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Quantum vortex configurations associated with representations of the
group of area- or volume-preserving diffeomorphisms are obtained by ge-
ometric quantization techniques. This article reviews some of the mathe-
matical results and physical predictions, providing a current perspective.
A brief discussion of vortex creation and annihilation field operators is
included.
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1. Introduction

Quantized vortex motion is of interest in the theory of superfluidity, type
II superconductivity, defects, and surface phenomena, and in fundamental
discussions of flux tubes, anyons, and monopoles. Here I shall review an
approach to quantization of vorticity in an ideal, incompressible fluid, based
on coadjoint orbits of diffeomorphism groups. This work was begun in
collaboration with Menikoff and Sharp at Los Alamos National Laboratory
[1-3], and some of the perspectives presented are based on my continuing
work with Sharp [4, 5].

The paper is organized as follows. For purposes of background and
contrast with our approach, I begin by mentioning in Sec. 2 some simpler
theories where classical point vortices moving in the plane are quantized
[6-9]. Here the models incorporate only finitely many degrees of freedom in
describing the vortex systems.

In Sec. 3 results from the diffeomorphism group approach are summa-
rized. These include the outcomes of geometric quantization, and conse-
quent predictions as to what properties quantum vortex configurations in
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ideal two- and three-dimensional fluids can have. In two dimensions, it
turns out that pure point vortices cannot occur at all. Thus the situation
is already quite different from the usual framework in which the motion of
classical point vortices is quantized, and existence of the quantum vortices
is assumed from the start. Nevertheless ideal point vortex dipoles in the
plane do exist in the diffeomorphism group approach, as well as spinning
vortex dipoles. Furthermore one-dimensional filaments (string-like configu-
rations) of vorticity in the plane occur, as well as extended, non-uniform
vortex patches. Such vortex configurations may obey the intermediate
statistics of “anyons”. In three-dimensional space, the classically occurring
one-dimensional filaments of vorticity are forbidden in the quantum theory.
Here, however, two-dimensional surfaces of vorticity (tubes, ribbons, knot-
ted tubes and ribbons, ribbons with twists, etc.) are quantum-mechanically
permitted. New internal degrees of freedom are thus expected. These results
in three-space are consistent with the perspective adopted by Owczarek [10,
11] in recent work.

Sec. 4 describes some ideas as to how the creation and annihilation of
vortex configurations should be described. The goal is to treat systems with
large numbers of (possibly knotted) vortices, as would be needed in realistic
models of superfluidity [12, 13]. The approach presented here is modeled
on work with Sharp in which we obtain creation and annhihilation fields
obeying g-commutation relations as intertwining operators in a hierarchy of
N-anyon diffeomorphism group representations [4, 5]. It is the subject of
our continuing research.

2. Point vortices in the plane

The classical hydrodynamical equations of motion for an ideal, incom-
pressible fluid (Euler’s equations) have vortex solutions. Thus the most
straightforward — in a sense, “naive” — way to quantize vortex motion for
a planar fluid is to begin with point vortices, and to quantize their classical
dynamics. As that dynamics can be described by a Hamiltonian function,
quantization may be accomplished by replacing the Hamiltonian and the po-
sitional vortex coordinates with self-adjoint operators, whose commutators
respect the corresponding Poisson brackets.

Now a point vortex at the origin in the plane, having vorticity x, is
associated with a velocity field » with radial component v, = 0 and tangen-
tial component vy = k/27r. Then V x v = k A(2)(r). We think of such a
vortex as occurring physically in an infinitesimally thin film of ideal, incom-
pressible, inviscid superfluid. Consider a pair of point vortices of this sort,
located at the points 71 and 72 in R?. Let » = ro — r; be the relative posi-
tional coordinates, with Cartesian components (z, y) and polar components
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(r,8). According to Euler’s equations each vortex moves as if transported
by the velocity field of the other. This means that

. K -
T“n-_r|0’ (1)

where @ is the unit vector in the direction of the polar angle and « is the
vorticity at each point. Equivalently
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(2)
Evidently the motion is described by a Hamiltonian, whose formula is

