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We investigate QED and quantized Yang—Mills theories coupled to
matter fields in the framework of causal perturbation theory which goes
back to Epstein and Glaser. In this approach gauge invariance is expressed
by a simple commutator relation for the S-matrix. It has been proven in
all orders of perturbation theory. The corresponding gauge transforma-
tions are simple transformations of the free fields only. In spite of this
simplicity gauge invariance implies the usual Ward rsp. Slavnov-Taylor
identities and unitarity on the physical subspace.

PACS numbers: 11.15. -q, 11.15. Bt, 12.20. -m, 12.38. Aw

1. Introduction

The word ’finite’ means that we work with causal perturbation theory,
which goes back to Epstein and Glaser [1]. No.ultraviolet divergences appear
in this approach. One works exclusively with free fields, which are math-
ematically well-defined and performs only justified operations with them.
By considering a simple gauge transformation of the free fields, we shall
obtain the known Ward rsp. Slavnov-Taylor identities which express the
usual gauge invariance.

In the causal method the problems are separated: First we prove
(re)normalizability by simple power counting. Then we prove gauge invari-
ance. The latter implies unitarity on the physical subspace. The interaction
is switched off by a function g(z), g € S(R*). Infrared divergences and the
problem of confinement appear only in the adiabatic limit g(z) — 1, which
is not considered in these lectures.

* Presented at the II German—Polish Symposium “New Ideas in the Theory of
Fundamental Interactions”, Zakopane, Poland, September 1995.
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2. Short introduction to causal perturbation theory

The idea of constructing the S-matrix by means of causality goes back to
Stiickelberg [2] and Bogoliubov and Shirkov [3]. This program was carried
out correctly by Epstein and Glaser [1]. However they considered scalar
fields only. These lectures report on the extension to gauge theories.

In causal perturbation theory one makes the ansatz of a formal power
series in the coupling constant e for the S-matrix

S(g)=1+ Z %/d‘ixl...dé‘zn Th(z1y .y zn)g(z1)...9(Tn) - (2.1)
n=1

The test-function g € S(R*) switches the interaction and Ty (21, .., T»)
~ €™ is an operator-valued distribution. The T),’s are constructed by induc-
tion on the order n. The input is 77 (z) in terms of free fields. T is roughly
speaking given by the interaction Lagrangian density. In QED we have

Ti(z) = ie : Y(z)y*Y(2) : Au(2), (2.2)

where A, ¥, D%y +40 are free field operators

04, =0, (tv#*0y, —m)p=0. (2.3)

The step from n — 1 to n in the inductive construction of the T, is
uniquely determined by translation invariance and causality only. First we
have to do some preparations. The formal power series (2.1) can be inverted

- - 1 -
Sy t=1+ Z m/d"xl...d';xn Tn(z1y o Tn)g(21)--g(zn)  (2.4)
n=1

with
Tu(X) €' S (=1 Y Ty (X1)-- T, (Xr) (2.5)
Py

r=:1

Herein the second sum runs over all partitions of X def {21, ...,zn} into r
disjoint subsets

X=X1U..uX,, X;#0, |X;|=n;j,. (2.6)

Now we summarize the inductive step as a recipe. For the derivation of this
construction from causality and translation invariance and for many details
see [1, 4]. With (2.5) we can construct the operator-valued distributions
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R}, Al, which are a tensor product of T}’s of lower order k, 1 <k <n -1
and, therefore, known by the induction assumption;

Riy(z1,520) & N T i (Y, 2) T (X)), 2.7)
XY

Al (1, 5 20) N T (X) Tk (Y, 20) | (2.8)
XY

def def
where X = {zifs 0 ziy}, Y= {Zigprs o Tin_ b XY ={z1, ..., Tn-1}

and the sum is over all partitions of this kind with 1 < k =} X |[<n - 1.
One can prove that

D, R, - 4, (2.9)
has causal support
supp D (21, 8n) C (I—y(2n) U T, ;1 (2a)), (2.10)
where
T (en) ¥ {(21,.,20) € R™zj € 0n + VE Vj=1,..,n—1}. (2.11)

The crucial step in the inductive construction is the correct distribution
splitting of D,,
D,=R, - A,, (2.12)

with

supp Rn(21,...;25) C F:_l (zn) and supp Ap(zi1,..;%n) C F;_I(Ecn) )

2.13

For this pupose we expand the operator-valued distributions in normally
ordered form, e.g. for QED

Fro(z1,...,zn) = Z fa(@i — Zny ooy Tao1 — 2n) 1 ¥(25). 0(2)) . A(T ).

