8] from the existence conditions for Gamow vectors. The nota-
tion o7 € &_ and 1y~ € &, of opposite sub- and superscripts for vectors
and spaces has no significance but is just a consequence of the fact that
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the nomenclature in physics (scattering theory for ¢T, 1~) and mathemat-
ics (theory of Hardy class functions for #_ and &) had been developed
independently.

The semi-group of time evolution, and therewith irreversibility on the
microphysical level, is a mathematical consequence of the bi-partition of the
rigged Hilbert space into the two rigged Hilbert spaces (10) and (11) and
therewith of the dichotomy of state and observables and their “arrow of
time” (12).

In conventional quantum mechanics in Hilbert space the time evolution
of a state

W(t) = UT ()W (0)U(t) = e " H/ R (0)e? HU/ —o0<t<oo (13)
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is given by a group
Ut(t) = e~ iHt/R —00 <t < +00. (14)

Therefore for every statistical operator (or density matrix) W (¢) one obtains
(by calculation) a state operator W™®8(¢t) = W(—t).

In the rigged Hilbert spaces (10), (11) we have the two extensions of
the Hilbert space operator UT(¢):

the conjugate of Ulg_: UT(t) c UX = e_int/h; fort <0, (15)
the conjugate of U |g, : Ut@) c Uy = e_int/h; fort >0, (16)

where U (H*) denote the extensions of the unitary (self-adjoint) opera-
tors UT(t) (HT = H) to the spaces 3. It turns out that, mathematically,
UX in & can only be defined by (5) for values of the parameters t < 0,

since for ¢ > 0 U is not continuous in #_. By the same arguments Uj_( in @i
can only be defined for values of the parameters ¢ > 0. This is the mathe-
matical strategy by which the semigroup time evolution is obtained. In the
physical interpretation of the mathematical theory it is based on the “arrow
of time” (12). Now one can no more define for every state |¢~ (£)){¢™(2)],
¢~ C D4 astate WmB(t) = |¢~ (—t)){(¢~(—t)|, which seems to reflect the
experimental situation better (time reversal transforms out-states of scat-
tering experiment which are highly correlated spherical waves, into highly
correlated incoming spherical waves that go into outgoing uncorrelated plane
waves). But an experiment in which highly correlated incoming spherical
waves go into uncorrelated plane waves is practically impossible to set up.

Summarizing, if one wants an irreversible time evolution on the mi-
crophysical level one needs a mathematical idealization (i.e., a topological
completion of the linear algebraic space) which uses not Hilbert space but
the rigged Hilbert space. This quantum theory in rigged Hilbert space has
the following properties:

L. It has Dirac kets (scattering states) | F) and an algebra of observables.
I1. It has vectors, called Gamow vectors which we also denote by kets as
|pC) = |zg)v2n I, that have the following properties which make them
ideally suited for the description of resonance states in quantum theory:

1. They are generalized eigenvectors of Hamiltonians H (which we
always assume to be (essentially) self-adjoint and bounded from
below) with generalized eigenvalues zg = Eg — /2,

HX

¥9) = 2r[6°) (17)
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where E'p and I are respectively interpreted as the resonance en-

ergy and width.
2. They satisfy the following exponential decay law for ¢ > 0 only:

WG(t) — wo—iHt/hy I¢G> < } «giHt/hn
— o~ H(ER—iT/2)t/h '¢G> <1/)G' i(Er+iT/2)t/h

=e Tt/h Wb (). (18)

o

. They have a Breit-Wigner energy distribution.

4. They obey an exact Golden Rule of which Fermi’s Golden Rule is
the Born approximation.

5. They are associated with a pole at zg in the second sheet of the an-

alytically continued S-matrix. They are derived as the functionals

of the pole term of the S-matrix.

In the absence of a vector description of resonances in the Hilbert space
formulation, the pole of the S-matrix has commonly been taken as the defini-
tion of a resonance. Since in the RHS formulation the Gamow vectors are de-
rived from the pole term of the S-matrix [8], these vectors | zz) € ®F define
decaying resonance states as autonomous microphysical entities. (There are

also Gamow vectors |z}, *, Zh = ER—HF/Q associated with the pole at 2%,
which have an exponentlally growing semi-group evolution for —oo < ¢t < 0).