_ _k _ _ 5 2, ,2
H = 7rln|'r-| = 27rln(ac +y°). (3)

It is easy to check that

{:L‘,H}::i:, {y7H}:y’ (4)
where the Poisson bracket is defined by
_0fog 9g0f

When this classical motion is quantized, z and y are represented by canon-
ically conjugate operators, while H is proportional to the logarithm of the
quantum-mechanical harmonic oscillator Hamilton [6, 7]. Alternatively, fol-
lowing Leinaas and others, indistinguishability of the vortices can be put
in by quantizing only observables that are manifestly symmetric under the
vortex exchange » — — ». Thus for a pair of vortices, the three-dimensional
Poisson algebra generated by 22, y?, and zy + yz is represented by self-
adjoint operators.

The quantum theory of three point vortices can be described by repre-
senting the Lie algebra of the special linear group SL(2, R), or its semidirect
product with the group of translations in the plane; i.e., the area-preserving
affine transformations [8, 9]. Approaches such as these seek to simplify the
problem from the outset by selecting only finitely many coordinates that
can (partially) describe the collective motion of the fluid; these are repre-
sented by operators in the quantum theory. The procedures are in a way
analogous to “first quantization”—vortices, like particles, are taken as given
and moving classically; then that classical motion is quantized.

In contrast Menikoff, Sharp, and I seek to quantize the underlying fluid
velocity field directly, by representing an infinite-dimensional Lie group (the
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diffeomorphism group) and its corresponding Lie algebra (the algebra of
vector fields). This leads to a more realistic, though still highly idealized,
model. The “particle content” of the quantum theory is given by the vortex
configurations in appropriate coadjoint orbits, regarded as excitations in
the underlying field (i.e., quanta). In that sense, our procedures are more
analogous to a “second quantized” field theory. I shall now describe some
aspects of this model.

3. Diffeomorphism groups and vorticity

As suggested by Marsden and Weinstein [14], take the classical config-
uration space for an incompressible fluid in the plane to be the group man-
ifold of the group of area-preserving, C'® diffeomorphisms of R2. Thus
a diffeomorphism of a region — a smooth, invertible transformation whose
inverse is also smooth — is identified with a configuration of fluid in the
region. The group operation is, of course, composition of diffeomorphisms.
This group is called G = SDiff (R?), where S stands for “special”. For
the case of R3, G is the group of volume-preserving diffeomorphisms. The
property of preserving the area or volume means that the Jacobian of the
diffeomorphism is identically one. For important technical reasons, we also
restrict the diffeomorphisms ¢ to those having the property that ¢(z) — @
(rapidly in all derivatives) as |z| — oo; i.e., our configurations describe a
fluid stationary at infinity.

The group elements are just the general coordinate transformations of
the space in which fluid is located that respect the incompressibility of the
fluid. The action of G on its own group manifold permits its interpretation
as a symmetry group. As a manifold (G is infinite-dimensional, and its
cotangent bundle T *(G) can be taken to be the classical phase space.

Marsden and Weinstein describe the classical hydrodynamics of an ideal
incompressible fluid using the noncanonical Lie-Poisson bracket assoicated
with the Lie algebra of G. This Lie algebra is the set g = sVect(R®) of all
C'*® divergenceless vector fields » on R’ (s = 2 or 3), that vanish (rapidly
in all derivatives) at infinity. It is equipped with the usual Lie bracket

[v1,v2] = (v1-V)v2 — (v2- V)o (6)

for vector fields v1,v2 € g. In (6) the vector fields have the interpretation
of fluid velocities, as they describe infinitesimal changes in spatial configu-
rations. They belong to the tangent space to SDiff (R®) at the identity. Of
course the property of being divergenceless is preserved by the Lie bracket,
so that we have a proper Lie subalgebra of the full algebra of vector fields
on the spatial manifold. Each such vector field generates a one-parameter
subgroup (a flow) in the group G.
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Note that M = R? may be endowed with the usual symplectic structure
associated with the Poisson bracket (5). Then G is actually the group of
symplectic diffeomorphisms of the plane, and ¢ is the algebra of Hamiltonian
vector fields.

