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Space of density matrices in quantum mechanics can be regarded as a
Poisson manifold with the dynamics given by certain Lie-Poisson bracket
corresponding to an infinite dimensional Lie algebra. The metric structure
associated with this Lie algebra is given by a metric tensor which is not
equivalent to the Cartan-Killing metric. The Lie-Poisson bracket can
be written in a form involving a generalized (Lie-)Nambu bracket. This
bracket can be used to generate a generalized, nonlinear and completely
integrable dynamics of density matrices.

PACS numbers: 03.65. Ca

1. Introduction

The generalized quantum mechanics presented below is based on the
idea of rewriting the Liouville-von Neumann equation in a triple bracket
form, introduced by Biatynicki-Birula and Morrison [2]. The triple bracket
is an infinite dimensional analog of the Nambu bracket [3] where, as op-
posed to the structure constants €, of the rotation Lie algebra appearing
in the original Nambu bracket, the structure constants correspond to some
infinite-dimensional Lie algebra. In the original Nambu paper an evolution
of a physical system is generated by two “Hamiltonian functions”, the en-
ergy H and J, where the latter is the Casimir invariant of so(3) (squared
angular momentum). The metric tensor used for constructing the invariant
is, as usual, the one related to the Killing form [4]. In the triple bracket
formulation of QM the analog of J is the Casimir invariant S = 1/2Tr(p?)
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which also can be written as g%®p,p; although the metric ¢g*° is no longer
given by the Killing-Cartan tensor.

2. Lie—Poisson and Lie-Nambu structures in quantum mechanics

Let us start with the Dirac equation which can be written in a form of
classical Hamilton equations

0H

dir¢x(~’c) =l x T (1)
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where n y y/ is a 4-vector normal to a spacelike hyperplane in the Minkowski
space and d/dr is a derivative in the direction of ny x/. Bispinorially the
equation is

d 0H
EQba(x) = Iaﬂma (5)
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where [, 4 is the Poisson tensor, or
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where w®? is the symplectic form. Let us denote the continuous arguments
of the wave function by a, a’, etc. This allows us to introduce the following
convention for the density matrices:

pa,a’(av a') = pa, 9)

with the summation convention where two repeated lowercase Roman in-
dices mean simultaneous summing over the Greek indices and integration
over the Roman ones.
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The Liouville-von Neumann equation for the density matrix can be
written in a form involving the Lie-Poisson bracket [2]

d
goPa = {pa, H}, (10)
where SF §G
F = p 0%
{ ‘G} Pa bc(spb 5pc 3 (11)

and the structure kernels Q%  satisfy conditions characteristic for
Lie-algebraic structure constants

Qacb =- abc’ (12)

b2 + Q% Q%+ Q% .0, =0. (13)

These two conditions imply the Jacobi identity. The explicit form of the
structure constants is given below.

In order to convert the Lie—Poisson bracket into a Lie-Nambu bracket
we first have to define a metric tensor to lower the upper index in the
structure kernels. The apparently natural guess (the Killing-Cartan metric)
Gab = 825, deb . Is incorrect as it involves expressions like §(0) which are not
distributions in the Schwartz sense and such a metric cannot be invertible.

The correct definitions are

ab __ l52Tr(p2)

=—— , 14
2 dpadpe 1)

and its inverse. Equivalent definition can be given in terms of the symplectic
and Poisson structures:

Gab = — aﬂ/lﬂa/é(a - b,)5(b - (ll) y (15)
g% = —w*P' P §(a — b')6(b—a'). (16)

The metric tensor is symmetric
9ab = Gba> (17)
and satisfies the invertibility conditions
9% gbe = 626% 8(a — c)b(a’ — ¢') =: 62, (18)

where the delta functions correspond to a foliation of spacetime defining the
time derivative.
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In the same way one can define higher order tensors

aj.an _ 1 0"Tr(p")

= W bper 50 (19)

g

which are related to higher order Casimir invariants of the theory as we
shall see later. The metric structure is identical to this used occasionally
in quantum optics [6] and is interesting in itself as an infinite dimensional
substitute for the Cartan-Killing metric.

The functional

Sz = 1% papy = 1T (p?), (20)

is related to Rényi’s 2-entropy [5].
The Lie-Poisson bracket can be turned into the following Lie-Nambu
triple bracket

8F 6G 652
{FvG} - [Fv G, S2] - Qabcmé_pbm ) (21)
where
Qobe = aw![ﬁallﬂt‘slé(a - c')5(b - a')é(c - b')
— I(,B/Iw/a/[ﬂv/é(a - c’)(S(c — a')é(b - c') . (22)

The antisymmetry of the triple bracket means that S5 is a Casimir invariant
of a Lie algebra of observables. Another Casimir invariant is Trp since
{Tr p, F} = 0 for any differentiable F (hence not only those linear in p).