3. Gamow—-Jordan vectors — a mathematical
actuality and a physical possibility

The mathematical definition of Dirac kets was given in 1966 [9], the
Gamow vectors were introduced about 1976 [10, 8]; a generalization of
Gamow vectors to higher order poles of the S-matrix was given in 1995 [11].
An N-th order S-matrix pole at the complex energy zps = Ear — iyar has
N Gamow vectors of order 0,1,...k...(N - 1):

—>(0)

}ZN )(1)

By 2y Bz VD (19)

associated with it. The k-th order Gamow vector Iz;/>(k) is a Jordan vector
of degree (k + 1), i.e.it fulfills the eigenvalue equations [12]

(H* = 2)* 23 =0,
HX{zN)(k) = lezN)(k) + {z;,-)(k'l) for k=0,1,...,(N —1). (20)

These equations are, like the eigenvector equation for Dirac kets and for
Gamow vectors (= Gamow vectors of order 0 = Jordan vectors of degree
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1), understood as generalized eigenvector equations (i.e., functionals) over
the space ¥4:

(H ™ |23)® = (07| H |20 P,
= 2@ 2P + (@7 | 2 ED for all Yo € D4.(21)

This means IzX,')(k) € 45:, and the A-th order S-matrix pole is associated
to a A-dimensional subspace M, C &7, spanned by the ]z';\})(k), k=
0,1,..., (M —=1), i.e., to the set of all
N—-1
lznt = > ey Pe, e ec. (22)
k=0
On M., C @i the Hamiltonian H* (i.e., the extension of the self-adjoint

operator H' to %) is not diagonalizable, but can only be brought into the
normal form of a Jordan block:

Zar 0 e eee oo D
1 zpa :
Hjpes | 01 7 aE (23)
: 0
\0 0o - - 1 zx

From this follows that the matrix representation of the time evolution
operator (16) on the N -dimensional eigenspace M., is given by

<¢—[e—itHx lz;{)(k) —

e Nt 0 0
glllg)_e""zj\[t e—zN’t 0 :
(—;f)ze_th (—1§t>e_z,\,t RS
— \~:1 . N—:2 . :

((Wltl_ﬁ!_e—-z.,vt ((Wn)_gTe_th . e ﬁ%t)e—z)vt e Nt

(¥~ |z5 @

(V7 lzp S
: (24)

(@ |z MY
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which can also be written as
—itH”® | _—\(k) _ i k. (=it k-1
et |ZN>():ethN{|ZX[>()+___1!_lzX/,>( ) ...

(=it)’
I

(=it)*

+ X

| z})(k"l) +oet | zxf)(o)} fort > 0only. (25)
This means that whereas the zeroth order Gamow state only decays expo-
nentially with time, the k-th order Gamow vector | z;/)(k) evolves into a
superposition of lower order Gamow vectors. After a long time (relative to
the scale set by h/I') the most significant term is the zeroth order Gamow
vector | z;,)(o), whose time dependence is given by e~ #:¥ ¢k,

4. The complex basis vector expansion and some
of its consequences in physical applications

The most important result of the new mathematical theory of quantum
physics in the rigged Hilbert space is the complex eigenvector expansion.
This is the generalization of the elementary basis vector expansion of a 3-
dimensional vector, = Zi=1_2,36i(8i -x) = Y e;-z; to the expansion of

vectors ¢t € &_ using as basis vectors the generalized eigenvectors lzﬁi)

and |z7)%) of self-adjoint operators H with complex eigenvalues zR;, and
z, respectively.

Earlier developments towards this generalization were the fundamental
theorem of linear algebra which states that for every self-adjoint operator
H in a n-dimensional Euclidian space H,, there exists an orthonormal basis
€;...€n in H, of eigenvectors He; = FEe;. lLe., f € Hp can be written
f= }:?:1 ei(ei, f). This theorem generalizes to the infinite dimensional
Hilbert space H, but only for self-adjoint operators H which are completely
continuous (also called compact operators which include Hilbert-Schmidt,
nuclear, traceclass operators). For an arbitrary self-adjoint operators H one
has to go outside the space to find a complete basis system of eigenvectors
(generalized).

The first step in this direction is the Dirac basis vector expansion which
in mathematical terms is called the nuclear spectral theorem. It states that
for every o € &

+ oo

o= / dE|EH)(TElgt) + 3

0

En)(Enl¢) for g€ ®.  (26)

In here, |E,,) are the discrete eigenvectors of the exact Hamiltonian H =
K +V, (describing the bound states) H|E,) = E,|E,), and |eT) are the
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generalized eigenvectors (Dirac kets) of H corresponding to the continuous
spectrum (describing scattering states). The integration extends over the
spectrum of H: 0 < E < o0o; and in place of the [e™) one could also have
chosen the |e™), if the out-wavefunctions are more readily available.