(2.13a)
where F = R', A', D, R, A, T. The coefficients f, are C-number distri-
butions. Due to translation invariance, they depend on the relative co-
ordinates only and, therefore, are responsible for the support properties.
Consequently, the splitting must be done in these C-number distributions.
Obviously, the critical point for the splitting is the UV-point

F:_l(a:n) N (zn) ={(21,...., %) € Rz =9 =..=z,}. (2.14)
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In order to measure the behavior of the C-number distribution f in the
vicinity of this point, one defines an index w(f), which is called the sin-

gular order of f at ¢ = 0 [1, 4]. We will need the following example: Let

def . . .
D%, a= (a1, ..., am), be a partial differential operator. Then

w(D*%(™ (24, ..., xm)) = |a dxefal + .ot lm. (2.15)

If w(dn) < 0, the splitting of d, is trivial and uniquely given by multi-
plication with a step fuction [1, 4]

ra(@1 = Tny ) = O 0j(2 — ©0))dn (21 — @as )
J
with vj € VT arbitrary, Vj. (2.16)
If w(d,) > 0, one must do the splitting more carefully [1, 4]. Moreover

it is not unique. One has an undetermined polynomial which is of degree
w(dy,) (the degree cannot be higher since renormalizability requires w(ry,) =

w(dn))a

To(f1 — Tny ey Tpoy1 — Tp) = rg()

w(dn)
+ Z CaD“5(4("_1))(x1 — Ty ey Tn—1 — Tp) s (2.17)
|a|=0
where 70 is a special splitting solution and C, are the undetermined normal-

ization constants. If one does the splitting also in this case by multiplying
with a ©-function, one obtains the usual, UV-divergent Feynman rules. But
this procedure is mathematically inconsistent. From R, one constructs

7% R, - R (2.18)

and finally T}, is obtained by symmetrization of 7T},

1
Tn(21,.rTn) = Y ET,’,(az,rl, ooy Ben) - (2.19)
TES,

One can prove that this is the correct n-point distribution of S{g) (2.1),
fulfilling the requirements of causality and translation invariance. Note

w (tn) = wirn) = w(dn) . (2.20)
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If one does the distribution splitting (2.12) correctly no UV-divergences
appear. The undetermined normalization polynomial goes over from r, to
tn

th(Z1 — Ty ey Bpe1 — Tp) = t%()

+ Y CoD* D gy — gz — 7)) (2.21)
fa|=0

In QED one can prove by means of scaling properties [4]
w=4-b-3f, (2.22)

where b is the number of external photons and f is the number of external

pairs (1, ¥). The fact that w is bounded in the order n of the perturbation

series, is the (re)normalizability of QED.
The normalization constants C, are restricted by the following require-

ments:

— Lorentz covariance, SU(N)-covariance in the case of Yang-Mills theo-
ries, :

— pseudo-unitarity S (g)K = 5(g)~1, where K is a conjugation related to
the ajoint (see Section 5(b)),

— invariance with respect to permutations of certain vertices, for example
the inner vertices of a diagram,

— invariance with respect to the parity transformation (P), time reversal
(T) and charge conjugation (C),

— the existence of the adiabatic limit g(z) — 1 and

— gauge invariance.

3. Finite QED
(a) Distribution splitting

In z-space the unknown r,(zy — n,...) has its support in F:_ (zn)
(2.13). Performing the Fourier transformation in the relative coordinates
this support property goes over into an analyticity statement [1]:
Fn(P1, -, Pn—1) is the boundary value of an analytic function — analytic in
(R‘“""l) +4I't). For p = (p1,...,Pn—1), With p; € VT Vi =1,...,n -1,
a special splitting solution, the so-called ’central solution’, can be obtained
from d,, by a dispersion integral [1, 4, 5]

-~

0, 1 dn(tp)
Falp) = %/dt (t —10)«+1(1 -t +40)’ (3-1)
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where w = w(d,). In the case of trivial splitting w(d,) < 0, (3.1) is essentally
obtained by Fourier transformation of r,(z) = @(vz)d,(z) and choosing
v := p (2.16). The values of #%(p) in other domains of p can be obtained by
analytic continuation. The central solution fulfils

(D*#3)(0) =0,  Va|<w. (3.2)

Since this property fixes all normalization constants Cq, |a| < w in (2.17),
the central solution is characterized by (3.2) uniquely.

The central solution #0(p) has nearly all symmetries listed at the end
of Section 2. Especially, it is covariant [1] and gauge invariant [5]. But in
QED the existence of the adiabatic limit [4,6] requires the normalization

2(p, -p, 0, ..-0)'7‘/p‘,=m = 0 (3-3)

for the self-energy X'(p1, ..., pn—1) of the electron in contrast to (3.2).