Regarding G as a symmetry group, we expect its continuous unitary
representations (CURs) to describe the possible kinematics of systems aris-
ing from quantization of the classical motion. Self-adjoint operators in such
a representation, indexed by the vector fields, are to be recovered as gener-
ators of the corresponding one-parameter unitary subgroups. Thus we shall
obtain a self-adjoint representation of the Lie algebra of divergenceless vec-
tor fields. The velocity fields are serving as test functions for a local current
algebra, as described in [15-17]. The idea of using this algebra to study
quantized fluid motion was already included in the program proposed by
Rasetti and Regge [12].

Now the velocity fields v, being smooth, cannot serve as the correct col-
lective coordinates with which to describe discontinuities or singularities in
the fluid flow. Yet smoothness is needed for g to close as a Lie algebra. The
coadjoint orbit method for constructing group representations automatically
brings in the dual to the Lie algebra, which we denote ¢g’. The space g’
consists of continuous, linear mappings from g to R. For finite-dimensional
Lie algebras such a dual space is always isomorphic, as a vector space, to
the original algebra; but in the infinite-dimensional case it is not. Its ele-
ments here are generalized vector fields, i.e. vector fields whose components
are generalized functions (distributions). These can have discontinuities or
singularities; e.g. A-function singularites such as occur in the case of point
vortices, derivatives of A-functions, and so forth. This is one reason why
the description of quantized vortex motion by an infinite-dimensional Lie
group is essentially different from descriptipns based on finite-dimensional
Lie groups or algebras. We interpret such generalized vector fields, dual to
the velocity fields, as momentum density fields in the theory.

For A€ g', let (A,v) = [A(z) -v(z) d°z (s =2 or 3) denote the value
of Aonv. As V.v =0, we have v = Vxx, with x defined up an arbitrary
gradient, so that there is a sort of “gauge freedom” in choosing the stream
function x. Since v — 0 rapidly as |z| — oo, we can choose this gauge so
that x — 0 rapidly at infinity. We write x 4 with the subscript to make
explicit the dependence of x on ». For a two-dimensional fluid, x can be
visualized as being always perpendicular to the plane of the fluid; i.e., a
scalar function multiplied by the unit normal vector. In three dimensions,
it is a vector whose direction is arbitrary.

Now (A,v) = [(VxA)(z) - xp(x)d*z, as long as the contribution of
any boundary term to the integration by parts vanishes. This condition does
not require that A(z) vanish at infinity, only that its growth be correctly
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offset by the rapid vanishing of x. Then if we define the vorticity density
B = Vx A, we have the fact that (as an element of ¢') A is only defined
up to an arbitrary gradient, and is uniquely specified by B. Thus (A,v) =
| B(z) - x(z) d°z = (B, x). The fact is also useful that

VX(’le’Uz) = ['vl,vg], (7)

so that a stream function for the Lie bracket (satisfying the above gauge
condition) is given by X[y, v,] = v1Xv2.

Next we proceed to obtain representations of SDiff (R’) on coadjoint
orbits through the Kirillov—-Kostant—-Souriau method of geometric quanti-
zation [19].-

First we write the adjoint and coadjoint representations of G. Orbits
in the coadjoint representation are interpreted as reduced phase spaces for
the classical theory, and include point vortices of the sort described above.
Then we look at some specific coadjoint orbits to ascertain whether or not
a polarization exists. Finding a polarization amounts to choosing a set of
phase-space coordinates (half of them) that are simultaneously observable in
the quantum theory. Absence of a polarization means, in our context, that
there is a physical obstacle to quantization—-namely, the Heisenberg uncer-
tainty principle cannot be satisfied on the coadjoint orbit in question. The
requirement that a polarization exist thus leads to mathematically rigorous
conclusions about the types of quantum configurations that are possible;
see also [18] for some further discussion.

