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There is, at the present time, a renewal of interest (M. Pawlowski,
R. Raczka, Warsaw preprint SINS-IP/VIII/1995) in using massive non-
abelian vector boson theories without the unobserved Higgs particle. Such
theories violate renormalizability by power counting. They are never-
theless thought to be renormalizable. A review of this renormalizability
problem is made here in the light of gauge invariance.

PACS numbers: 11.15. Tk

1. Power counting

Let us briefly summarize the power counting technique. In a Feynman
graph integral the superficial degree of divergence is defined as the num-
ber of momenta in the numerator minus the number of momenta in the
denominator. If the vector boson propagator is of the form

) k,k
D;w(k) =755, [g;w - £ V} 3

k2 —m? 4+ e m?

the superficial degree of divergence is given by
1
w=4-bg - §fE - zi:ni[g(i)] +2br,v,

where bg, fg are respectively the number of external bosonic and fermionic
lines, b7 v is the number of internal vector boson lines and [g(;] is the mass
dimension of the various coupling constants occuring n; times in the graph.
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In the case of dimensionless coupling constants, which will be the case
considered here, w increases with the number of vector boson internal lines
and the theory is not renormalizable by power counting. This does not mean
that the theory is not renormalizable at all. Indeed,the Dyson theorem [2]
establishing the convergence of a graph when this graph and all its subgraphs
are superficially convergent involves the superficial convergence only as a
sufficient condition. It may happen that the unwanted divergences in a
graph cancel out.

2. Gauge theories

Gauge theories offer the possibility to change the propagator owing to
the freedom of the gauge choice. One must however be careful with the
gauge choice because this notion has not the same meaning for a mathe-
matician or a physicist. Let us therefore review the various notions of gauge
fixing used by physicists.

2.1. The gauge choice in a simple example

In order to be as clear as possible, let us consider the simplest gauge
theory in the world [3]. It is given by the Lagrangian

L=1i%+1(5-2)?
which is invariant under time-dependent translations along the y-axis
y —y+bE), z— z+b(t).

According to Dirac theory of constraints [4], there are two constraints that
we write

Pp:=0 = py=0 (pyzg)—z)

in order to recall that the secondary constraint results from the primary one
in the Hamiltonian formalism.

These constraints are first class. This means that they involve different
degrees of freedom and therefore that the two pairs of variables (y, py) and
(z,p,) are unphysical. One can classify the gauge conditions according to
the number of unphysical degrees of freedom they involve.

In class I gauges, only physical degrees of freedom are involved. The
simplest but not the unique gauge condition of this type is y = 0. By time
derivation, it implies z = 0.
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For mathematicians, it is the unique way of fixing a gauge. For people
working in the theory of constrained systems, this is known as the reduced
phase space technic. Elementary particle physicists call it unitary gauge.
One should emphasize that, in order to be of class I, a gauge condition
must have Poisson brackets with the secondary constraint which are non
vanishing. Morever, they should not involve the variables in order not to
generate Gribov ambiguities. In our example, the class I gauge condition
we take leads to the effective Lagrangian
Leg = 342

which shows that the theory describes the free motion of a unit mass particle
along a line.

A class II gauge works with the y degree of freedom in addition to the
physical one. It can be realized through the gauge condition z = 0 and the
effective Lagrangian in this gauge is

1:2 ) 1,2
Lesr = 52° + 397

In order to recover the physical theory, the secondary constraint is, in quan-
tum theory, imposed on states

If such a condition works for bound state problems, it does not garantee that
unphysical states do not contribute as intermediate states in perturbative
expansion.

Instead of eliminating any unphysical degree of freedom, a class III
gauge condition gives a time evolution to unphysical degrees of freedom. It
can be realized here as 7 = 0. The presence of two unphysical degrees of
freedom can be an advantage because their contributions to intermediate
states can mutually cancel. Such a cancellation involves an indefinite metric
and is garanted by the BRST formalism [5].