The dispersion integral (3.1) does not exist in massless theories (e.g. in
the massless Yang-Mills theories considered below) because of an infrared
divergence. Then, instead of p = 0 in (3.2), one can work with a totally
space-like subtraction point ¢, but the splitting solution with subtraction
point ¢ # 0 is generally not covariant {7]. However, the central solution
exists in every pure massive theory [1] and most probably in QED. (The
latter is not yet proven completely, but by computing a typically dangerous
diagram we found that the nonvanishing mass of the fermions seems to be
just sufficient to ensure the existence of (3.1).)

(b) Gauge invariance in QED

In view of non-abelian gauge theory we will formulate gauge invariance
in a somewhat strange way, but we will obtain the usual Ward identities.
We define the gauge charge Q by

def

QE / &z (9,A%) 8 ou (34)

t==const.

where u(z) is an external C-number field fulfilling Ou(z) = 0. This defini-
tion makes sense because (9,A4")0 ,u is a conserved current. One easily
obtains

@, A*)=1d0"u, [Q.¥]=0, [Q.,¥]=0. (3.5)

By means of current conservation 8, : ¥y”% := 0, we may write [Q, T1] as
a divergence

@ T =id,TY),,  with T}, Sie: Py"v:u. (3.6)
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We call this fact gauge invariance in first order and /1 is called a

'Q-vertex’.
We turn to second order. With AL(z1;z2) = —Ti(z1)T1(z2) (2.8), we
get by inserting (3.6)

[Q, Ay (215 22)] = —[Q, T1(z1)] T (22) — Ti(z1)[Q, T1(z2)]

= 10,17 (21)T1(z2)} + i0;2{ ~T1(21) 17y (z2) } -
(3.7)

According to the inductive construction of Epstein and Glaser, we have

—-TIV/1 (1‘1)T1 (zg) = A’zu/l (.’L'l;ivg) ,
=T1(z1)T7)1 (x2) = A}y (215 22) (3-8)
which are the A)-distributions with a Q-vertex at z; (rsp. z2) and an

ordinary QED-vertex at zz (rsp. z1). Proceeding analogously for R} we
obtain with Dy(/;) = R’2(/j) - A’2(/j) j=1,2(29)

(@ Da(ay; 22)] = 031D} (15 22) + 022D}y (e1309) . (3.9)

Assuming that this equation can be maintained in the distribution splitting

. . . 1
Dg(/j) = Ry(/4y, 7 = 1,2 (2.12), we obtain with T2,(/j) = Roy(sy — R2(/j)
(2.18) and after symmetrization (2.19)

[Q,Tz(xl,xz)} ’taxlT 1(1:1,1‘2) +28 T2 2(1'1,1‘2) (3.10)
2/ /

which we call gauge invariance in second order.
In order to define gauge invariance in an arbitrary order n we define a
larger theory by giving its first order

S1(g0, 91,) & / d*z{T1(z)g0(2) + Tt )1 (2)910(2)} , (3.11)

where T is the ordinary QED-vertex (2.2) and Ty /;is the Q-vertex (3.6).
The higher orders (of the larger theory) are determined by the usual induc-
tive construction. The physically relevant S-matrix is obtained in the limit
go — 1, g1 — 0. We define perturbative gauge invariance by

@, Tn(z1, ..., Tn) _zza,, /l (z1,.-yZn), YR EN, (3.12)

where TT’:/I(a:l, ...y T) is the n-point distribution of the big theory with one
Q-vertex at z; and all other (n — 1) vertices are ordinary QED-vertices.
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Adopting the argument in (3.7)-(3.10) to the general inductive step
from n — 1 to n (in the construction of the Ty, T}, /), we see that gauge
invariance can be violated in the distribution splitting only. Due to

Rn(z1,..;52n) = Dp(2y,...;2,) on F:_l(xn) \{(zn,--zn)},

Rn(z1,..;2,) =0 on R*™\ I’:_l(zn) , (3.13)

the possible anomaly A, def Q. T —i>,; 61Tn/l is a local term

supp An (21, oy n) C {(Zn, -y Tn)} (3.14)

We have seen in (2.17) that T5, T, /; have undetermined normalization poly--
nomials which have their support in this point {(zn, ..., Zn) }, too. Therefore,
in constructing a gauge invariant S-matrix (2.1) we proceed in the following
way: We choose the normalization constants C, in (2.17) in such a way that
gauge invariance is preserved in the distribution splitting. Generally, it is
highly non-trivial that such a choice is possible. However, in QED the situ-
ation is quite simple: Choosing the mass normalization (3.3) and taking the
central solution rQ (3.1) in all other cases, gauge invariance (3.12) holds
true [4, 5].

