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The presence of macroscopic objects, like mirrors or cavity walls,
changes the mode structure of the electromagnetic field. As a conse-
quence, the vacuum fluctuations are also changed and they become
position-dependent. This effect manifests itself in the appearance of the
Casimir force, Casimir-Polder force, position-dependent energy shift and
modified spontaneous emission. Also, the measurement of the electron
magnetic moment is influenced by the cavity formed by the electrodes of
the Penning trap.

PACS numbers: 12.20. Ds, 12.20. Fv

1. Introduction

Cavity QED is a theory of electromagnetic interactions between charged
particles and electromagnetic fields in a presence of some macroscopic bod-
ies, like mirrors (metallic or dielectric), cavity walls or waveguides. In this
theory, the electromagnetic radiation field is quantized and the charges (usu-
ally, the electrons that are free or bound in atoms or molecules) are described
according to nonrelativistic quantum mechanics. Macroscopic dielectric or
metallic bodies are taken into account by assuming proper boundary con-
ditions that should be satisfied at their surfaces by electromagnetic fields.

The most striking features of quantum electrodynamics (QED) are the
properties of vacuum. In the process of electromagnetic field quantization
the notion of vacuum is redefined. QED vacuum is no longer the state de-
void of any fields. It is a state of the lowest energy with all field expectation
values equal to zero. Nevertheless, the nonvanishing field fluctuations in the
vacuum are the source of observable effects. These fluctuations depend on
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the boundary conditions. In the presence of macroscopic objects, called mir-
rors in what follows, the values of these fluctuations are position-dependent
since they depend on the configuration of such mirrors. Moreover, in the
presence of mirrors the vacuum state does not have the additional properties
that are usually satisfied in a free space. Namely, one cannot demand that
the vacuum is invariant under the transformations of the Poincaré group,
since the homogeneity and isotropy of space-time are already destroyed by
the presence of mirrors. As a consequence, the energy, the momentum, and
the angular momentum of the vacuum are not necessarily equal to zero and
moreover, they depend on the configuration of mirrors. The nonvanishing
of the vacuum energy leads to the appearance of the Casimir force between
uncharged macroscopic bodies.

In my lecture I will restrict myself to the discussion of those effects that
are strongly influenced by the properties of the vacuum.

2. Preliminaries

According to quantum electrodynamics [1] vectors representing electric
field and magnetic induction, E(,t) and B(7,t), are operators. These op-
erators may be decomposed into any complete, orthonormal set of complex
solutions of the Maxwell equations,

Ert =3 [Ei(f', t)a; + EX(F, t)aj] , (1)
B(ro) =3 [é"(a ta; + B* (7, t)a;f} , 2)

where all pairs of vectors £(F, t) and [;'"(F, t) (and also £*(7,t) and B™* (7, t))
form c-number solutions of the Maxwell equations. The members of the
complete set are labelled here by an index 1.

As a consequence of the canonical commutation relations for field op-
erators, (where D(F, t) is the operator of an electric induction),

[Bn(Fv t), Dm(Fla t)] = ih(nmkaka(F— Fl) ’ (3)
[Dn(Ft), Dim(7,t)] = 0 = [Bn (), Bm(7,1)] , (4)

the operators a; and az satisfy the bosonic commutation relations,
l:aiv a;] = 52] 3 (5)

[ai,aj] = 0= [a;’,a}] . (6)
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The operators a; and a:~r are called annihilation operators and creation
operators, respectively.

If the mirrors are at rest, it is convenient to choose harmonic functions
of time as mode functions £(F,t) and B (7, 1),

EX(Ft) = e EN (R, (7)
B'(7,t) = e itBY (7). (8)

In such a case, the energy operator (Hamiltonian) for the electromag-
netic field has the form,

H:thi(a:.‘ai+%). (9)

The vector functions £*(7) and B%(7) should satisfy the proper boundary
conditions at the surfaces of the mirrors. For example, in the space bounded
by two flat, parallel, infinite, metallic mirrors the proper mode functions
have the form,

-

7) = NEsin(k,2)i x 5e*7, (10)
M) = NF(wg )7 [~ik, cos(k.z)& — ksin(k:z)3] e (11)
A =NMc (Wi n) "' [~ik:sin(k:2)R + K cos(k;z)Z] e P (12)
7) = NMccos(k,2)k x 3eF°7, (13)
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Here, the mode functions are labelled by a two-dimensional wave-vector
R lying in the plane of the mirrors and by a natural number =, since the
component of the wave-vector in the direction z perpendicular to the mirrors
is quantized,

=nn/L. (14)

