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In this contribution we review results on the kinematics of a quantum
system localized on a connected configuration manifold and compatible
dynamics for the quantum system including external fields and leading to
non-linear Schrédinger equations for pure states.
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1. Introduction

Physics starts in general with the notion of space and time. In a non-
relativistic theory physical objects are understood to be localized in space
and to move in time. In the case of classical mechanics these objects are
represented by points in a configuration manifold M and its building blocks
are geometrical objects living M: Borel sets on M or equivalently functions
on M may be taken to describe the localization of the system, and vector-
fields and their flows on M can be used to describe the displacements, i.e.
the possible movements of the system on M. In this picture the functions
and vectorfields serve to describe the kinematics of the classical system; en-
dowed with the natural algebraic (semi-direct sum) structure they form the
kinematical algebra S(M). In symplectic mechanics this algebra occurs as
the algebra of functions on phase space that are affine in momentum.

The dynamics of such a classical system — the introduction of time —
is given by a second order differential equations on M, i.e. geometrically,
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by vectorfields on the tangent bundle TM fulfilling a certain flip condi-
tion. If M is (Pseudo-)Riemannian this condition can be transported to the
cotangent bundle and yields a natural restriction on the time evolution of
functions on M.

A quantization of the classical theory will therefore involve two steps:

First, it requires a representation of the kinematical algebra by self-
adjoint operators in a separable Hilbert-space. Starting from ideas of Segal
[1] and Mackey [2] the Quantum Borel Kinematics was developed [3, 4] and
classified unitarily inequivalent (local and differentiable) representations of
the kinematical algebra S(M); we review the results in Section 2.1. The
phase space description establishes a relation of this Borel Quantization to
Geometric Quantization (Section 2.2). This relation will be used in Sec-
tion 2.3 to generalize the scheme to include external fields.

Secondly, there should be an analogue of the classical condition on the
time evolution of functions on M for their quantized counterparts. This
relation will be established in Section 3.3. As we will see in Section 3.2 this
condition leads to nonlinear Schrédinger equations, if pure states evolve
into pure states.

2. Kinematics
2.1. Quantum Borel kinematics

As mentioned in the introduction the idea of Quantum Borel kinematics
(3, 4] is to describe the quantization of the localization and the displacement
of a system on a smooth connected configuration-manifold M.

The localization is characterized classically by Borel sets B € B(M)
and is “quantized” by a projection valued measure

E : B(M) — Proj(H), (1)

on a separable Hilbert space H. Obviously, these projection valued mea-
sures provide a representation of the infinite dimensional algebra C'°>°(M)
of smooth functions on M via the spectral integral

Q :C®(M)5 o Q(f) = / f(m)dE (2)
M

on a domain ¥y = {9 € H|[,, |f(m)|?d(¥, Em®) < o0} .

The classical displacements of the system on M are described by the
flow & of complete smooth vectorfields X € X.(M). Borel sets are
displaced by

B = {@‘SX(m)'mEB} = ¢X(B) € B(M) . (3)
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I

Fig. 1. Displacement of Borel sets

A quantization of these displacements is achieved by a representation
of the flows @f by one parameter groups of unitary operators on H:

vi=eo(3P00)) @)

with generators P(X) depending on the vectorfield. The representation
should be consistent with the quantization of the localization of the sys-
tem, i.e. for any given X € X.(M) we require (E,VX) to be a system of
imprimitivity [2):

VIE(B)VE, =E (of (B)) . (5)
Using fundamental results on the structure of these systems of imprim-

itivity [5] one can show that for any given X € X.(M) on a common dense
domain ¥ for all f,g € C°(M) and o € R [4]:

Q) +aQ(5)=Q(f +ag), (©
[@ (1), Q(s)] =0, (7
[P(X),Q1="Q (Lxs). )

Thus it is natural to assume that the map P : X;(M) — L(#H) respects also
the algebraic structure of X.(M), i.e. for all X,Y € X.(M) and o € R such
that X + oY, [X,Y] € X (M), respectively, we require

P(X)+aP(Y)=P(X +aY), (9)
. h
together with (6)—(8) on a common invariant domain ¢. Note, that X (M)

contains the closed Lie-subalgebra of vectorfields with compact support
Xo(M) correspond to a Lie-algebra homomorphism.
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If we extend the representation of complete vectorfields to all vector-
fields on M (thereby possibly loosing the selfadjointness of P(X)), the pair
(Q, P) forms a symmetric irreducible representation of the kinematical al-
gebra