In order to establish the connection of our gauge invariance (3.12) with
the usual one, we have to eliminate the unphysical Q-vertex in (3.12). For
this purpose we consider all terms in Tp(2y, ..., 25) containing A,(z;) (I
fixed)

Tn(Z1, ...y Tn) =: tf‘(:cl, ey Tn)Ap(zy) + +(terms without A, (1)), (3.15)

where t;‘(xl, ..y Tn) contains operators ¥, ¥ and A, (zy) for k # 1. Then
one easily proves [7] that (3.12) is equivalent to

8ﬁ’tf‘(z1, ey =0, Vi=1,..,n, Vn, (3.16)

which is a condition on distributions of the physical theory only. Choosing
for example { = 3 and collecting all terms with operators : %(z1)...¢(22) :
in (3.16), one obtains the usual Ward identity connecting the vertex A with
the electron self-energy X [4, 5]

0,3 A (z1 = 24, ...) + te[d(zy — z3) — (72 — 23)]
X X(zy — Tp, T3 — Ty, Ty — Tp,...) =0. (3.17)

The set of all Ward identities implies the operator gauge invariance (3.12).
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Which are the gauge transformations belonging to our gauge invariance
(3.12)?7 Let us consider the transformations

AL mDQ QAR = pr _A[Q, AF] = AP + AO*u
pr e M=y, PN, (38)
where we have used (3.5). Note that the terms of higher order in A vanish,
since they are higher commutators [Q, ...[Q, A]] and since {Q A] i0u is a
C-number field. We emphasize that the transformed fields A/\, ¥, ’l/))‘ fulfil

the wave rsp. Dirac equation (2.3), they are free fields, too. By means of
our gauge invariance (3.12) we obtain

Em[Q,5a(0)) = lim, — [ da1..0Q, Tuler, - lg(@1)-.
= lim —-Z:—Z/d"‘xl 85’1‘:/,(.@1,".)9(3}1)...
T

=~ lim — - E/d4x1 dizy.. n/l(wl,...) g(z1)...0u9(z)... = 0.

g9—1
(3.19)

However, the adiabatic limit ¢ — 1 of S,(g) is infrared divergent. But
these divergences are known to be logarithmic. Moreover, T} /i has the

same infrared behavior as T, [7]. Therefore, the logarithmic divergence
coming from 7T /1 is overcompensated by 9,g(z;), which goes linearly to

zero [6]. Then we conclude

liml[e_MQSn(g)ei)‘Q ~ S.(¢)]=0, VieR. (3.20)
g—>

Note that e "**@ 5, (g)e'*? is the transformed S-matrix of n-th order which
is obtained from S, (g) by replacing all external legs A, v, P by Ay, ¥x, ¥
But the adiabatic limits of the individual terms in (3.20) do not exist.

4. Yang-Mills theories with matter fields
The theory is constructed inductively from the following first order
Ty (z) = T (2) + T () + ..., (4.1)
with
T4 (2) ' fohe : Apa@) A () 24 (2) (4.2)

TY (2) ' ig' jua(2) AL (2) (4.3)
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is a QED-like coupling, where the matter current j,, is defined by

iua(2) d:ef% B (@) Tu () ag s (@) (4.4)

Herein, g, ¢’ are coupling constants, which are independent for the time
being, fqp. are the structure constants of the group SU(N) and 5*A,4, a =

1,...,N% — 1 denote the generators of the fundamental representation of
SU(N). The gauge potentials A%, Fi” def OFAY — QY AL are massless and

fulfil the wave equation. The matter fields ¥ and ¥, def PO satisfy
the free Dirac equation (2.3) with a colour independent mass m > 0 [8].
Therefore, the matter current is conserved

0*jua(z) =0. (4.5)
The dots in (4.1) signify a further coupling which will be introduced later.
(a) Definition of gauge invariance

We adopt the procedure for QED given in section 3(b). Analogously to
(3.4) we define the gauge charge Q by [9]

o / Pz 3°(0,4%) Boua (4.6)

t=const.

where u4(z) is an external C-number field fulfilling Oug(z) = 0 for a mo-
ment. One easily obtains

[Q, Af] =i ua,  [Q,F1=0, [@%a]=0, [Q¥s]=0 (47)
and by means of (4.5)

@, Tl'/’] = it?,,le/';, with the Q — vertex le/”l def ig'jl uq - (4.8)

But {Q,TIA] is not a divergence. Gauge invariance requires additional cou-
plings and fields [9]: Let u,, @, be two free, scalar Fermi fields (’ghost
fields”)