The distance between mirrors is denoted by L. There are two sets of modes:
transverse electric modes labelled by a superscript E and transverse mag-
netic modes labelled by a superscript M. The characteristic frequencies
are

Wi =cy/R2+ (nm/L)2. (15)

NE and M are the normalization constants. '

The annihilation and creation operators act in the Hilbert space of state
vectors. The vacuum state is defined as a state represented by a vector |0)
that is annihilated by every annihilation operator a;,

a;|0) =0. (16)
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The vacuum expectation values of all components of electric and mag-
netic fields vanish,

(0| E(,1)|0) = 0 = (0| B(7,¢)|0) . (17)

However, the vacuum expectation values of the quadratic forms built from
the components of electromagnetic field are, in general, different from zero,

(OIEn (7 ) Em (7, 9)[0) = 3 £.(7) € (7). (18)

and they express the vacuum fluctuations. Vacuum fluctuations depend
on the boundary conditions, since the mode functions have to satisfy those
conditions. In the presence of mirrors, the vacuum fluctuations are position-
dependent, contrary to the case of a free infinite space.

3. Casimir force

In 1948 Casimir [2] calculated the force that acts between two plane,
parallel, infinite, perfectly conducting mirrors. He showed that it is an
attractive force directed perpendicularly to the plane of the mirrors. It
results from a change in the vacuum energy (the zero point energy) caused
by a change of the boundary conditions as compared to free space.

It follows from (9) that the vacuum energy may be expressed as half of
the sum of all eigenfrequencies multiplied by the Planck’s constant,

(0|H|0) = h/2 Zw (19)

In the case of two parallel mirrors, it depends on the Separation L between

the mirrors. Although the expression (19) is infinite, the force acting on the

unit of the surface is finite. The force was calculated as a gradient of the

difference AE between the vacuum energies with the mirrors and in free

space,

F=VAE/A. ' (20)

The Casimir force, when expressed in terms of fundamental constants and
the mirror separation L, has the form,

_ 72 he

T 240 L4

The Casimir force is, of course, very weak. For L = 1um, it is equal

to 1.3 x 1073N/m?. Nevertheless, there were several attempts to mea-
sure the Casimir force, starting by a Russian experiment on the dielectric

=13x107?"Nm?/L*. (21)
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samples performed by Deryagin and Abrikosova [3] that gave a reasonable
qualitative agreement with the Casimir expression (21). Later measure-
ments are described in a review publication edited by Levin and Miche
[4]. Recently, Onofrio and Carugno [5] proposed to use a tunneling elec-
tromechanical transducer to detect Casimir forces between two conducting
surfaces separated by 1um and less (down to 0.1um). They plan to measure
the modulations of the Casimir force caused by small oscillations of both
surfaces.

4. The Casimir-polder force and the energy shift

An attractive force, similar to the Casimir force, acts between an atom
(or a molecule) and the metallic mirror and also between two atoms. Casimir
and Polder [6] predicted this force which results from the position-dependent
shift of the atomic energies. They calculated the retardation corrections to
the static van der Waals forces. Thus, Casimir-Polder force is closely related
to the energy shifts, that are, in turn, caused by the vacuum fluctuations.

The shifts of eigenenergies of an atom placed between two parallel,
perfectly conducting mirrors were calculated by Barton [7] in the lowest
order of perturbation theory. He used the nonrelativistic Hamiltonian,

H=Hy+ Hy, (22)
where Hy denotes the energy of a free atom,
P2
Ho = o—+V(r), (23)
Holi) = Eili), (24)

and H denotes the interaction Hamiltonian, which follows from the minimal
electromagnetic coupling in the dipole approximation,

Hp = Hes — eA(F) - p/m + 2 A%(7) /2m. . (25)

Here, Hes describes electrostatic interactions, and /I(F) is an operator of an
electromagnetic potential taken at the position of the center of the atom.
The potential A(F) satisfies proper boundary conditions at the surfaces of
the mirrors.

Under the influence of the interaction between the atom and the elec-
tromagnetic field in the vacuum state, the eigenenergies E; of the atom
are shifted by 8F;. For the ground state of an alkali atom, the position-
dependent part of such a shift as calculated by Barton [7] is

1(6!d19>12 p?cosh(2mpz/L)  _i [pAe
Z 6e, L3 / sinh(mp) tan™" [3-112}’ (26)
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where the summation is over all excited states of the atom, |{e|d]g}|? denotes
the modulus squared of the matrix element of the dipole averaged over all
directions, z is the distance of the atom from the center of the two-mirror
cavity, L is the distance between the mirrors and A4 is the wavelength
of the |e) — |g) transition. For a sodium atom, almost entire (more than
98%) position-dependent shift of the ground level 3s is due to the virtual
transitions to the first excited state 3p.