S(M) = X(M) &, C=(M) (1)

with commutator (£ x denotes the Lie derivative)

(6 1) (Ko, 1)) o= (06 Xl Lxafo = £xaf1) - (12)

With further assumptions on the homogeneity of E (leading to spinless
particles), on the locality of P(X) and on 9 (leading to finite differen-
tial operators P(X) w.r.t. a differentiable structure on M x C) the Borel
quantizations (@, P) have been classified in {3, 4]: Unitarily inequivalent
representations can be labeled by elements of

m{M)* xR, (13)

where w1 (M)* denotes the group of characters of the fundamental group of
M. Furthermore, the Hilbert space can be realized as the space of square
integrable sections of a flat Hermitean line bundle (7, (., .), V) with respect
to a smooth measure p on M,

M= L (0, (. )m) (14)

In this realization the representation of the kinematical algebra reads for all
sections ¢ € 9 C L% (n,(,,.),n) (xB denotes the characteristic function of
the set B, div, the divergence w.r.t. the measure yu)

E(B)o=xg-0o (15)
Q(flo=f-0 (16)
P(X)cr:?an-i—(cﬁ-%) div,X -o. (17)

In (13) the elements of 71 (M)* classify the inequivalent Hermitean line
bundles 1 with flat Hermitean connection V and hence a differentiable
structure, whereas ¢ € R is an additional parameter independent of the
topology of M. For a trivial bundle n the Hilbert space (14) is isomorphic
to L%(M, 1), and (17) transforms to (¢ € 9 C L2(M, p)):

P(X)y = §£X¢+w(X)¢+ <c+ %) div,X - o, (18)
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with a closed real differential one-form w € Z1(M).
2.2. Relation to geometric quantization

The quantization method known as geometric quantization usually starts
with a general classical phase space, i.e. a symplectic manifold (P,w). Given
a configuration space M, the natural choice is the cotangent bundle P :=
T*M with canonical one-from 6 and symplectic form w = df. A “full
quantization”, i.e. an irreducible selfadjoint representation of the Poisson-
algebra (C>°(P), {.,.}) defined by the symplectic structure fails in generall.
Depending on the polarization chosen only a sub-algebra of “quantizable
observables” is represented irreducibly.

If, for instance, a complex polarization on P = R? = T*R is chosen,
the sub-algebra Q(P) of polynomials in z,p of max. second order can be
represented irreducibly. This leads to a quantization of the one-dimensional
harmonic oscillator including the Hamiltonian of the system. Thus the
dynamics of the particular system is also quantized.

In general for P = T*M and the vertical polarization the set L(P)
of functions linear in the momenta is used. L(P) is isomorphic to the
kinematical algebra, L(P) ~ S(M),

S(M) > (f,X)— Qs+ Px € L(P), (19)

where the functions Q5 and Py are defined as

Qsle) = f (rr-p(@) , Px(a) =0 (Xppupy(e), Vo€ T*M, (20)
with Poisson brackets

{vaQg}:Oy {PX7Qg}:QL',Xfa {PX,PY}:]D[X,Y]‘ (21)

In geometric quantization only the “standard” representation (¢ = 0, V=)
of this algebra is considered.

Note that so far only the kinematics of the system has been quantized
and a dynamics has to be introduced by an additional argument. In geo-
metric quantization this is generally achieved by choosing another suitable
polarization in which the Hamiltonian is quantizable and the use of the
BKS-kernel (see e.g. [7]). Here we will proceed differently in Section 3.

! For a counterexample of a symplectic manifold providing a full quantization
see [6].
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2.3. Borel Quantization with external fields

To describe the interaction with external (magnetic) fields on M we
utilize the phase space picture (see previous section). We introduce exter-
nal fields in terms of closed two-forms ¢ € A%2(M) on M by changing the
symplectic form {7] on T*M:

we :=df +en*p, (22)

where 7 : T*M — M is the projection of the cotangent bundle and e is a
coupling constant (charge). Using the Poisson bracket {.,.} induced by
this structure we obtain commutation relations different from (21):

{vaQg}e =0, {PXan}e = Qﬁxf ) {PvaY}e = P[X,Y] + eQd)(X,)(/) )
23
A Borel quantization of this algebra leads to the same operators (15)-
(17) on L% (n,{.,.),u), but the Hermitean line bundle 7 is not longer flat,
the external field comes in as a curvature two-form of the bundle [8],

R(X,Y) = [Vx, Vy] - Vix ) = 20(X,Y). (24

However, such line bundles with curvature R exist — due to a geometric
obstruction — if and only if

[5%1%] € H*(M,Z), (25)

i.e. the integral of ¢ over any singular two-cycle has to be an integer multiple
of 2rh (see e.g. [9]). Hence, only “quantized” values of the external field
are admissible.