Uug = 0, Dﬂa =0, {uaa ub} =0, {aaa 'ab} =0,

{ua, &b} = ~i6abD0 (:l: - y) s (4.83.)
where Dy is the mass zero Pauli-Jordan distribution. We replace in the

definition (4.6) of @ the C-number field u, by this operator-valued ghost
field u, and obtain the anticommutators

{Qv ua} =0, {Qa '&a} = “iauA: . (49)
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Moreover, we introduce the ghost coupling

T3(@) Y~ igfape : Apale)up(2)dic(a) : . (4.10)

Then, together with (4.8), we have gauge invariance in first order [9]
[Q, T{(2) + T} (2)] = 0, (T7}} (2) + T1', (2)) (4.11)
with the Q-vertices

T (2) ' ig fabe : Apa(2)us(2) F2%(2) 1, (4.12)

@) Y fune - va(2)un(2)0 (@) - (4.13)

Gauge invariance in arbitrary order is defined in exactly the same way
as in QED: Inserting T3 &' T + T + Ty and T7), €' Tf% + 124 + 11
in (3.11), the definition is given by (3.12).

To probe uniqueness of the construction, we have tried to establish
gauge invariance by working with bosonic ghosts [9] in contrast to the
fermionic ones introduced above. This works fine in first order, but for
second order tree diagrams gauge invariance is violated.

Since the gauge charge @) is a Fermi operator, we have

Q*=0, (4.14)

which will be important in the proof of unitarity on the physical subspace
(sect.5(b,c)).

Let us turn to the gauge transformations which are transformations of
free fields only. Up to a sign (which provides a closer connection to the
BRS-transformations [11]), they are defined completely analogous to (3.18).
Their infinitesimal versions are given by

56(z) = Bxlrole Y $(2)eQ], b= AB,FI ug, lia, ¥, D, (4.15)
where
Q' (C1)%q, @, / B :ﬁa(z)goua(x) . (4.16)

t=const.

Qg is the ghost charge operator [10]: [Qg, ua] = —ua, (@, &a] = @a. Due
to [Q', Tn(X)] = (-1)99[Q, Tn(X)], our gauge invariance (3.12) implies the
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invariance (up to a divergence) of T,,(X) with respect to these transforma-
tions (4.15): e~ ', (X)ei)‘Ql — T (X) =divergence. However, (3.19-20)
cannot be adopted from QED, since the infrared behavior is worse in non-
abelian gauge theories. The explicit expressions for the transformations
(4.15) are

SAY = (1)t u,,  bia = —(~1)990, AL (4.17)

by means of (4.7), (4.9), and the infinitesimal transformations of the other
fields F, u, 1, % vanish. These transformations are the free field version
of the famous BRS-transformations [11], i.e. the terms ~ ¢° in §BRS¢p
agree with (4.17). However, we emphasize that the BRS-transformations are
transformations of interacting fields, whereas we transform free fields only.
Moreover, the compensation of gauge variations is completely different: The
pure Yang-Mills Lagrangian is BRS-invariant alone:
5BRS(_%F:uint‘Fi€:1t”V) = 0;
whereas we need the ghost coupling 77 (4.10) to cancel the gauge variation
of the 3-gluon coupling Tj* (4.2) (see (4.11)). Note that we work always in
a fixed gauge, namely the Feynman gauge.
Analogously to (2.22) one can prove for the singular order the following
result [7]
w=4-b-—g-d-3f, (4.18)

where b is the number of external gauge bosons (A, F), g the number
of external ghosts (u, %), d the number of derivatives on external legs
(F, 84) and f is the number of external pairs (¥, ¥). This proves the
(re)normalizability of this model.

(b) Four-gluon coupling and universality of charge
Gauge invariance for second order tree diagrams yields powerful restric-
tions [8, 9]. Due to (3.7)—(3.10) gauge invariance can be violated only in

the distribution splitting and only by local terms. Therefore, we consider
local terms only (~ D®6(z1 — z2)) in

2
[Q, To(z1, 22)] - iZa;fT;/l(xl,xz) . (4.19)
=1

Let us consider the three tree terms
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—i92

Ta(z1,22) = tApa(z1)Avp(21) Apa(22) Are(z2)