2.2. Choosing a gauge in Mazwell and Yang-Mills theories
The typical class I gauge in Maxwell theory is the Coulomb gauge
OrAr =10.
If it has the advantage of involving only physical degrees of freedom, it is not

useful in perturbative field theory because the theory is non-local. Moreover,
the lack of explicit covariance leads to complications in the calculations.
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In Yang-Mills theory, the problem is even more crucial. Gribov am-
biguities [6] occur. It can even be shown (Singer theorem [7] that if one
compactifies the Minkowski space, a global section cannot be found. This
means that no class I gauge condition can be found. These problems can
be formulated in a simple way by noting that the Poisson brackets

{0k Ar(z), D'TI*(y) }2p=yo = Ok D*6) (& — )

are field dependent and that the operator d;D¥ is not invertible.
One can also note that, if one tries to write the Coulomb gauge condition
in a formally covariant form with the help of a fixed four-vector =, it reads

n-0n-A—-—90-A=290.

In any frame different from those where n = (1,0, 0, 0), it is not class I but
class II1. One can say that the frame in which the Coulomb gauge condition
is O Ax = 0 is singular [8]. In this case, quantization in a singular frame
leads to various troubles and should be avoided.

A typical class II gauge is the temporal gauge

Ap=0.

If it is useful in the search of classical solutions, though not explicitly co-
variant, in perturbative expansions, it is hard to find a propagator which is
such that the unphysical longitudinal photon or gluon does not propagate.
This problem is however outside the topics covered by this lecture.

The best representatives of class III gauges in Maxwell or Yang-Mills
theories are the relativistic gauges

0, A* =aS.

They are manifestly covariant but involve unphysical degrees of freedom.
An indefinite metric is fortunately present and it is well know since a long
time how the cancellation occur. This is the Gupta-Bleuler formalism [9] in
QED. It has been generalized to theories by the BRST formalism.

2.8. The BRST formalism

The BRST formalism is now a classical stuff in textbooks on QCD. Let
us therefore only summarize the main steps. It rests on the existence of
the BRST symmetry [10] which is a global symmetry associated with gauge
invariance and which involves nilpotent transformations. Starting from the
gauge transformations in Yang—Mills theory (internal symmetry indices are
understood)

0A, = D,b(z),
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one sets

O(z) = c(z)dA,

where ¢, 6\ are objects of odd Grassmann parity. c(z) is called the ghost
field [15] while § does not depend on the space-time point. It is a global
parameter. Imposing the nilpotency 6(D,c) = 0 leads to the transformation
law of the ghost fields

bc=12cx cA.

The class IIT gauge condition is introduced in the Lagrangian through a
Lagrange multiplier field S(z) which is invariant under the BRST transfor-
mation 45 = 0. The Lagrangian becomes

L=-%FuF* - 9,SA* — 14 S%.

It is not invariant under BRST transformations

0L =—-0,5DFcéA.
In order to restore the invariance, one adds the ghost term

Lgp = dyc DV e
with the antighost field ¢(z) submitted to the transformation
de=-Sd0\.
The total Lagrangian
L=—Fu,F* - 9,SA* - }aS* 4+ 9,éD"c

is BRST invariant. Through Noether theorem, a conserved nilpotent charge,

the BRST charge Q g is associated with this invariance. The physical states
are the cohomology classes of this operator i.e.

QBlwphys >=0,
t‘?{,hys > = W’phys > +QB|Y > .
In perturbation theory, BRST invariance implies Ward-Takahashi

~Slavnov-Taylor identities {11]. They assure unitarity (only physical states
contribute) and renormalizability of the theory.
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3. Massive vector boson theories
3.1. Abelian vector boson

Let us now try to apply these ideas on gauge theories to massive vector
bosons. The simplest case is of course the abelian vector boson. It is usually
described by the Proca Lagrangian

L=-1(8,4, —8,4,)% + lm24, A"

for which the propagator is

i kky
Dy (k) = — L ]

k2 —m? + de [g’“’_ m?2

It is not renormalizable by power counting. It is however known since more
than twenty years that the theory is nevertheless renormalizable when it is
coupled to a conserved current. It is possible to formulate this fact by using
a gauge theory.

It is usually claimed in almost all textbooks that the presence of a mass
term breaks gauge invariance. This allegation is wrong because it does not
take into account all the features of a gauge theory. One has seen that a
gauge theory involves two unphysical degrees of freedom, those constrained
by the first class constraints. A massive vector boson has three physical
polarizations. Adding the two gauge degrees of freedom implies that a
gauge theory of the massive vector boson involves five fields which can be
gathered into a four-vector and a scalar. It is then an easy task to build up
a gauge invariant Lagrangian [12]. Indeed,

L=-3F,,F* + L(mA, - 0,K)*
is invariant under
Ay — A,+0,0, K— K+mb.
The constraint analysis of this theory leads to
Mo=0 = o N*+mI=0,

where I1# and II are the canonical momenta associated respectively with A4,
and K. These two constraints are first class as expected in a gauge theory.