The adjoint representation acts on g, and is given (for vi,v2 € g) by
(Advy)vy = [v1,v3]. For ¢ € G) we have v' := (Ad¢)v = {Jd,-rv]ocb;

where J, is the derivative of the diffeomorphism given by the matrix [J4]; =

Or¢?. Equivalently, x' = (Ad¢)x = [J¢] [xod], where 1 denotes the ma-
trix transpose The coadpmt representation acts on g', and is defined (for
Ae€g')by takmg A’ := (Coadg)A to satrsfy (A',v) = (A, (Ad o™ )v).
Then A' = [Jy]1 [Ao¢] or equivalently, B' = ([J4-1]B)og.

Suppose that a specific orbit A in the coa,djomt representation has been
selected. For a point Ay € A, let K be the stability subgroup of G; i.e.,
the group of all diffeomorphisms ¢ leaving Ag fixed. As usual, A may
be identified with the quotient space G/K, and the dimension of A is the
codimension of K in G. A polarization in the orbit A requires a group H,
with K ¢ H C G, where the codimension of H in G is half the codimension
of K in G. Letting h be the Lie algebra of H, the condition that must hold
is: (Ag, [v1,v2]) = 0 for all v,vy € h. Then Ag will define a character (a
one-dimensional unitary representation) of H, which can induce the desired
representation of G.

Consider, then, some particular coadjoint orbits.
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The orbit contaimnF one pure point vortex, as in Sec. 2, is written by
letting B = 2, = ké (e — ), describing a vortex centered at y. We
have (Coad ¢) 2, = 24-1(y) so that the orbit is parameterized by the
values of y € R2. The stability group Ky, associated with fixed y, is just
the subgroup {¢ € G |97 (yg) = yp}. But Ky, is a maximal subgroup of
G, which means that the desired group H intermediate between K and G
cannot exist. Likewise for N pure point vortices, the vorticity distribution
is given by B = $2((x, y1),...(xn,un)} = K192, + ...+ KN 2y, , and

(Coad ¢) n{("lvyl)y"'v(nNin)} = Hl Q¢_1(y1) + e + K:N n¢~1(yN) ) (8)

Diffeomorphisms in the stability group K leave the individual points y;
fixed, or else permute those for which the x; are equal. As in [4] and [5],
the components of this stability group map naturally to braids. Since each
y; ranges over R 2 the coadjoint orbit is 2/N-dimensional, but there is still
no polarization. Groups H intermediate between K and G exist, and can be
obtained by relaxing the constraints on some of the y;; but these do not obey
the polarization condition that (Ag,[v1,v2]) = 0 for arbitrary v;,v2 € h.
It is natural to consider the possibility of spreading out the distribution of
vorticity. If A is the coadjoint orbit containing a single uniform vortex
patch (i.e., a disk of fixed radius with uniform, nonvanishing vorticity in
its interior), it is not difficult to show that the polarization we seek is still
non-existent.

The absence of polarizations in these cases cannot be rectified by com-
plexification of the coadjoint orbit. We are forced to conclude that, in the
plane, pure point vortices are actually incompatible with the assumptions
of the model, as are uniform patches of vorticity. Such results might lead
one to be skeptical of our geometric quantization scheme, were it not for
the fact that nontrivial vortex configurations in two dimensions do exist.

The most elementary of these are point vorter dipoles. Let £2(, ) be
defined by

(2,x) = -(M;jx) (), (9)

