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Perturbative and non-perturbative types of approaches to quantiza-
tion of ideal fluid flows are considered and compared. The results on
stability of particular vortex structures obtained in the framework of the
standard energy-Casimir method are reminded for the purpose of check-
ing connection between stability and quantizability. Results on geometric
quantizability derived by Goldin, Menikoff and Sharp for these struc-
tures are also reminded. The discrepancy between results of these two
approaches being an evidence for non-perturbative character of quantiza-
tion of ideal fluids is stressed. New non-perturbative approach exploiting
ideas from Ashtekar programme of quantization of gravity is formulated.
Some applications of the new approach in description of superfluid helium
are briefly shown.

PACS numbers: 03.40. Gc, 47.20. -k, 67.40. -w

1. Introduction

Quantization of physical theories needs good knowledge of their phase
spaces. As a matter of fact the reasonable procedure is well understood if
we have the phase space which is a finite-dimensional linear space equipped
with a non-degenerate symplectic form w. The Darboux theorem enables in-
troduction of canonical coordinates on the phase space (¢*, p;) (coordinates
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and momenta). The quantization works then if we assign to ¢* and p; some
operators §* and p; acting in a Hilbert space H, in such a way that usual
Poisson brackets {qi,pj} = 6;, {qi, qj} =0, {pi,p;} = 0 become canonical
commutation relations [§*, p;] = ihé* j, [¢%, §/] = O, [pi, p;] = O for the oper-
ators. However, there exist many physical theories which have phase spaces
that are nonlinear and/or of infinite dimensions (field theories). Addition-
ally, not always the symplectic form is degenerate. We do not have a general
procedure for quantizing such theories. Of course one canalways introduce
for any reasonable theory a symplectic form that is non-degenerate, with a
cost of possible complication of the so obtained reduced phase space, which
becomes a space of higher nonlinearity. Now, one should learn how to deal
with theories with nonlinear phase spaces.

The possibility one should take firstly into account is linearization of
the phase space of the theory i.e. consideration of the tangent space at a
solution of the equations of the theory. Such procedure would be justified if
the Hamiltonian of the theory also reasonably linearizes, it means its second
order expansion form is not divergent and further expansion terms do not
lead to another divergence. This way only theories which are nonlinearly
stable can be quantized by using these methods. Since further terms lead to
some small corrections to the theory, the approach can be called perturba-
tive. Nevertheless, one should take into account also other theories, like, for
example, gravity, which are not perturbatively quantizable. In this paper
we show that also ideal fluids do not underlie such quantization. For this
purpose we review results on stability of particular ideal fluid flows, espe-
cially of some vortex structures. We compare these results with the results
on a non-perturbative quantization within the geometric quantization ap-
proach found by Goldin, Menikoff and Sharp [1, 2]. The latter approach did
not lead to establishing the quantum theory but it enabled stating which
particular vortex structures are quantizable within this approach.

The discrepancy between results of these two approaches proves lack
of a perturbative approach to quantization of ideal fluids. We propose an-
other method of non-perturbative quantization of ideal fluids, which applies
extensively some elements of the recently proposed and presently being de-
veloped the Ashtekar program of quantization of gravity. We believe the
interplay between the Ashtekar-like approach and the geometric quantiza-
tion should lead us to a reliable quantized theory of ideal fluids. The plan of
the paper is as follows: firstly we report the results on stability of ideal fluids
flows, in particular of some vortex structures, this way investigating pertur-
bative approach. Secondly, we remind results on geometric quantization of
the vortex structures. Thirdly, I propose a new Ashtekar-like approach and
show an application in description of superfluid helium.
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2. Perturbative approach

Presently well developed method of analysis of stability of fluids called
the energy — Casimir method has its origin in the work of Arnold [3].
I will not discuss it here extensively, because of the lack of space. Let
me mention only that instead of examining the Hamiltonian one considers
a sum of the Hamiltonian and of Casimir functions and all constants of
motion. The method gives the following results for stability of particular
vortex structures: 2D point vortices and 2D vortex patches are stable, 3D
vortex filaments are unstable, 3D vortex tubes seem to be also unstable.