Tlre second step is the “complex basis vector expansion” For every ¢1 €
&_ (a similar expansion holds also for every ¥~ € &) one obtains for
the case of a finite number of resonances poles at the positions zg,, i =
1, 2,---N, the following basis system expansion:

— o011

N
ot = [ dolt)(Rolg) + Y IoR) 20 (P l6T)
0 =1
+ > |En)(Enlg) for ¢t ed_, (27)

where Iz;zi)\/Zﬂ'Fi = yCi ¢ QS_T_ are Gamow kets (17) representing decaying
states (18).

If we assume that there are two decaying states Ry = S and Ry = L
and no bound states, then the pure state (prepared by the experimental
apparatus) has according to (27) the following representation in terms of

the Gamow vectors ng =| 2z )\/2n 1, 102 =| 25 )v/2nI's and the remaining
part which we call ¢g’g:

— 0011
ot = ySb + vSbs + / dE |E*)(* E|g*). (28)
0

In here by, and bg are some complex numbers that depend upon the “nor-
malization” of the Gamow vectors gbg’ g (and of #%1), and upon some phase
convention. All the vectors in the generalized basis system expansion are
(generalized) eigenvectors of the exact Hamiltonian, and, in particular, the
Gamow vectors zp%’ < are eigenvectors of the exact Hamiltonian H, with
complex eigenvalue (Ef — 111 /2) and (Es — 1 I's/2), respectively.

We now apply the time evolution operator to equation (28). Since the
P8 are elements of &% we can only apply the operator U () of (16) to it
and we obtain:

¢t (1) = e g
= o ELT LDt Gy 4 e BT /Dt ylh 4 ¢t (1) 1> 0. (29)

Since the time evolution semigroup (16) has the restriction ¢ > 0, the same
restriction must be used for (29). ¢g’g(t) is the time evolved background
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term
—oorr
sh0= [ dBe BB GBS (30)
0

These equations are understood as a functional equation over all v~ € &.
This means that ¢+ (t) € _ C & can be used to obtain (1~ |¢7(¢)),
whose modulus square is the probability to find the time evolved state by
a detector that detects the observable |4~ ){y~| for any ¢~ € &4, but not
forayp~ ed_.

The result (29) means that the time evolution of a superposition of two
(or more) Gamow states does not regenerate one Gamow state from the
other, or from the background qbgg(t). In particular, if the state ¢+ can

be prepared such that at some time tg > 0 the background term qﬁgg(t) is
practically zero, then it will remain zero for all ¢ > tg, and the two Gamow
states will evolve separately with their separate exponential laws without
regenerating each other:

() e L= (TL/Dt 4Gy, o miBsto=(Is/Dt Gy (31)

Approximations like (31) have been used for the time evolution of a two-
resonance system (like the K ;—K g-system with ¢ (t) representing the K°
state [13]) in theories with “effective Hamiltonians” given by 2 x 2 complex
diagonizable matrix. These effective theories are usually legitimized by the
Wigner—Weisskopf approximation [14]. In our irreversible quantum theory
the expression (29) is exact and it justifies to some extent the effective theory
(31). And (29) shows that the problem of “deviation from the exponential
decay law” or “vacuum regeneration of Kg from K” [15] arises from the
artifacts of the Hilbert space mathematics and can be overcome in the exact
theory using the rigged Hilbert space.

However there is an extra term in (29) which we called qﬁg'g and which
is not taken into consideration in any of the finite dimensional effective
theories of complex Hamiltonians, in particular not in the Lee, Oehme,
Yang theory [13] of the neutral Kaon system. This term, which comes from
the integral along the negative real axis in the second sheet of the S-matrix,
can be shown to be also decaying, i.e., ](T/)—Wg_g(t)}l — 0 for t — oo for

every ¥~ € &4, but it decays more slowly than the exponential [16]. Thus if
one takes for ¢7 the |K°) state prepared e.g., by the reaction pr~ — AKO
and for the observables |¢)~)(y ™| projectors on the ¥ 7~ space one obtains
according to the ezact equation (29) also a term |(7r+7r_|¢g"g (t))]. This term
vanishes more slowly than to the rapidly disappearing e"i/st|(z 7~ |K{)|.
This may provide an alternative mechanism to explain the 77 decay mode
of the prepared K° long after the K = K7 has vanished.
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The third step outside the space to obtain the basis of eigenvectors is
the general complez basis vector expansion. It includes in addition to the
ordinary Gamow kets (17) also higher order Gamow kets (21) which occur
when (and if) the S-matrix has poles of order N > 1. Instead of writing
down the general expansion we restrict ourselves here to the special case
that there are no bound states, there are two resonances at zg, and zg,
and there is one second order pole at zg = F4 — iy4. Then the following
basis system expansion holds for ¢4 € ¢_:

¢t = 127) O (—2mia_y) M (F 24|y — |27) D (~2mia—2) V(T zgléT)

— o011

2
+ Y k) 2mia)(Farlot) 4 [ dolohitulet), 62
1==1 0
the a_q, a(:)l are the expansion coefficients in the Laurent series expansion
of the S-matrix at the poles z4, 2z, and zg,, respectively.
The important distinction to (27) is that this basis system contains
Jordan vectors and the Hamiltonian is not diagonal but can only attain the
Jordan normal form:

(@ [H*|z7)(® 2 0 (7 zg)®
|- [ e
_ 2R, - ZR, (oA zEl
($~IH>|2R,) ZR, ) (¥ lzg,)
(6~ [HX|w) @7\ (o)

The time evolution of the basis vectors on the r.h.s. of (33) is again given
by the semigroup (16), i.e., they have an arrow of time. However, now in
addition to the exponential dependence the time evolution operator also
transforms according to (24) inside the two dimensional eigenspace M,
with an additional linear time dependence. That second order poles of the
S-matrix will introduce an additional linear time dependence in the decay
law has been known for long time [17], only it was not clear what the vector
was that evolved in this way. This vector | zd_)(l) has now been defined. In
addition the new result (25) shows that the different values of k get mixed
up by the time evolution.

Whereas there is no doubt that ordinary, 0-order, Gamow vectors will be
the suitable vectors to describe resonance states because of their properties
II.1...11.5 above we have no idea what the physical meanining of the higher
order Gamow vectors may be, if any. In contrast to the fact that ordinary
Gamow states have been identified in abundance, e.g., through their Breit—
Wigner profile in scattering experiments, or the exponential decay law [18],
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there is no convincing evidence for the existence of higher order poles in
nature [19]. The k-th order Gamow states and their time evolution (25)
are completely new and unusual. Their effect should also be so overwhelm-
ing that the meager evidence for higher order poles of the S-matrix which
has been discussed in the past (A;-splitting in particle physics, ®Be in nu-
clear physics) would not be able to account for it. It is possible that there
does not exist anything in nature that is described by higher order Gamow
vectors and first order resonance poles is all there is. But since there is
no theoretical reason against higher order poles of the S-matrix and these
higher order Gamow “states” emerge naturally from the poles, it is worth-
while to investigate their properties further [23]. The only place that we can
think to look for effects of these higher order Gamow states are the high-
multiplicity events in high energy hadronic and nuclear collisions. That a
quantum mechanically rather pure initial state of two hadrons can result
in a high multiplicity event could have its origin in the highly impure “res-
onance” state associated with the AM-dimensional subspace of higher order
Gamow kets.

5. Reversed time evolution and time reversal transformation

An irreversible time evolution on the microphysical level immediately
leads to the question as to the time reversal transformation Ap. In the
usual reversible time evolution (13) one always has with a state W (t) also
a state W{—t) (or with the state vector ¢(t) also a state vector ¢(—t) =
e~ (=20H (1)) The time reversed state defined by W7 (t) = A;l Wi(t)Ar

or ¢T = A}lqb can therefore be identified with the negative time state:

W) =WhH) =W(-t); ¢"(t)=0(1) ¢(-t)=0(-1), (34)
or in terms of the wave function since Arp is antiunitary:
¢' (@, ~t) = ¢7 (z,t) = ¢*(=,1). (35)
For irreversible time evolution one has the two semigroups (15) and {16):
Ut(t)le_ C UX(t) in the space of states &_ C X fort <0 (36)
and
UT(t)|¢+ C U_f (t) in the space of observables @4 C 451 for t > (23 |
7

Therefore a state vector at the negative of the time ¢, i.e., ¢(—t) = ¢(|t])
cannot be obtained from ¢(0) by this semigroup transformation. Thus there
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is in general no negative time state W(—t) (or ¢(—t)) which the time re-

versed state W7 (t) (or ¢7 = Agp_l) ¢) could be identified with. In particular
one cannot have the standard requirement (34), Ar cannot be the operator
that transforms every conceivable state W (t) into W(—t). The operator
U(|t|)|s_ is not continuous operator from @_ to #_ but transforms out of
the space of states @_ into the space &.