The Casimir-Polder shift can be recovered from the formula (26) in the
limit when L > Ay and the atom is not too close to the mirrors. In Fig. 1,
the ground state energy shift calculated from Eq. (26) for a sodium atom
placed between two mirrors separated by 1um is depicted together with its
Casimir-Polder limit and the instantaneous static van der Waals potential.

Energy Shift U (kHz)
2

-500 -250 -0 250 500
Position z (nm)

Fig. 1. Ground-state energy shift calculated for a sodium atom, for L = luym. (a)
— energy according to Eq. (18); (b) — instantaneous van der Waals potential; (c)
— asymptotic Casimir—Polder potential. From Ref. [8].

The position-dependent energy shift results in a force, given by the
gradient VSF(z), that pulls the atom towards the nearest mirror. An ex-
periment to detect this force was performed at Yale University by Sukenik
et al. [8] with a beam of sodium atoms in their ground state, passing be-
tween two gold-platted mirrors. This experiment not only demonstrated
the existence of the Casimir-Polder force, but it verified for the first time
the L=* dependence of the retarded QED potential and it discriminated
between the van der Waals and the QED potentials. The results obtained
by the Yale group are presented in Fig. 2 and Fig. 3, where the opacity of
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the cavity is plotted versus the cavity width. The opacity, an inverse of
the relative transmission of the atomic beam, is a measure of the attractive
atom-cavity forces, since those atoms that go towards the wall will stick to

its surface.

10
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Fig. 2. Measured cavity opacity versus cavity width. (a) — QLD 1ateraction; (b)
— van der Waals interaction; (c) — no interaction. From Ref. [8].
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Fig. 3. Measured cavity opacity versus cavity width. (a) — QED interaction; (b)
— van der Waals interaction; (c) — no interaction. From Ref. [8].
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Recently, the energy shifts of highly excited circular Rydberg atoms of
rubidium (such atomic states have high principal quantum number n and
m = n-1) with n = 50 were directly measured by Brune et al. [9] at I’Ecole
Normal Supérieure. The beam of long living Rydberg circular atoms was
passing through a microwave cavity made of two superconducting niobium
spherical mirrors placed at L = 2.754 cm from each other. The atoms expe-
rienced also, before entering the cavity and after leaving it, two successive
synchronized pulses of resonant microwave radiation. The first puise pro-
duces the coherent superposition of n = 50 and n = 51 states. During the
passage through the cavity those component states acquire different energy
shifts which later result in the shift of the Ramsey fringe signal produced by
the second microwave pulse. This Ramsey interferometry technique is very
sensitive and allows for a precise measurement of the energy shift practically
without any energy exchange.

5. Spontaneous emission in a cavity

The spontaneous emission of radiation, that accompanies transitions
between energy levels in atoms and molecules, is always induced by vacuum
fluctuations. Therefore, it may be significantly influenced by the changes in
the boundary conditions caused by the presence of mirrors or cavities. This
effect for radio-wave frequencies was predicted by Purcell [10] in 1946. The
first experimental observation of a modified spontaneous decay of excited
molecules placed on the surface of a mirror was performed by Drexhage [11].
Later, for microwave frequencies, an enhanced spontaneous emission from
highly excited Na atoms in a cavity was observed [12] and also, an inhibited
spontaneous emission from circular Rydberg states of Cs atoms in a waveg-
uide was detected [13]. For visible light, an inhibited spontaneous emission
was first observed for Cs atoms passing between two parallel gold-platted
mirrors [14], and soon after that both inhibited and enhanced spontaneous
decay was observed {15] from Yb atoms in a confocal mirror resonator.

The rate v of a spontaneous decay of an atomic excitation is given by
the Fermi’s Golden Rule,

7 = S5 IIH1) oo 27)

where the matrix element of the Hamiltonian is taken between the initial
and the final states of the atom and p(wg) denotes the density of the photon
states with frequency wg corresponding to the energy separation between
atomic states. This density function p(w) depends on the boundary condi-
tions. In an empty space,

w?
pylw) = (28)

723
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In a lossy cavity, in the vicinity of the characteristic cavity frequency
we, the density of states function p.(w) may be modelled by the Lorentzian

function,
r 1
= — 29
pC(w) 7TV F2 + ((U _ wc)2 7 ( )
where V' is the cavity volume and I' measures the cavity losses. The rate
of cavity loss I is related to the cavity quality factor @Q,