for y € R ? and ) a tangent vector to R ? at y. Physically A is a dipole
moment of vorticity. Writing $2' = (Coad ¢) 2 = 82,4 »s) in the coadjoint
representation, we have y' = ¢~ !(y) and (M')* = 8;(¢71)*(y)A? (here we
sum over the repeated index j). The coadjoint orbit is parameterized by
A # 0 and y, and is thus four-dimensional. The stability subgroup K (4, xy)
consists of diffeomorphisms for which ¢~ !(yy) = yo, and for which the
derivative at y, is an upper triangular matrix (in the appropriate basis) with
diagonal entries equal to one. Giving up the constraints on the derivative
matrix yields a polarization group H = {¢]| ¢ !(yy) = yo}. For any v,
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(R(yy,20)s Xo) = k - [Aox®(y,)] where k is the unit normal to the plane;
thus (82(y, 2)» Xo) = 0 if v € h. We have trivially that (Ao, [v1,v2]) =0
for vy, vy € h, and the character defined by Ag is identically one. The result
resembles a single-particle representation of the local current algebra. Now
a parameterized family of interesting coadjoint orbits with polarizations can
be obtained. Let

200 = #8P@ -9+ 2 V6P (@ - y). (10)

In the coadjoint representation k is invariant, while y and A transform as
in the point vortex dipole case above. In effect we have “glued” the vortex
dipole to the pure point vortex, resulting in a spinning vortex dipole. The
subgroups K(yo,20) and H are just as before. For any v, (nya,,\o),xv) =

K Xo(Yo) + k - [Aox®(yp)]. This becomes & x,(yo) in the special case that
v € h. Now, for vy,v3 € h, (Ag,[v1,v2]) = K X[o;,v9]" which (as desired)
is zero by Eq. (7). Thus Ap determines a nontrivial character on H, and
induces a representation of G. The result is a single-particle representation
of the local current algebra with a nontrivial cocycle.

Coadjoint orbits for finitely many point vortices, point vortex dipoles,
or higher vortex multipoles in the plane, are finite-dimensional. Quan-
tum theories modeled on such orbits, when they exist, represent infinitely
many independent self-adjoint operators in Hilbert spaces of wave functions
on finite-dimensional configuration-spaces. We next turn to some infinite-
dimensional coadjoint orbits where polarizations exist. These can describe
extended quantum configurations, with an actual infinity of degrees of free-
dom.

Consider first the case of vortez filaments in the plane. For 0 < a < 2,
let C(a) be a parameterized curve in R?, i.e. an arc or a loop. If C is
sufficiently smooth it is equivalent to thé following pair: an unparameterized
curve I' = {C(«)}, parameterized by its own arc length s, together with the
function v = da/ds. This pair permits us to think of C entirely in terms of
the objects (I',v) in its target space R 2, the physical space of the theory.
Define the momentum density A¢ as a distribution by

mawszﬂ@knwwy (11)
r

Then the corresponding vorticity density is B=vyd k, where &  is a delta-
function concentrated on the filament I', and vk is the vorticity density
function on I' (normal to the plane). Coad(¢) does two things: it moves
I' to ¢~ 1I', and it changes the vorticity density distribution y. Hence
the stability subgroup K consists of diffeomorphisms that leave I' fixed
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(as a set), and leave v invariant. A polarization group H is obtained by
relaxing the latter condition. This permits a consistent quantum theory in
which the configuration space is the set of unparameterized arcs or loops.
The densities v are the conjugate variables, about which information is lost
when “positional” measurements are made in the plane. Representations of
G are induced on such coadjoint orbits by nontrivial cocycles on H. It is
also possible to demonstrate that coadjoint orbits of SDiff (R 2?) containing
nonuniform vortex patches in the plane have polarizations.

Next consider the case G = SDiff (R 3), and a coadjoint orbit contain-
ing a one-dimensional vortex filament. In g’ such a filament is specified
by the unparameterized curve I' C R 3, and a (singular) vorticity density
vector with support on I". The direction of this vorticity must be tangential
to I', and its magnitude v must be constant along the length of I". In this
sense lines of vorticity in R 3 are analogous to lines of magnetic flux. Then
(2r,x,) = 'Yva -ds, where ds is an infinitesimal length vector. The