: fabefaec{[g# (0¥ 0P DF (21 — @2)
+Cog"?8(z1 — x2)) — g"NO*°DF (21 — z2)
+ CoghP(z1 — z2))] — [A ¢ pl} + ..., (4.20)
—ig?
Ty (z1,22) = 29 P Apa(@1)up(21) Apa(z2) Axe (22)
: fabcfdec{[gp/\(ayapDF(zl - .”132)
+Cyg"P8(x1 — z2)) — g"MO*9PDF (21 — x9)
+ CpghPé(z1 — 22))] = [A > p]} + ... (4.21)

and the term of T/, obtained from (4.21) by exchanging z; and z2. (Note
Ty)2(21,22) = T3/1(2,21).) These tree diagrams have singular order
w = 0 and, therefore, a free normalization term ~ C, 36(z1 — z2) has
been added. Now we collect all local terms in (4.19) with external legs
t Apa(z1)0up(z1)Apa(r2) Are(z2) ;. Due to [Q, Auqa(z)] = 10,ua(z), we
have two equal terms from ) commuted with (4.20) which contribute. There
is also a contribution from ié‘,'flT;/l (z1,z2), generated by the divergence

9y acting on wup(zy) in (4.21). The considered terms vanish (i.e. gauge
invariance is fulfilled in this case) iff

Co=Cp. (4.22)

Next we collect all local terms in (4.19) with operators

»

s Apa(zr)up(z1) Apa(z2) Ane(a2) © -

There is only a contribution from the divergence d;' acting on the numerical
distribution in the term (4.21) of Tz”/l(wl,mg). By using ODF = § we
conclude that gauge invariance means

Cp=-1 (4.23)

in this sector. Hence, gauge invariance fixes the values of Cq,C} uniquely.
The C,-normalization term (in (4.20)) is the 4-gluon interaction. It propa-
gates to higher orders in the inductive construction of the T%,’s (see Section
4(b) of Ref. [12]).

In order to derive the universality of charge

g, =49, (424)
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where g (rsp. g¢') is the coupling constant in (T{* + T#) (4.2), (4.10)
(rsp. in T¢ (4.3)), we collect all local terms in (4.19) with external legs
tug(z1)A ”b(xl) P(z2)...40(x2) ;. 5! acting on the numerical distribution in

!

Ty (z1,22) = ng S g (T1) Ay (21)P(T2) VoAt (22) :

- fabelg#PBY DF (21 — z9) — g*PO* DT (21 — z2)] + ... (4.25)

produces a non-local and a local term. The latter is
!

05Ty (o1, 22) = L+ wa01) Aua (1) Bla2)7* At (22)
: fabcé(xl — :L‘Q) + ... (4.26)

Let us consider the two C-conjugated Compton diagrams

: 12

T3y (1,22) = =2 ua(21) Aup(22)B(z2)r* 28 (22 = 21) Aar b (e1) :

+ g (1) Aup(22)B(21)7 A ST (21 — z2) Xp7*d(22) ]+ ... - (4.27)
Using

OZL(P(z1)7 ST (21 — z9)...) = =i (22)6(z1 — 22)...,
321(...SF (zg — 21)7 ¥ (1)) = ...i6(zg — 1) (29) (4.28)

we obtain two further local contributions in 9;!T, /1(2}1,.’132) These three
local terms cance] by means of

2t fabeAc + ApAa — AgAp =0 (4'29)

if and only if ¢' = g (4.24). In QED the u-field couples to the matter field
only. Therefore, the term (4.25)-(4.26) is absent. The sum (4.27) of the
two C-conjugated Compton diagrams is already gauge invariant there.

(c) Outline of the proof of gauge invariance

Since the distribution splitting is done in terms of the C-number distri-
butions (2.13a), we have to express the operator gauge invariance (3.12) by
the so-called ’Cg-identities’, the C-number identities for gauge invariance.
They correspond to the Ward identities in QED and are obtained by collect-
ing all terms in the operator decomposition (2.13a) of (3.12) which belong to
a particular combination : O : of external field operators [7, 8, 13] (as we did
in Subsection 4(b) before). The set of all Cg-identities implies the operator
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gauge invariance (3.12). But this statement cannot be reversed, because
the operator decomposition of (3.12) is not unique if 8(4)_distributions are
present [7, 8]. Therefore, we proceed in another way: Instead of proving the
operator gauge invariance (3.12), we prove the corresponding Cg-identities

(by induction on n), which are a stronger statement. In this framework the

Cg-identities for R, A, D, 4 B _ A" can be proven by means of the
n n n n p

Cg-identities for Ty, T) in lower orders 1 < k < n —1 [8].