The triple bracket form of the Liouville-von Neumann equation shows
that the time evolution in linear QM has two generators: the average en-
ergy (Hamiltonian function) and the invariant S, which measures Rényi’s
a = 2 entropy. It is natural to ask what will be changed in the theory if, in-
stead of generalizing the class of admissible Hamiltonian functions (which is
typical of all the standard nonlinear generalizations of QM), we shall extend
the class of entropies. The extended theory has a well defined probability
interpretation, because the observables are represented by linear operators,
provided the scaling by a constant, p — Ap, is a symmetry of the dynam-
ics. This imposes on the generalized entropies the 2-homogeneity condition:
S(Ap) = A25(p).

Only for S[p] = 1/2Tr(p?) the linear observables are closed under the
action of the bracket {-,-}g:= [+, S]. If we extend the class of acceptable
S, we have to accept also a somewhat stronger form of the complementarity
principle than in linear QM: Observables are always complementary to their
(nonvanishing) time derivatives.
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3. Jacobi identity

Consider the expression

J= {{F»G}SvH}S+ {{H’F}SvG}S+ {{G':H}S»F}S
§F 6G 628 6H 65
080, PN aec eb FQade 23
5pd pe 5Pa5pf pp 0pc (Qdeanbc+ defQ +4 bf>ad ) ( )

a9

52;551‘3 = g%f for § = S, and (23) vanishes in virtue of the properties of the
structure constants. For more general S = S(f2[p]) we find
55 _,05 .
dpc af2
528 3 S ool S
+2—g°7. 25
Spadny op3" " T P0p0 (25)

Inserting these expressions into (23) we obtain

5F 6G 9%S , ;OH 0S

3pq 0p 5f2 P TS °(Qaefbe + arQaec + Qe fRaac) =0

(26)
since Qqp.p%p°¢ = 0. This shows that there exists at least a class of exten-
sions of the linear formalism which conserves the Poissonian structure of

the dynamics. With this choice of S we obtain the dynamics given by

d
zl'zpa = {pa, H}Szc[p] ) (27)
where C[p] = ng = C(f2[p]) is an integral of motion, as we shall see later.

The only difference with respect to ordinary QM would be in a p-dependent
rescaling of time.

4. Density matrix interpretation of solutions
of the generalized evolution equation

It is essential to clarify the density matrix interpretation of the solutions
of the generalized Liouville-von Neumann equation

d
a‘;ﬂa = [pa, H, S] . (28)

A priori, there is no general guarantee that the generalized dynamics will
conserve positivity of p. The following theorems partially address this issue.
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Consider a functional S (differentiable in f)
Slel= S(filpl,- -, falpl, - ) (29)

where fi[p] = Tr (pF).
Theorem 1. For any m € N, and any G, if S satisfies (29) then

Proof:
(10 (2™),G. 5] = S[11 (6™), G ful -
= —imz nTr (G'[pm_l,p"”l])g%- =0. (31)

This result covers many nontrivial generalizations of Sz. The particular
case m = 1 implies that Tr p is conserved by all evolutions, a fact important
for a definition of averages. For pure states Tr(p™) = (Trp)™ so that
the integrals f,, are not necessarily independent, but for all m,n f, and
fn are in involution with respect to [,-,S]. Jordan proved in [7] by an
explicit calculation that in his formulation of nonlinear QM Tr p and Tr p?
are conserved — our theorem considerably generalizes this result.

Theorem 2. Let S satisfy (29) and p; be a self-adjoint solution of (28).
If po is positive and has a finite number of nonvanishing eigenvalues px(0),
0 < px(0) < 1, then the eigenvalues of p; are integrals of motion, and the
evolution conserves positivity of p;.

Proof: Since the nonvanishing eigenvalues of pg satisfy 0 < px(0) <1< 2,
it follows that for any « pr(0)* can be written in the form of a convergent
Taylor series. By virtue of the spectral theorem the same is true for pg and
Tr (pg). Each term of the Taylor expansion of Tr(pg) is proportional to

fnlpo], for some n. But fn[po] = fnlpe] hence

Tr (p§) = Tr (pf) = Zpk 0)* = p(t) (32)
k

for all real a. Since all pz(0) are assumed to be known (the initial condition),
we know also Y, pr(0)™ = >, px(t)* for any a. We can now apply the
result from information theory [5] that the knowledge of

n<oo

> k(0 (33)
k=1
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for all @ uniquely determines py(t). The continuity in ¢ implies that pg(t) =
px(0).00

The assumption that initially the density matrix has a finite number of
nonvanishing eigenvalues pg(0) is necessary since the theorem we use in the
proof is formulated in [5] for sums (33) with finite n.

The spectral decomposition of the density matrix

pt :Zp“k,t)(k,t}, (34)
k

(where t — |k, t) defines a one-parameter continuous family of orthonormal
vectors) leads to the unitary (although p-dependent) transformation |k, t) =
U(pt, po) |k, 0). The density matrix then evolves as follows

pt = Ul(pt, po)polU (pt, po) " . (35)

Let us remark finally that the Nambu-type dynamics of the density ma-
trices induces the corresponding dynamics of various (linear or nonlinear)
functions of p, in a unique way. This concerns, in particular, partial traces
which occur in decomposing systems into subsystems. It means that the
operations of taking a partial trace over a subsystem and letting the system
evolve commute. This property is, in general, non-evident if the dynamics
is nonlinear [8].
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