A mathematically consistent resolution of the problem with the time
reversal operator, therefore, would be to define

A :®_ > &y &L d9¢~ = ApgT, ¢t e d_. (38)

This is indeed the solution suggested by conventional scattering theory
where the in-states ¢t or (¢>i“) are the time reversed of the so called out-
states ¥~ or (¢°"). (The “out-states” ¢°"* are actually observables and
not states because they are specified by the detector whereas states are spec-
ified by the preparation apparatus (accelerator)). This solution is based on
the standard A7 transformation properties of the eigenkets of the exact
Hamiltonian H

A7|E%, n) = o|EF nr); A% = (-1)%1, (39)

which are defined by the Lipmann—Schwinger equation

|E*,n) = |E, n)+ VIE,n) (40)

1
E—H+ze
(n are the degeneracy quantum numbers which include angular momentum
(spin) j and |E, n) are the eigenkets of (H — V) = Hy).

However (38) would mean that Ap transforms observables into states
(and vice versa) and would therefore lead back to the identification of the
set of observables with the set of states. Though &4 N®_ # @ (zero vector),
which means that there are vectors ¢ € & = & + &_ which can represent
states as well as observables, in general one cannot postulate that every
observable |)(%| can be prepared as a state. FE.g., in a typical scatter-
ing experiment the “out-states” represent highly correlated spherical waves
whereas the prepared in-states are typically two uncorrelated plane waves
(e.g., two colliding monochromatic beams). The time reversal of this ex-
periment would require a preparation apparatus that prepares highly cor-
related (with fixed phase relationship) incoming spherical waves that would
be scattered into two uncorrelated plane waves. An apparatus that would
accomplish this is impossible (or highly improbable) to build, at least in this
world. Thus, not for every preparable state W can one also prepare a state
which would be described by its time reversal transformed W71 = AEIWAT
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(for another example see, e.g. chapter 13 of ref. [13]). This means that nei-
ther of the two quantities equated in the standard theory by (34) may have
a physical meaning in terms of a preparation procedure.

The division of @ into @_ (for states) and $4 (for observables) that
we obtained from the arrow of time is not contradicted by the physics of
time reversal (because one can build a rotated, a translated or even a par-
ity transformed preparation apparatus but one cannot build a time reversal
transformed preparation apparatus). But it is just in contradiction with the
standard theoretical description (38) for the time reversal operator. There-
fore, if irreversible processes on the microphysical level are to be described,
we need a time reversal operator more general than the one convention-
ally used in non-relativistic quantum mechanics and relativistic field theory.
Wigner has already provided such a time reversal operator [20] which has
also been mentioned a few times in the literature [21, 22]. But so far only
the A with the standard property has found acceptance in physics.

The time reversal operator At is not defined by its action on states
like (34) and (35), but by its relation to the observables [10, 22]. In general,
the quantum mechanical operator Ar representing time reversal

1
At _ (-t _ B ~1
()= (7

is an element of the (co)representation [20] of space-time transformations.
Space-time transformations (i.e., the extended (by time reversal and space
reflection) Poincaré group for relativistic space time and the extended Galilei

-1

group for non-relativistic space-time (i)) were represented by unitary

(and antiunitary for Ar) operators in the Hilbert space. The time reversal
operator Ap is therefore defined (not by its action on the states) by its
relation to the other symmetry operators like the space reflection Up and

the restricted space time transformations U ((;) ,A). An example of

such a relation is [22]

ATU((;>,A) A;‘:U((;t>,g/1g). (41)

From this one obtains the relation of A7 to the observables, which are the
generators of U(z, A). Examples of these relations are

ATP ALY = =P, ArJiAp' = —Ji, ArUpAL' =ereiUp,  (42)
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ATHAL' = H, ArHoA;'=H,, ArSA7'=S. (43)