r

stability subgroup Kp is {¢ € G|¢~'I" = I' }. It is apparent that a polar-
ization for such an orbit cannot exist. Indeed, suppose a diffeomorphism in
H moves one point off of I'; then its composition with diffeomorphisms in
K (which are unrestricted away from I') leads to unrestricted diffeomor-
phisms. It is also instructive to understand the absence of a polarization
at the level of the Lie algebra. The algebra k p of the stability subgroup
consists of divergenceless vector fields which on I' are tangent to I'. If a po-
larization existed, the Lie algebra h r would have to be a proper subalgebra
of g containing k  and satisfying (21, X[vy,v,)) = 0 for v1,v3 € Ap. Then
[ ds-(vyxv3) = 0. These conditions can only be fulfilled by restricting h p
r

to vector fields whose normal components at each point in I' lie in a fixed
direction. The cross product of two such vector fields is then normal to I
Unfortunately for the desired polarization, the class of such vector fields does
not close as a Lie algebra. Thus, in three-space, the classically-permitted
one-dimensional vortex filaments are quantum-mechanically forbidden. As
in the pure point vortex case, complexification of the coadjoint orbit cannot
overcome this obstacle.

However, coadjoint orbits of SDiff (R 3) containing two-dimensional
vortex surfaces have polarizations. Consider, for example, an element of
g' specified by an infinite ribbon-shaped surface £ C R 3, together with a
(singular) vorticity density ¥(s), s € ¥. One must take y(s) to be tangent
to X, and furthermore to be tangential at the edges of the ribbon. Thus we
shall have (B,x) = [ 7(s)-x(s)d?s. Furthermore, if I is a smooth curve

x

crossing the ribbon transversely (from one bounding edge to the other), the
total vorticity of the ribbon across I' is independent of I — i.e., it takes
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a constant value all along the ribbon. A diffeomorphism ¢ in the coadjoint
representation acts on B = (X,+) to transform both the ribbon’s surface
and the vorticity density. The stability subgroup K contains diffeomor-
phisms which preserve X' (as a set), and also preserve the lines of vorticity
within it. A polarization H is obtained when the latter constraint is re-
laxed. The configuration space that results is the space of unparamaterized
ribbons with fixed total vorticity, but without information regarding the
distribution of that vorticity within the ribbon. Such ribbons (or related
structures discussed below) should be taken as the fundamental, extended
quantum vortex configurations in R 3, rather than one-dimensional strings.

Similar polarizations exist for other coadjoint orbits, whose elements
can be various (diffeomorphism-invariant) modifications of the ribbon ex-
ample. For example the edges of the infinite ribbon may be identified to
give an infinite tube of vorticity. The ribbon may close on itself to form
a ring, giving a configuration in a bounded spatial region. With both of
these modifications, we have a coadjoint orbit whose elements are tori. The
ribbon may have one or more twists, or it may separate and rejoin, leaving
holes. The vortex tube may be knotted. Several ribbons and tubes may
be intertwined, and so forth. Solid “ropes” of vorticity, with nonuniform
vorticity density, are also permitted. Of course two-dimensional surfaces of
vorticity in R 3 have degrees of freedom beyond those of one-dimensional
filaments. These include the extra continuous degrees of freedom, as well
as discrete topological parameters associated with twists, knots, and holes.
It is therefore to be expected that the model presented will have observable
consequences — e.g., for the specific heat of matter whose excitations in
the quantum description include such configurations. To derive such conse-
quences is one long-range goal of our research.

I shall conclude this section with some comments on the overall status
of the geometric quantization program in the present context.

The coadjoint orbit serves as a reduced classical phase-space — that
is, the values of all conserved quantities are preserved on the orbit. This
observation does not address the question of stability — whether or not the
classical motion is such that small deviations from the orbit remain small.
In treating a fluid in various models, we would expect the stability (or lack
of it) in quantum configurations to be of particular interest and to require
investigation.

For quantization to be possible on a coadjoint orbit A, it must have
several good characteristics. The one on which we have focused is the ex-
istence of a polarization, which expresses the compatibility of the resulting
quantum theory with the uncertainty principle. Once one has found a po-
larization group H, the quantum configuration space A€ for the orbit is
the space of leaves in the foliation defined by H. It may be necessary (see
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below) to construct the configuration-space from a union of such coadjoint
orbits—in general, an uncountable union.