2.4. Examples

To illustrate the method of Borel Quantization we give two simple
examples.

1. Euclidean space M = R". [4, 10]
The classification (13) reduces to R since

1 (R") =0; (26)
in global coordinates & = (z,...,z") the vectorfields are (using sum-
mation convention)

X=X (f)f’_ (27)

dz1
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The Hermitean line bundle 1 and the connection V are trivial and

PO = 4 (M@ + 5 xi@ ) + 22D

on L%(R™, d™z). Note that the extra term does not influence the linear
and angular momenta

d h a8
P; _P<8x1> =G0z’ (29)

0 J hif ;0 0
N 1.2k 3 kL
L j ..—P(x ok 81:1) (x ozk ~ ° (9wj) - (89

Since R" is simply connected, any external field ¢ is admissible.
2. The n-torus M = T" = S§' x ... x §* [11, 12].
N, s’

X i ntimes
The classification of inequivalent QBK is

U™ xR, (31)
since
n -_ } ...
m(T")=2Z& b7z . (32)
n times

However, the Hermitean line bundles 7 are trivial, so that in local
coordinates @ = (¢1,...,%n)
0
X=X'P50, (33)
hlf ;. . 0 d X (@) :
P(X 52+ L xig TN 0. X9 (9)(34
00 =22 (X9 @) + 5@ ) + 25D 4 0,x7(34)
on L?(T™,d"¢) where 8; can be chosen to be a constant 8; € [0,2r).
Hence we have a “topological influence” on the “angular” momentum
operators:
0 h 0
= =—-—+10;, 35
J; = P(a(p3> 7957 O (35)
leading to a Aharonov-Bohm-type effect.
The topology of T™ also restricts the possible choice of the external field
¢. For constant external fields ¢(X,Y) = ¢y, for instance, condition (24)
implies a “modified Dirac quantization condition”

—n, née€Z. (36)
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3. Dynamics
3.1. Generalized first FEhrenfest relation

In order to find conditions for the evolution of the quantum system, let
us take a look at the classical system first (see [13, 14]).

Classical dynamics on M (as a configuration manifold) is in general
described by a second order differential equation, i.e. a vectorfield D on the
tangent bundle M fulfilling the flip condition

TrryproD =idpy, (37)

or in local coordinates (&, ¥) of TM,

E(x,v) = (fwij) = (7, F’(Ev v))

If M is (Pseudo-) Riemannian with metric g 2 there is a natural isomorphism
¢* : TM — T*M with inverse g*. Using this isomorphism we can define
a dynamical vectorfield D := Tg* o D o g* on T*M and the condition (37)
turns into

Trpepro D = gtb. (38)

Let @; be the flow of D on T*M and
t— ap = Py(ap) (39)

be the classical time evolution of the classical state op € T*M then from
(20) and (38) we get the following condition for the time evolution of the
(quantizable) observable Q¢ [4, 13, 14]:

d
a9r(2) = Farad, (). (40)

We use this formula for a quantum analogue, i.e. a condition for the
time evolution of the quantum mechanical states Z,

t 2= 02M (2, (41)

and require that in the mean quantum operators behave under the time
evolution of the quantum states Z; like the classical observables under the

2 For an n particle system g could be inherited from the geometry of the space
manifold and the mass matrix of the particles.
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time evolution of the classical states oy, i.e. a generalization of the first
Ehrenfest relation of quantum mechanics for all f € C°°(M)

Expz, (Q (f)) = Expg, (P(grad,f)) . (42)

Now there are unitarily inequivalent representations of the operator P(X)
leading to different conditions (42) on the time evolution of the quantum
mechanical state. Indeed, there is no unitary time evolution of the states
satisfying (42) except for ¢ = 0. This is basically due to the algebraic
(multiplicative) structure of C*°(M).

We have two alternative ways to obtain evolution equations satisfying
(42) for ¢ # 0.

The first way is to look for evolutions of density matrices, i.e. of positive
trace-class operators on H with trace 1

ts Wye=aMwe) e T7HH), (43)

fulfilling

Tr (Q (/)W) = Tr (Plgrad, )W) - (44)

By the usual interpretation of W € 7'1+(’H) as statistical mixtures, & @M
has to be linear.

