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A geometric approach for the formulation of the WKB expansion of
multicomponent wave equations is formulated for arbitrary symplectic
manifolds. The problem is reduced as much as possible to one component
equations. Essential use is made of Fedosov’s star product. Obstructions
against the existence of global WKB amplitudes may arise.

PACS numbers: 03.65. Sq

1. Introduction

Hamiltonians whose symbols are not simply real valued, but matrix
or, more generally, endomorphism valued functions appear in many places
in physics, examples being the Dirac equation, multicomponent wave equa-
tions like electrodynamics in media, and Yang—Mills theories, and the Born-
Oppenheimer approximation in molecular physics.

Whereas the semiclassical and WKB approximation of scalar systems
is well understood, this is not the case to the same extent for Hamiltonians
with matrix valued symbols. In particular, semiclassical states in the scalar
case have a nice geometric interpretation as half densities on Lagrangean
submanifolds invariant under the Hamiltonian flow, and discrete spectra
may be computed using the Bohr-Sommerfeld condition, taking into ac-
count the Maslov correction [14, 1, 7, 10]. In the multicomponent case, the
analogous structures are not known. The usual WKB ansatz

¥(z) = a(z,h) exp(iS(z)/R)

with a(z,h) = ag(z) + a1(z)h + ... being a power series in h with vector
valued coefficients is still possible {9, 12, 14, 5] in this situation, but it is
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in general defined only locally and leads to equations which don’t have an
obvious geometrical interpretation.

The aim of this paper is to give a completely geometric approach to
this problems, and to reduce the problem “as far as possible” to the scalar
case. As observed in [13] the use of a star-product formulation of quantum
mechanics proves to be particularly useful in this context. However, whereas
[13] restrict themselves to the use of the Moyal product and thus to the study
of trivial bundles (or local trivializations) over R?", we will consider general
bundles over arbitrary symplectic manifolds. Here, Fedosov’s construction
(8] will be the adequate tool, since it gives an explicit construction for star
products in this general setting.

2. WKB on k2"

In this section, we give a short overview of some well known results on
WKB for multicomponent systems:
Multicomponent WKB deals with equations of the form

(H-E)¢=0,

where H is an (N x N)-matrix-valued differential operator, or equivalently,
an (N x N)-matrix of differential operators. The WKB-ansatz for a solution
is: :

z/):ae%s, a=ag+hay +....

At zeroth order, this yields:
(Ho(g,dS)— E)ag =0,

where Hp is the principal symbol of I:{, i.e. the zeroth order part of the
symbol of H. In the scalar case (N = 1) this simply is the Hamilton-
Jacobi-equation for the scalar Hamiltonian Hy(g, p).

For N > 1, this equation has two implications: Firstly, S has to be a
solution of a Hamilton-Jacobi-equation

)\a(q,ds) =F,

where Ay (g, p) is an eigenvalue of Hy(g,p). (Here, we need the fact that
— at least locally — the degeneracies of the eigenvalues do not change in
order to define the function A,.) Secondly, ag(g, p) has to be an eigenvector
of Hy(gq,p) with eigenvalue FE.

Solutions of the Hamilton-Jacobi-equation define Lagrangean submani-
fold Ay of R?™ and we may interpret

ae%S\/dp
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as a half-density on A with values in RY. (strictly speaking, it has to be
tensorized with a section of the Maslov bundle).

To study the next order in the WKB approximation, we introduce the
projector 70 on the ath eigenspace of Hy. We make the assumptions that
the multiplicity of A, is constant on a neighborhood of A, and that kernel
and range of H — Ay are complementary (which is in particular fulfilled for
hermitian H).

Then, the first order equation, which is a “transport equation” for v =
a ® v/du, may be written as [15]:

a ®£X)‘a\/d,u+ DXAo,a® L
+ [ - %Ng{ﬁg, Hy - /\Q]I}ﬂ'g + iﬂ'ngﬂg]a ®+/du=0.

As compared to the scalar case, there are two additional terms for
N>1:

1. “Berry term” for Berry-connection [3, 13, 15]
Da = Z m0dnla.
(23

2. “Curvature term”, involves the curvature F and second fundamental
forms S, S* of the Berry-connection. With

def def
SEE (1-mQ)(dnQ)e, S*nE —mg(d(1—mg))n
this term may be rewritten as [15]
Ao <TLF > = <TI,5*A(Hp — Aaml)S >,

where I is the Poisson tensor.

3. Star products and geometrization

As mentioned earlier, the star product approach to quantization is par-
ticularly adapted to our problem: Firstly, its structure allows us to deal with
the expansion in % in a simple way, and secondly, it is the only known general
quantization scheme which allows the quantization of any symplectic man-
ifold, and which is not restricted to just of a small subclass of observables
(as, e.g. geometric quantization). The idea of star product quantization is
to pull back the operator product, which is defined on operators on Hilbert
space H, to an associative, non-commutative product on the functions on
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phase space, via a suitable symbol calculus {2]: Assuming that we we are
given a quantization procedure

Q :C® (M) ® C[[h]] &> EndH
we may define a star product on C°°(M) ® C[[R]] by:

axb=Q 1 (Q(a)Q(b)).