Again the crucial step is the distribution splitting [7, 8, 14]: The prob-
lem is much harder than in QED, because the central solution (3.1) does
not exist. Similarly to (3.13)-(3.14), the Cg-identities can be violated in the
splitting only and solely by local terms. Therefore, the possible anomaly a
(i.e. the possible violation of the Cg-identity) has the following form

n
0O]: }: ' tf + to def = Z K. D¢, K. = const., (4.30)
I=1 c

where we have written the general form of a non-trivial Cg-identity [13]
(belonging to the operator combination : O :) on the Lh.s.. One easily finds
by means of (4.18) that the terms on the l.h.s. are singular of order |O| +1,
with 3
|(’)|d.—.‘if4—b—g-—d—§f, (4.31)

where b is the number of gluons, g the number of ghosts, d the number of
derivatives in O and f the number of pairs (1,1) in O. Consequently, due
to (2.15), only terms with

el <10/ +1 (432

appear on the r.h.s. of (4.30). The terms on the Lh.s. in (4.30) have certain
symmetries. For example, they are covariant, SU(N)-invariant, C-invariant,
invariant with respect to permutations of certain vertices etc.. With these
symmetries we restrict the constants K, in the ansatz for the anomaly @ on
the r.h.s. of (4.30). Then we perform finite renormalizations (2.17)

t1 1%t 4y, to — th ¥ o + ng (4.33)
which remove the possible anomalies a in all Cg-identities
n
> Oatt* + 5 =0. (4.34)
l=1

If a certain distribution t;, ty appears in several Cg-identities, the different
normalizations of t;, ¢ must be compatible. It is highly non-trivial that
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one has enough freedom of normalization to remove all possible anomalies.
The problem is to find enough symmetry properties for the restriction of the
K. ’s in (4.30). With the usual symmetries we do not succeed in all cases.
For certain t-distributions we need a weak additional assumption about the
infrared behavior [14]. However, this assumption seems to be true. Note
that we have to consider Cg-identities with

0] +1>0 (4.35)

only, because of (4.32). There are only 12 non-trivial Cg-identities of this
kind.

(d) Compatibility of the normalization conditions

At the end of Section 2 we have listed various normalization conditions.
Now we sketch the proof of their compatibility [8] (apart from the existence
of the adiabatic limit ¢ — 1). Similar to gauge invariance, all these sym-
metry properties can get lost in the distribution splitting only. We start
with a covariant splitting solution r rsp. ¢t = r — r’. (The existence of
a covariant splitting solution is not a triviality in massless theories. It is
proven by means of cohomological arguments in [7].) Then we symmetrize
r rsp. t with respect to permutations of certain vertices, with respect to
pseudo-unitarity (see Section 5(a)) and to the discrete transformations P,
T, C, and obtain r* rsp. t* = r® — r'. This is a symmetrization over a finite
group G of symmetry transformations and covariance is maintained. Since
d = r' — a' possesses all these symmetries, r® is still a splitting solution of
d. Then we start our proof of the Cg-identities with these symmetrized dis-
tributions, i.e. we insert tj, t3 for ¢;, to in (4.30). Then the corresponding

anomaly a°® def 3 ,altf + t§ must be invariant with respect to G, too. Let
ny, no remove this anomaly: Z,a’n, + ng = —a®. We symmetrize nj, ng
with respect to G and call them n{, n§. By means of the symmetry of a?,

def def
we conclude 3=, 8'nj +n3 = —a®. Then t}* = ¢} +n} and tj = ¢ +n3 are

covariant, invariant with respect to G and fulfil the Cg-identities.
(e) Slavnov-Taylor identities

The Cg-identities contain distributions with one Q-vertex. Moreover,
their coordinates refer to external and inner vertices. By inserting the Cg-
identities in each other and integrating the inner vertices with g(z) = 1,
the Q-vertices can be eliminated and we obtain [18] the famous Slavnov-
Taylor identities [15, 16, 17], which express the usual gauge invariance. The
latter identities merely contain distributions of the physical theory (without
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Q-vertex) and their coordinates are external vertices rsp. momenta only.
However there is an exception: For the Cg-identities with an external pair
(%, ¥), the Q-vertex cannot be eliminated completely. But in this case also

Taylor [16] was forced to introduce the Q-vertex le/l (4.3) to formulate his

identities.

Note that the integration of the inner vertices with g(z) = 1 is infrared
dangerous. However, it seems [18] that no infrared divergences appear, if all
erternal momenta are off-shell. (If this would be wrong, the distributions
in the (usual) Slavnov-Taylor identities would be infrared divergent.)