Besides having a polarization, the orbit must satisfy a condition of
integrality. This permits imposition of a periodic boundary condition spec-
ifying appropriate domains of wave functions for the operators in Hilbert
space; physically it is the quantum condition that prevents destructive “self-
interference” of the wave functions. In the examples above integrality holds
trivially, because we defined the group to include only diffeomorphisms
which tend toward the identity at infinity. Rotating a vortex configura-
tion by 27 (via a one-parameter family of diffeomorphisms) can only be
accomplished by a final diffeomorphism that retains a “twist” in its action
on the space; the requirement of integrality therefore imposes no new con-
straint. If however the Lie algebra g is taken to include the generators of
global rotations, integrality becomes non-trivial. The corresponding con-
straint is equivalent to the well-known Feynmann-Onsager condition, and
results in quantization of the total vorticity.

Finally, for the actual construction of the space that carries the rep-
resentation as a Hilbert space, one needs a measure on the configuration
space having the property of quasi-invariance under the diffeomorphism
group action. This means that the class of zero-measure sets is preserved
under diffeomorphisms; it permits the group representation to be unitary.
Physically, it makes possible meaningful calculations of expectation values
of observables with respect to probability distributions. When the config-
uration space is infinite-dimensional (as it is for path-spaces, loop-spaces,
ribbon-spaces, and so forth) the existence of such quasi-invariant measures
is a nontrivial problem. In that case the measure is typically expected by be
carried by a configuration space built from the union of uncountably many
coadjoint orbits, in which the smoothness class of the configurations is less
than C *°.

4. Creation and annihilation of vortices

The above analysis leads to conclusions about what kinds of “elemen-
tary” vortex configurations are possible in the quantized theory of vortices
in two and three space dimesnions. To discuss multi-vortex quantum sys-
tems and to explore their properties as energy is put in or removed and the
temperature changes, a framework for describing creation and annihilation
of vortices is needed. The purpose of this section is to elaborate on an ap-
proach I proposed with Sharp {4, 5], modeled on our method for introducing
“anyon” creation and annihilation fields through their intertwining relations
with a hierarchy of diffeomorphism group representations.

Anyons are particles or excitations in two-dimensional space whose
statistics can interpolate those of bosons and fermions. This possibility was
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first conjectured by Leinaas and Myrheim from the topology of the con-
figuration space [20]. Independently, it was demonstrated rigorously from
the interpretation of the continuous unitary representations of Diff (R ?%).
The diffeomorphism group approach led also to a number of the impor-
tant physical and mathematical properties of anyons [21], and to the role
of braid group representations [22-24]. Anyons find application to surface
phenomena such as the fractional quantum Hall effect [25-27]. A review of
the diffeomorphism group approach to anyons may be found in [28].

To construct creation and annihilation fields for anyons, Sharp and I
were able to begin with the hierarchy of N-anyon representations introduced
in [21]. Let Un(f) be an N-anyon representation of the additive group of
real-valued scalar functions on R 2, and V(¢) an N-anyon representation
of the group of diffeomorphisms of R 2, in the Hilbert space Hy for N
identical anyons (N = 0,1,2,...). For each N these unitary operators
satisfy the semidirect product group law

U(H)V(e1)U(f2)V(¢2) = U(f1 + fa 0 1)V {(d162), (12)

where ¢1¢2 denotes composition of diffeomorphisms.

Now let hy € H; be a one-anyon state (i.e., a wave function), and let
¥*(h1), ¥(h1) be intertwining operators (creation and annihilation fields)
labeled by hi; that is, ¢*(h1) :Hy — HN+1 and 1/)(h1) tHN4+1 — HN-
As usual #(h1) annihilates the (unique) vacuum state hg € Hp. Thus the
Hilbert space H; determines the kind of configuration that ¢* creates and
¥ annihilates, and the elements hy of H{ serve as test functions of creation
and annihilation fields. The intertwining conditions

Uns1(H)Y* (k1) = " (Un=1(f)R1)Un(f)
VN+1(#9)9™(h) = ¥* (V=1(0)h1) VN () , (13)

were proposed to characterize the fact that the representations Uy and Vy
belong to a hierarchy, and in that case serve as defining equations for the
field ¢*. The adjoint of these equations describes the field .