Q =w/2r. (30)

The spontaneous decay rate 7. in a cavity is related to the free space
decay rate 7 by the formula,

pe(wg)  wl 1
pf(wo)’yf o ng r2 4 (w() - wc)2 -

Ye = (31)

The spontaneous emission in a cavity may, therefore, be enhanced or in-

hibited depending on the distance between the atomic transition frequency

wg and the nearest characteristic cavity frequency w.. At the resonance
(wo = we), we get

1 A3

"= GV Qyy- (32)

In a good cavity of the dimensions of the order of the wavelength of

the emitted radiation, a very strong enhancement of spontaneous emission

is possible, since there exist microwave cavities with the quality factor Q of

the order of 101%. On the other hand, if the atomic transition frequency wo

is substantially smaller than the smallest cavity eigenfrequency, the spon-

taneous emission may be drastically inhibited. For example, for wy = w./2,

_ e
’YC_ (477)2VQ7f'

(33)

To describe spontaneous emission in a very good cavity one should not
use the Fermi’s Golden Rule (27) which results from the lowest order of per-
turbation theory. The probability that the atom remains in the excited state
is no longer given by a simple exponential function, but undergoes several
decaying oscillations. In that case, a photon once emitted would not imme-
diately escape from the cavity but may be reabsorbed by an atom several
times before eventually leaving the cavity. Nevertheless, the Weisskopf-
Wigner method [16] applied to such a case confirms the general features
described above, namely, an enhancement or an inhibition depending on
the detuning from the resonance condition.
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Spontaneous emission from an excited atom placed in a cavity depends
on the atomic position with respect to the nodes and antinodes of the cavity
mode functions [17]. For moving atoms in an atomic beam it depends also
on the velocity of the atom, since the Doppler shift may tune the atom in
and out of cavity eigenfrequencies [18], and also because the moving atom
probes the spatial variations of the cavity eigenmodes [19].

6. Magnetic moment of the electron

The detailed calculation of the magnetic moment of the electron, con-
firmed by an experiment, was a great success of quantum electrodynamics.
According to relativistic quantum mechanics, the magnetic moment of an
electron [ is given by the formula

. e .
E=g95—F5, (34)

where § is the electron spin, § = h&/2, and the gyromagnetic factor g is
equal to 2. The interactions of the electron with the QED vacuum result
in a change in the value of the gyromagnetic factor g. The parameter a is
used as a measure of this change,

a=(g9-2)/2. (35)

When an electron is placed in a static, uniform, homogeneous magnetic
field and is induced to undergo spin flip transitions, the parameter a may
be related to the difference between the cyclotron frequency w., and the
frequency w; corresponding to the spin flip,

a=(ws—we)/we. (36)

Therefore, the measurement of the magnetic moment of an electron consists
of a simultaneous detection of both transition frequencies w. and w,. Mod-
ern measurements of such a kind [20] are performed on an electron kept in
the Penning trap. The electrodes of a Penning trap form a microwave cav-
ity of a very complicated shape (see Fig. 4). As every cavity, the Penning
trap influences the radiative decay of the cyclotron motion of an electron.
The first observation of an inhibited spontaneous emission accompanying
the decay of the electron cyclotron motion was reported already in 1985 by
Gabrielse and Dehmelt [21]. The slowing down of the cyclotron transitions
of an electron helps to achieve an extreme accuracy in the determination of
the electronic g factor according to Eq. (36) since it results in a narrowing
of the spectral line. The experimental value for the parameter a obtained
recently [20] is

dexp = 0.001 159 652 188 4 (14)(40) , (37)
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where the uncertainties are given in two brackets. The biggest uncertainty
(40 x 107'3) is due to the unknown frequency shift caused by the cavity.
For a cavity, such as a Penning trap, it is very difficult to evaluate the eigen-
functions and eigenfrequencies, even numerically. Therefore, the inevitable
frequency shift cannot be calculated. This problem was already signalled
by Brown et al. [22] in 1988 and it is not yet completely resolved.
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Fig. 4. Cross-section of the Penning trap. From Ref. {21].

The parameter a in free space was calculated by QED methods up to the
eight order in perturbation theory by Kinoshita et al. [23]. They obtained
the value

acn = 0.001 159 652 140 0 (53)(41)(271), (38)

where the biggest uncertainty is due to the uncertainty in the measurement
of the fine structure constant from the Josephson effect.

The magnetic moment of the electron is one of the most accurately
known quantities in physics. Its measured value may be used for the deter-
mination of the fine structure constant.
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