3. Non-perturbative approach: geometric quantization

Goldin, Menikoff and Sharp [1, 2] developed another method of quan-
tization, based on geometric quantization. The crucial role in the method
plays the symmetry group G of the system. One should establish then
its stability subgroup H. Existence of an appropriate Hilbert space needs
satisfaction of some integrality conditions, which in the case of the ideal
fluid are expressible as the condition of quantization of the vortex flux, well
known from the theory of superfluid helium. Further one should proceed
towards reduction of the Hilbert space by introducing so called polarization.
In classical theories polarization could mean independence of the sections
of the Hilbert space, representing wave functions of the system, on the mo-
mentum variables. In the general situation one looks for a subgroup K of
the symmetry group G, which satisfies the conditions: H C K C G and
dim(G/K) = dim(K/H). Quantizability means then existence of such a
polarization. In this sense the following vortex structures were found to be
quantizable by Goldin, Menikoff and Sharp [1, 2]: 2D point vortices, 2D
vortex patches and 3D vortex filaments are not quantizable but 3D vortex
tubes are.

The lack of correspondence between quantizability and stability shows
nonexistence of a perturbative approach to quantization. Unfortunately,
the authors could not complete the whole program of geometric quantiza-
tion of ideal fluids. The reason is there are difficulties with construction of
measures invariant under action of the volume preserving diffeomorphism
group, which is the symetry group. Such measures are necessary for con-
structing the unitary representations of the group whose space becomes the
seeked Hilbert space of the quantum theory. Further we propose another
non-perturbative approach, which could be treated as an alternative to ge-
ometric quantization or at least as a tool for solving some of the geometric
quantization problems.
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4. Non-perturbative approach: Ashtekar-like program

In the recently formulated Ashtekar program of quantization of gravity
(4, 5] the gravitational field is described by an SL(2,C) connection one-form
A. One starts from a 3 + 1 splitting of the space-time and considers the
connection one-form on the Cauchy surface X'. The space of such one-forms
is the configuration space of the theory. Together with conjugate momenta
they build up the phase space of the theory. The system is invariant with
respect to diffeomorphisms of X, the evolution in time is governed by the
constraints connected with the diffeomorphisms of the fourth, ¢.e. time,
dimension.

It occurred reasonable to introduce nonlocal coordinates in the phase
space. For this purpose one introduces holonomies of the connections along
a family of loops v;, ¢ = 1,...,n in X. Important role play traces of the
exponents of holonomies with respect to some representations R; of the

gauge group SL(2,C): Trg, exp (f,ﬁ A).

These could be interpreted as some physical observables of the what
it would be a quantum theory. Then one can construct their expectation
values as quantities:

/DAeiS(A)H,'TrRi exp(f A), (1)
i

where S(A4) = ﬁTr(A/\dA+ %A/\A/\A), k — an integer, DA — a measure
on the space of connections.

The quantities are diffeomorphism and gauge-invariant and are also
knot invariants for links |J; ;.

Quantization of ideal fluid can be also considered along similar lines.
With the usual Euler velocity v; one associates a one-form A = v;dz* on the
Cauchy surface X', which becomes a U(1) gauge field. Then one constructs
physical observables:

Trp, exp(% A), (2)
-
where R; are representations of U(1).

Their “expectation values” are then given by the formula (1). In my
recent papers [7, 6, 8] I argued the field theory operating only with a U(1)

connection form describes critical superfluid helium. Therefore the field
theoretic distribution function is given by:

/ DAexptS(A). (3)
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It was also argued in my paper [8] that the statistical sum of the critical
superfluid helium is equal to the product of statistical sums of 2D Ising
models. This way was proved logarithmic divergence in heat capacity tem-
perature dependence in the neighborhood of the critical temperature.

I would like to thank the organizers of the Symposium, especially Prof.
R. Raczka, Dr. P. Natterman and Dr. M. Pawlowski, for hospitality and nice
atmosphere during the conference. I am grateful to Prof. Z. Peradzynski,
Prof. G.A. Goldin, and Dr. H. Makaruk for discussions.
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