In here the generators P;, H, J; represent momentum, energy, angular mo-
mentum, respectively. The S-operator is a complicated function of the
interaction Hamiltonian V = H — Hy and Up is the unitary and hermitian
parity operator normalized to UIZ;. = 1. The quantities

er = A%, er = (UpAr)? = A3,

are real phase factors which define the 4 different extensions of the restricted
space-time symmetry transformations by space inversion P = g, time inver-
sion T' = —~g and space-time inversion ] = PT = —1. (At this level where
we have not talked about any charges, Up could also be interpreted as rep-
resenting the usual CP). Of the 4 possible extensions (er,e7) = (&1,+£1)
the almost exclusive choice [22, 10] for (s7,¢)) is:

er = (-1)% er=(-1)% where j is the spin . (44)

With this choice the only possibility for Ar is (38) which in the interpre-
tation requires to identify the set of states with the set of observables (i.e.,
no arrow of time) and to assign to every W(t) a WT(t) = AE,ZIW(t)AT
fulfilling (34). This is in contradiction to the experience that at least for
some states it is highly improbable to also prepare their time reversed states
(cf. remark above and ch. 13 Ref. [13]).

A way out would be to give up either irreversible time evolution or the
time reversal operator. But since time reversal invariance, defined by (42)
and (43) has consequences which can be tested experimentally, e.g., reci-
procity relations, it is useful to retain the notion of At also if one includes
irreversible time evolution. We therefore want to explore the three other
possibilities for (e7,er) which do not fulfill (44), i.e., the other extensions
of the space time symmetry groups provided by Wigner [20]. All three un-
conventional extensions involve time-reversal doubling of the representation
spaces. This will introduce a further label r in addition to the quantum
numbers which we called 7 in (40). For n we will choose angular momen-
tum (spin) j, its component j3 and other intrinsic quantum numbers n,
which we do not specify further: n = j3,7,n. Thus the basis vectors are
denoted by |e*, j3, 7, n; r). The four possible cases, of which the standard
case (44) is given in the first row, are listed in the following table.
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TABLE 1

Extensions of the space-time symmetry groups by P and T

Characterization of the
P and T extensions Representation of Representation of

Er Er Up AT
(-1)% (-1)% 1 C

—(—1)% (-=1)% <(1) Bl) <—OC (03)
(-1)%  —(=1)¥ ((1) ,,01> (g g)
e e () (% 6)

In this table C' is the well known operator:
CIE, ja,j,n;r) = e(r)(=1) 78| B, —js, j, n;7)

= Z | E, 5, 7, n; r)C(]) (45)

where a(r) is a phase factor and the matrix C(J) is given by
CE) = (=16 (=5 <y <+i). (46)

The index r(= + or —) labels two subspaces H(r) in which all the other
known observables B are identical, i.e., B and Uy, where g are continuous
space-time transformations not containing P and T, are given by

(B8 us(58) @

The index r thus also labels the rows and columns of the operator matrices
in the Table I and in (47).

In the conventional case (44) the label r is not needed and A7 is given
by (ignoring all the unspecified quantum numbers n)

AT I E’j31]> = ( )J+]305 I E _]3?]> (48)

which we also write (suppressing from now on the quantum numbers js, 7)

Ar| Ey=a| E). (49)



2314 A. BouM, P. KIELANOWSKI

The exact eigenvectors | E) which are related to the | E) by (the formal
solution of) the Lippmann-Schwinger equation (40), have the standard AT
transformation property (39)

In the conventional case (48), (39) we have one Hilbert space #, one
RHS® =&, +P_ CH C P*; P NP_ # D and one pair of RHS’s of Hardy
class type (10), (11). The operator A7 can only be defined as in (38), i.e.:

Ap &1 = D5 AT PX — @g; (50)

which means that the two spaces #_ and &4 are A7 transforms of each
other. In our earlier discussion of the scattering experiment we have already
concluded that this cannot be possible for empirical reason. Thus, if one
has a quantum mechanical arrow of time, then the time reversal operator
cannot be defined in the standard way with A% = +1 (or A2 = +(-1)?7).