The simplest example for such a star product is the case M = R2" and
@ being Weyl-ordering, which leads to the well known Weyl-Moyal product.
It is explictly given by:

il 8 g 0

(@ob)(z)= (e 272 a(z)b(y))lz=y.

where w;; are the components of the standard symplectic form on R2"™, Al-
though we have only considered scalar valued observables so far, the matrix
generalization is obvious in this simple example: In the matrix product, one
simply has to replace the ordinary pointwise product of the matrix elements
by the Moyal product.

The formal definition is as follows:

Definition 3.1. A star product on a symplectic manifold M is an associa-
tiative product on C*° (M) @ C[[h]] with

axb=ab+ O(h)

axb—bxa=ih{a,b}

axl=1xa=a

supp(a ¥ b) C supp(a) N supp(b)
axb=0bxa

S Es Lo de

Star products exist for every symplectic manifold M [6, 8]. Given a star
product and a differential operator W = Wy +AW) +... on C* (M) Q C[[R]]
with W1 = 0, we may define a new star product:

axywyb=e "W (e"WaxetWp),

* and sy are called equivalent. The importance of this notion is that
“physics remains unchanged”, if the change of x to *y is accompanied by
the application of the isomorphism e*% to the observables: Heuristically,
this means that if we change the ordering prescription and at the same
time the symbol calculus in such a way that the operators on Hilbert space
remain unchanged, then physics remains unchanged. We shall exploit this
freedom later on.
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4. Fedosov’s star product

In this section, we give a short overview of Fedosov’s explicit construc-
tion of a star product on endomorphism bundles of vector bundles over a
symplectic manifold. The arena is as follows: We consider an Hermitean
vector bundle V' over a symplectic manifold M. Denoting by C[[R]] the set

of formal power series in /i with coefficients in C, we construct from these

data the bundles V[[A]] def VaC[h], E[[A] = Unem End(Vm) @C[[R]], and

the algebra A = I'(E[[R}]) @ W), where W denotes the Weyl-bundle over M,
the bundle whose fibres W, are the Weyl algebras over TgM.

Finally we consider the algebra: 2(M) @ A, with 2(M) being the al-
gebra of differential forms on M. On this algebra, we define two globally
defined operators §,67! : 2(M) ® A — 2(M) ® A whose coordinate ex-
pressions are given by

§a = dz* A ia, §la= —1 ;o @
oy’ P+q ¥
for a g-form a with values in the homogeneous polynomials in y of degree
p. Here, z* are coordinates on M, and y* the induced coordinates on Ty, M.
To construct a unique star product on E[[h]] two additional data are
required: a Hermitian connection V on V (inducing a connection on E[[#]])
and a symplectic connection &; on M. From these we can construct a
connection @ = 1 ® 8, + V® 1 on E[[h]] @ W. Now, these data given,
the main step of Fedosov’s construction consists in finding by a recursive
procedure a covariant exterior derivative

D:—6+6+{%r,-]

with r € 21(M) ® A such that

1. D? =0, i.e., D is a flat connection.
2. Covariantly constant elements in £25(M) ® A are in linear one-to-one
correspondence to I'(E[[R]])
3. D is a derivation on 2(M) ® A (hence, covariantly constant sections
form a subalgebra)
If we denote the isomorphism in 2., which maps a € TI'E[[R]] to its
covariantly constant continuation in 2o(M) ® A , by @Q, it is given by the
solution of

Qla) = a+57(0Q(a) + [, Q(a)),

which may be solved iteratively.
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With these notions, Fedosov’s star product is simply given by

axb=Q HQ(a) o Q(b)),

where ¢ is the fibrewise Moyal product.
Different choices of V (and ;) lead to different star products. However,
the star products obtained in this way are equivalent:

Theorem 4.1. Let D(1:2) pe the Fedosov connections associated to V(l’z),
912, Then there is A(1,2) € A and

')
Ua,2) = ezpo(3Aq,2))

such that
DMa =0 DD Uy 4 oo Uiy =0

and

def ~1 —
$(a) £ QP (U120 QW (a) 0 UTY))

is an isomorphism of the products ¥V and *(2)

v - v = o(r™)

—1 R _ -1, m
=Q® (U(1,2)<>a<>U(1’12))—Q(1) (@) = O(r™tY)

for every & with DMWg = 0.

5. Application to WKB

We are now ready to apply the above techniques to multicomponent
WKB. Let

H=Hy+hH +...

be a section of E[[h]], (=) the projection on the (regular) eigenspace
belonging to Ay(z). Now, the main problem in WKB, which prevents us
from naively reducing the problem to a scalar problem on each bundle of
eigenspaces, is the fact that, due to quantum corrections, WKB states are
not sections in these bundles, but have higher order corrections. In the star
product approach this is related to the fact that the star commutator of the
Hamiltonian with an observable commuting with 70 (z) does not commute
with 70 (z), hence a reduction to the bundles of eigenspaces is not possible.

Thus, we have to find a kind of “quantum diagonalization procedure”.