5. Unitarity on the physical subspace

One important application of gauge invariance (3.12) is unitarity on the
physical subspace (chapter 5 of [14]). The following proof holds true for the
Yang-Mills theory of Section 4 and for QED (Section 3). However, in the
case of QED, we have to modify the definition of gauge invariance slightly,
because we will need Q% = 0 (4.14). The latter is wrong for @ defined by
(3.4), if u is an external C-number field. Therefore, similarly to the non-
abelian case, we let u be a free, scalar Fermi field. Due to the spin and
statistics theorem of Pauli [19], this requires the presence of a second free,
scalar Fermi field 4, and u, @ fulfil (4.8a). However, % does not interact at
all and u is only coupled to the matter current by le/l' In this way we get

a formulation of gauge invariance (3.12) in QED with Q% = 0.
(a) Pseudo-unitarity on the whole Fock space

We work in a positive definite Fock-Hilbert space 7. We quantize the
gauge field A% as four independent scalar fields [4] for each (fixed) colour a.
The spatial components are hermitian: A7+ = A7, j = 1,2,3. In order to
have a covariant commutator [A#, A¥] ~ g*¥, A® must be skew-hermitian

A0t = A0, (5.1)

We define another conjugation 'K’, by giving its action on the free field

operators
- T . . {
AOK et g0 g KAl gt g Il

phdhys, Ry, (5.2)

ak e _ g,
By inserting the explicit expressions (2.2) rsp. (4.2), (4.3),(4.10) and re-
membering (2.5) one easily verifies

Ti(2)X = Ty (2) = Ty () . (5.3)
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This is pseudo-unitarity S(¢)X = S(g)~! in first order. In the inductive
construction of the T},’s, this property can get lost in the distribution split-
ting only. By a symmetrization of an arbitrary splitting solution one obtains
a pseudo-unitary splitting solution [1, 4]. In other words: If one restricts
the normalization constants C, in (2.17) in a suitable way, pseuado-unitary
goes over from (5.3) to higher orders

Tn(z)X =Ty (2). (5.3a)

(b) The physical subspace Fypys

On the physical fields which are 9, ¥ and the transversal gauge bosons
A, the conjugation K’ (5.2) agrees with the adjoint. The unphysical fields

are: g, iiq, A2 and the longitudinal gauge bosons Aﬂ. Let N be the particle
number operator of the unphysical particles. Then we define the physical
subspace to be the kernel of N, i.e. the space without unphysical particles

Fohys = ker N, (5.4)

and we denote the orthogonal projector on Fppys (With respect to the pos-
itive definite scalar product) by Pyhys, €. Fphys = PphysF-

Now our gauge charge Q) (3.4), (4.6) enters the game. The orthogonal
projector on the kernel of () is called P

PF ¥ ker Q. (5.5)

Due to Q% = 0 (4.14) we know ran Q ‘C ker @, where ran Q is the range of
Q. More precisely the situation is the following [14]

ker Q = Fphys @ ran Q, Fohys L ran @, (5.6)

where the orthogonality is always with respect to the positive definite scalar
product.

(c) Unitarity on the physical subspace

By the expression ’unitarity on the physical subspace’ we mean the
heuristical equation

Jim PonysS(9)* PonysS(9) Pohys = Fohys - (5.7)
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We will sketch the proof [14] of the following perturbative version of (5.7)
Tx (X) = PohysTn(X)¥ Pohys +div, (58)

where ’div’ is a sum of divergences (similar to the r.h.s. of the definition

(3.12) of gauge invariance) and T} is the n-point distribution of the S-
matrix inverted on Fppys

(Pphyss(g) Pphys)—1 = Lphys

)
1 -
+ 2:1 a/d‘ixl...d‘ixn T,I:(:L‘l, ey ) g(21)..9(Zn) -
n—

(5.9)
In order to prove (5.8) we start with
- n
P (X) = 3 (-1
r=1
X 3" PpnysTny (X1) Pohys Ty (X2) Pohys--PohysTn, (Xr) Pohys » (5.10)

Pr

which is the usual inversion of a power series (see (2.5)-(2.6)). We want
to get rid of the inner projectors Pphys, i.€. the ones which are sandwiched
between two Ty, (X;). By means of gauge invariance [Q,Ty] = div, one can
prove

PynysTn(X) Pohys = PohysTn(X) P + divy (5.11)

and

PTo(X)P = Tn(X)P + divy . (5.12)

With (5.11) we first replace in (5.10) the inner Pppys by P’s (5.5), and then
eliminate these inner P’s by using (5.12). In both steps we get divergence
terms. It results

TP( Z 1) Z hys nl X1 Tn2(X2)...an(Xr)Pphys+diV3

r=1
physTn (X)Pphys +divz = PphysTn (X)KPphys + divs
physTn(X)+Pphys + divs, (5'13)

where we have inserted (2.5), pseudo-unitarity (5.3a) and used the fact that
the conjugation K’ agrees with the adjoint on Fppys.
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