For completely positive, norm-continuous 3 there is a classification of
their generators given by Lindblad [15]. Though we are not necessarily
looking for norm-continuous evolutions, there are Lindblad-type evolution
equations satisfying (44) [13, 14]; the details of this way will be explained
elsewhere.

The second alternative is to restrict (42) to pure states,

t—r o€ L% (0, (., )n), (45)

fulfilling

[(041Q (f)o1r) = (04| P(grad, f)or) .| (46)

If the line bundle is trivializable, this leads formally to nonlinear Schrédin-
ger equations for wavefunctions ¥; € L2(M, 1), as we will see in the next
section.

3 Actually, norm-continuity is a strong restriction. For unitary evolutions it
corresponds to bounded Hamilton-operators!
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3.2. Nonlinear Schréodinger equations

For trivial line bundles n, L? (7, (., .), #) ~ L%(M, p), and for wave func-
tions ¢ € L2(M, p) condition (42) reads

(6@ (1)6) = (e Plgrad, ) (47)

dt
M

o g [ rmprtmdrg(m) = [ fm) (~elm) + s gpu(m) doy(m)
M

(48)
where

pt(m) = Ps(m)s(m)

52 m) = & () (grad ) (m) — e(m) (grad, Be) (m) ) + pelm)gte
(49)

are the probability distribution and the probability current, respectively.
Since (48) has to hold for all f € C°°(M), we get a Fokker-Planck-type
equation

pt +divy s = cAgpy . (50)

restricting the evolution equation of the pure state ¥; ( Schrodinger equa-
tion) to

L0 K2 w heAgpe
lh&% = (—7Ag + V) Pe + Y ;t Ut + R[]y, (51)

there AY = (divg + ﬁw) ) (gradg + i%gﬁw), R[.] is some real-valued func-
tional on H and V is a real potential on M.

If we assume for a fairly general model [16, 17} that R[] is “similar” to
the imaginary nonlinearity Ag/y we get

5
R[y] =) R;l¥],

where
divyj® A Y
Raly] = =2 Rofu]i= =4, stJ:::"i(JTJJ,
do - 7% dp - gradp
Ra[y] := ”pj C Rslg)i= =t (52)
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4. Final remarks

We have shown how nonlinear quantum mechanical evolution equations
arise from Borel quantization on a connected, (Pseudo-)Riemannian config-
uration manifold; they are natural generalizations of the Doebner—Goldin
equations on M = R® [16, 17] to more general manifolds. Some of the prop-
erties (see e.g. the contributions in [18]) of the Doebner-Goldin equations
in R® are also valid on more general Riemannian manifolds M.

In particular, there is a sub-family linearizable [19] by *

§ > Nia ] i= A+ GR0—A%in), (53)

Obviously, this transformation leaves the probability density invariant. As
in non-relativistic quantum mechanics all measurements can in principle
be reduced to positional ones (see e.g. [20, 21]), N(4 ) Was thus called
a nonlinear gauge transformation and one can identify gauge equivalent
classes among the equations in (51) [22].

Because of some confusion in the context of nonlinear quantum theo-
ries (and superluminal communications therein) we emphasize finally that
equation (51) describes only the nonlinear time evolution of pure states.
Mixtures of these pure states have to be identified according to the set of
observables. A description of this idea has already been given by Mielnik in
[21]: taking positions as primitive observables and generating the set of all
observables by combining the primitive observables with the time evolutions
(under different external conditions such as V and ¢) one defines a mixture
as an equivalence class of probability measures on the set of pure states
w.r.t. the observables. By construction, the so-defined mixtures are consis-
tent with the time evolution of pure states and it is evident for a nonlinear
time evolution of pure states that the mixtures are not represented by trace
class operators in 7,7 (H) (see also [23] for a discussion of observables in a
nonlinear theory).

The authors are grateful to the German-Polish Foundation whose sup-
port made this Polish-German and international symposium possible. Es-
pecially, we acknowledge discussions with our Polish colleagues, as well as
G.A. Goldin, W. Liicke, and J.D. Hennig.

4 Note that for A # +1 the linearization is well-defined only for non-vanishing
wave-functions.
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There is a misprint in equations (42), (44), and (46) on page 2335, a time
derivative on the left hand side is missing. These formulas should read:

thXPzg (Q(f)) = Expg, (P(gradgf)) i

ST QW) = Tr (Plerad, /)W)

%(atm(f)ao = (o¢| P(grad, f)or) .

(4003)

(42)

(44)

(46)