Multicomponent WKB and Quantization 2399

The formal reason for this problem in Fedosov’s approach to star prod-
ucts is the fact that the projections are not covariantly constant under the
hermitian connection which defines the star product. Our strategy for solv-
ing this problem is to use the freedom to change V when applying the cor-
responding star product isomorphism at the same time to preserve physics.
This is possible indeed, as expressed by the following theorem:

Theorem 5.1. There ezxists a formally orthogonal decomposition V([[h]] =

B aVa, dim Vy = my with corresponding quantum projections 7r((1°°) and a
hermitian connection V(%) with

ver{) =
such that the corrected Hamiltonian (obtained by applying the corresponding

isomorphism ¢(°)):
H(®) = ¢()(H)

preserves the decomposition:
[H(%), ﬂgoo)]*w =0 Va,
where o ts the Fedosov star product defined by V(o)

Proof:
The proof is by induction: To start we set 71'(1) = 7r((10) and define vt
by VO =3 2Ivaly. With HO = ¢ (H), we have

vOr =0, [V, HEO),, =0(H).

Now assume we have found 7r¢(,k), V(k)zzawg{k)Vngk), H(k):d>(k)(H)
such that
V(k)ﬂ'(k) =0, [7r(k), H(k)]*k = O(hk) .

We construct 7r£, +1) with

&, H L, = O (R

using the ansatz

. k -3 k
”&k-’rl) - ezh K ,n.(()k) e—-zh A’

which has a solution .
w((,,k)Ww( )

A= Z,\—,\ﬁ’

aftf
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where W is defined by
H®) = Zﬂ‘&k) xp HE) 5 ﬂ&k) +rFw .
[¢ 4

Now, setting V(F+1) = 5~ D E Dy and using lemma 4.2., the
theorem follows.

ad

6. Compatibility

Now, we are ready to address the issue of compatibility of observables,
i.e., the question which observables preserve the quantum decomposition
found above. The results may be considered generalizations of results found
in [4] for the Dirac equation. In physics language, we find an answer to the
question which observables are “slow” in the sense that their time evolution

is analytic in %, and hence does not depend on inverse powers of £.
Take a,b € I'(E[[R]]) such that

= (75, blu, = 0

[ﬂ-gOO)’ a]*oo

then
(00)

[WO 7a*oob] =0.

*00

Compatible elements form a xo-subalgebra O. In particular, for b= H (o0)

we see that the star commutator of observables in @ with the corrected
Hamiltonian is in O again.

Theorem 6.1. Let ¢{°) be the isomorphism between the star products
x and *o. For every a in the subalgebra © = ¢~ 1(O) the Heisenberg
evolution equation

. 1

a= E[H’ al«
is a well defined differential equation in O (i.e., there are no inverse powers
of h on the right hand side).

7. O(h)-correction

In the formalism developped so far, it is straightforward to compute the
correction of order h: We have

H® =32 4 O 4 28 1 0(8?)

_ A O g 2y mihA | o)
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A straightforward calculation, using the explicit formula for U leads to [16]

2O o HD 4 2 ® — 1O (), 0) uzﬂ,(o) Vi)V,

With the curvature of the “Berry connection”

Z#")owwg‘”wg% = 3 70 FO (0 +Zﬂ<o> vr®)

and the “Second fundamental form”
SPeX)p=(n o Vxoni)y (B#a),

we finally get:

ng‘))*mn*ﬂg)_ Ao(I1, 78(FB — FO)r0 Z AT, ST257)
7#01

This result is a generalization of our results in [15): There, the starting
point was the Moyal product on R2?, which is a Fedosov star product for a
flat connection. Hence, the curvature F? of V was missing there.

8. Change of compatible connection

In the constructions above we have made explicit use of Berry type
connections. Nevertheless, we are not really forced to do so, but it is just
a convenient choice for the proof. Hence, the question arises whether the
correction terms computed above are just a consequence of the choice of our
connection, or whether they are really “physical”.

To answer this question, take another compatible connection V. With

vl v = Ar
we obtain
Wg*ﬁ(l)*n'g:ng*H(l)*Wg—l—ihﬂg Al'(Xy,) 7o
et e
“Berry phase” term

Hence, the only difference is the appearence of an additional Berry
phase, which was so far hidden in the explicit use of a non-flat connection.
However, the curvature term remains and it still is constructed from the
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curvature of the Berry connection, not from the curvature of the chosen
connection.

The correction terms involving the curvature and the second fundamen-
tal form of the Berry connection have intrisic meaning.

9. Problems

In this section, we just mention a few open problems which are discussed
in more detail in [16].

1. Nontrivial holonomy of compatible connections may give an obstruction
to the existence of WKB states: only projectors exist because of a U(n)
holonomy. Solution are known only for my = 1(no degeneracy) or
dim M = 2 [11, 16].

2. A Maslov-correction has to be implemented. This is straightforward if
the problem can really be reduced to a scalar problem, e.g. for my = 1.

3. Level crossings appear in many physical applications. These have been
excluded by our regularity conditions. Nevertheless, our approach is still
applicable to the open submanifold where the degeneracies are constant.
The level crossing points have to be studied in a second step.
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