The meaning of (13) is that * creates a one-anyon configuration in
R %, while h; averages over such configurations. Both U and ¥* act lo-
cally. The result of creating a configuration and then transforming by a
diffeomorphism is the same as that of transforming first, and then creating
the transformed configuration; where the rule for transforming individual
configurations is given by Vn=1(¢). In the case of anyons, we found that
the intertwining fields obey g-commutation relations. The essential point is
that the g-commutator bracket is a consequence of the diffeomorphism group
representations for anyons, together with the general intertwining property
(13) of the fields. It is not put in “by hand” as a starting assumption [29].
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We expect that fields can be defined as intertwining operators of diffeo-
morphism group representations not only for point-like particles like anyons,
but for extended quantum configurations like vortex filaments, ribbons, and
tubes. Then we shall focus on the second equation of (13), with Vv repre-
senting the group of area- or volume-preserving diffeomorphisms. The “test
function” h; must be a one-vortex Hilbert space vector. The fields 1* and
¥, before averaging by h;, do not depend directly on points in space but
on one-vortex configurations (the argument of h;). Integration takes place
over the one-vortex configuration-space with respect to the quasi-invariant
measure discussed above (here assumed to exist).

Consider as an example how this could apply to the case of quantized
vortex filaments in two dimensions. The one-vortex configuration can be an
arbitrary, unparameterized, non-self-intersecting loop (of some smoothness
class), with fixed total vorticity and unit area. Call the space of all such
loops A§ . Elements of SDiff (R %) act on A9, deforming the loops as
values of the argument of the vectors hy in #;. The field ¢»* (before averag-
ing with h;) creates a new loop, bringing us into a two-vortex configuration
space A% . But we now have many different generic possibilities: (a) The
two loops can be non-intersecting. (b) The loops can intersect twice, with
overlapping area 3, 0 < # < 1. Note that the case of loops tangent at
one point is excluded as non-generic; it should enter only as a measure zero
set. (c) The loops can intersect 2n times (n > 2), with distinct “gener-
alized knot classes” describing the patterns of intersection, and additional
p-parameters describing the appropriate areas. These situations correspond
to distinct, diffeomorphism-invariant subspaces of A%, and hence to dif-
ferent subspaces of the two-vortex Hilbert space Hg, invariant under the
diffeomorphism group but connected by way of the creation and annihila-
tion fields. Likewise H ) decomposes into subspaces parameterized by knot
classes and area parameters [3.

Though we do not know explicitly how to construct quasi-invariant
measures py for the N-vortex or even the 1-vortex configuration space, it
may be possible to use the knot classes and area parameters 3 to describe
the relative weights given by un to each diffeomorphism-invariant subspace
of Ay. Analogously, one may be able to use the knot classes in R 3 to
parameterize measures on configuration spaces of vortex tubes. This is one
direction of our continuing research.

5. Conclusion

As we have seen, geometric quantization based on diffeomorphism
groups offers the possibility of describing mathematically the quantum the-
ory of extended vortex configurations, and tells us what types of configu-
rations are possible. In addition, we have the possibility of defining vortex
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creation and annihilation operators intertwining multiple-vortex representa-
tions to obtain a field theory, where the arguments of the resulting fields are
not points in the physical space but single-vortex configurations. Finally we
hope to use the knot classification of intertwined vortices as diffeomorphism-
invariant coordinates for the partial description of quasi-invariant measures.
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privilege of presenting this work. Los Alamos National Laboratory pro-
vided hospitality during the course of the research. The major results re-
viewed in this talk were obtained in collaboration with Ralph Menikoff and
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