Of the three unconventional cases the second and the third line of Ta-
ble I gives the cases in which A1 transforms between parity eigenspaces
of opposite (relative) parity. In these cases the label r» can be given by
the relative parity and is therefore also not needed. We therefore choose
the case in the fourth line of the Table I characterized by (7 = —(—1)%7,
er = —(—=1)%9). In this case the action of A7 is given by

Ar | E,r)=a(r) | B,—r); o*(r)a(-r)=er=(-1)(-1)*  (51)
and the action of A7 upon the exact energy eigenvectors | eT, r) is given by
Ar | E*,r) = a(r) | EF,—r). (52)

In this new case we have two RHS’s labeled by the index r, " C H" C &%
and two pairs of the RHS’s of Hardy classes, in place of the one pair (10)
and (11):

L CHCP and T CHC O, r=1= (53)
for any ¢t € &7 we have a ¢~ = Aot € o7, (54)
for any ¥~ € &7 we have a ¢T = Apy~ € 6. (55)

From this we conclude that the operator A7 maps the space 7 (continu-
ously, one to one and) onto the space @q—:r

Ap @4 - &7 r=+,-. (56)

The conjugate operator which is defined as the extension of the adjoint
operator A; :H" — H™" according to

Ablgr c Al.c A% in & CH" C &%, (57)
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is then a (continuous, one to one) mapping between the corresponding dual
spaces
AT P — 45;:”( r=+4,— . (58)
Thus an operator A, which is compatible with our physical interpre-
tation of the spaces @ and @_ has indeed been given by Wigner in [20] for
the case ep = ey = —1(= —(—1)%/). In this case A7 (and ATT) transforms
— according to (56) — from the space &' (r = +), which contains vectors
representing properties of the outgoing scattering products of our real ex-
periment, into the space #_", which contains in-state vectors of scattering
experiment which we cannot prepare (e.g., incoming spherical waves with
fixed phase relations). Vice versa, the space 7 (containing vectors that

represent real preparable in-states) is mapped by A7 onto ;" (containing
properties which we cannot observe).
The same arguments apply according to (58) to the microphysical res-
onance states. The exponentially decaying Gamow vector ¥C =| zg,r™) €
", zr = Ep — iI’/2, is mapped into a vector | 2%, —rT) € &7 which
exponentially decreases into the negative time direction. And the Gamow
state of our resonance scattering experiment,)C =| z§, rtW2nl € ¢T+X,
which exponentially grows from ¢ = —oco to ¢t = 0 (the time when the prepa-
ration is completed and the registration begins) is mapped by A; into a
vector | zg, —r~) € ®" which like the | 2%, —r™) cannot be detected in
our scattering experiment.
Thus mathematically, due to the time reversal doubling, we have two
arrows of time pointing in opposite directions. For r = + we have two
semigroups (15), (16) both evolving into the same direction of time. For

t < 0 we have the semigroup UX = e~*H™t (of growth) and for ¢ > 0 we
group g

have the semigroup U} = e~ iH ™t (of decay). These provide our arrow of
time. The RHS’s (53) with r = — describe the time-reversal image of our
physical experiments; this time-reversed experiment we will find impossible
to prepare.

One can show that like in the conventional case also in this new case
with (ep = —(=1), e7 = —(=1)7) we have

| E,rty =| E,r7)S(E) =| E,r)e**®) for r =+, (59)

(where §(E) is the phase shift and S(F) the S-matrix). This is the conse-
quence of “time reversal invariance” defined by (42) and (43). This means
that the two spaces @7 (describing states) and the two spaces @/ (de-
scribing observables) with different values of r, » = 4 and r = —, are not
intermingled by the dynamics given by H or the S-operator. The exper-
imentally tested consequences of time reversal invariance like reciprocity
relation remain intact separately for each value of r.
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In conclusion, we have seen that the quantum mechanical arrow of time
and irreversible time evolution on the microphysical level (as exemplified by
all quantum mechanical resonance states) are not in contradiction to time
reversal invariance as defined by (42) and (43). However, for quantum phys-
ical systems with irreversible time evolutions (resonances) the time-reversal
operator Ay is not the standard operator with A% = (=1)%J. The price that
we have to pay for describing irreversible time evolution and time reversal
invariance in a consistent way is the doubling of the spaces. One pair of
spaces, (53) with » = +, contains microphysical states that became and de-
cay in our time direction. The other, (53) with r = —, contains microstates
that became and decay in the opposite time direction. Time-reversal in-
variance, as defined by (42) and (43) for the observables, does not lead to a
time symmetry for the states, like (34) and (35). This is in agreement with
the empirical facts that some conceivable time-reversed states are highly
improbable and practically impossible to prepare [13]. Theoretically, the
time symmetry of the observables given by (42) and (43) can be broken for
the states in two different ways leading to two arrows of time, r = + and
r = —. We belive that the principle, if any, that selects the one arrow over
the other lies outside the scope of the theory
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