In order to quantize the theory, one chooses a gauge. Here a class I
relativistic gauge can be found. Indeed, if one chooses as gauge condition
K =0, it implies by time derivation Il + m A9 = 0 and if m # 0, K, Ap
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and their canonically conjugate momenta can be eliminated. The effective
Lagrangian resulting from this gauge choice is the Proca Lagrangian which
is, of course, no longer gauge invariant because it is the Lagrangian in a
given gauge.

Like in the massless case, let us now try to find a class III gauge in
which the propagator does not exhibit the bad ultra-violet behaviour. This
job is not new because it was already done by Stueckelberg [13]. Many
gauge choices lead to the Stueckelberg formalism. The simplest one is

OpA' + amK = aS.

It is a class III gauge condition because it gives an evolution to Ag. Such a
gauge condition is realized with the Lagrangian

L= Liny + S(@,A* + amK) — 1aS?,

where S is a Lagrange multiplier.

After elimination of the S field with the help of its field equation which
is nothing other than the gauge condition, the field equations of this gauge
are

6”Fuu + m2Au + -(11—8”8,,.4” =Ju,

(0,0* + am*)K =0.

Interactions with a matter field are introduced through the current j, which
is conserved in virtue of gauge invariance. One notes that, even in the
presence of interactions, the fifth field K is a free field which is therefore
only a spectator in the game.

The propagator in this gauge is

i a— 1kuk,

Dyuw (k) = k2 —m2 +4e [g,“, k(2 - am2#+ i€
Because the gauge condition is linear, the vertices of the theory are un-
changed and this gauge is renormalizable. The choice a = 1, the Feynman
gauge, eliminate the k,k, term, a fact leading to a further simplification.

It remains to prove that the theory is unitary in this gauge. For, it is
sufficient to find a nilpotent conserved BRST operator. Like in the massless
case, the BRST transform

bA, = 0ucé), K =mcéX bc=0, 85=0, dc=-54)\

which are obviously nilpotent lead to uncoupled Faddeev—Popov ghosts [15].
The Lagrangian



2448 A. BURNEL

LZ—%FPVFW‘*‘%(T”AW‘%K)Z—3,15A“+amSK—%a52+3u66“c—am26c

is indeed invariant under these BRST transformations.

Though non-renormalizable by power counting, the Proca Lagrangian
is renormalizable when coupled to a conserved current because it is gauge
equivalent to a renormalizable description, the Stueckelberg formalism.

3.2. Abelian Higgs mechanism

It can be shown that when the mass is introduced with the help of the
Higgs mechanism [14], the conclusion is similar. Indeed, the Lagrangian

L= ~FuF" + §Du6aD 6% — §6a6% — §($a6%)?,
where ¢ < 0 and D*¢* = 0*¢ + eA“e"ﬂgbﬁ is invariant under

bo — Po — ew(T)eqgd?
Ay, — A+ 0w

Setting
¢1 = pcosl, ¢ =psind

the Lagrangian can be rewritten as
L= —1F ' 1 10,00%p + 192 (0,0 - eA,))? — %92 — 2p*.
The constraints are
=0 = 9 NFtelly=0.

Again the gauge choice 6 = 0 is class I. It leads to the unitary gauge where
only physical degrees of freedom are involved. The mass of the vector boson
is generated through the non-vanishing of the minimum of the p-field. This
gauge is again not renormalizable by power counting.

Again, the class I1I gauge condition d,A* = aS leads to a renormaliz-
able gauge which is also unitary if uncoupled Faddeev-Popov are introduced.

It can be noted that the limit of infinite Higgs mass leads to the previous
theory.

3.3. Non-abelian Higgs mechanism

It is well known that the above argumentation can be extended to the
non-abelian case in presence of the Higgs mechnism. Because of lack of
space, the calcultaions will not be elaborated here.



Renormalization of Gauge Field Theories 2449
3.4. Non-abelian massive vector boson without Higgs

Let us now try to extend the argumentation developped here above to
the non-abelian theory. In order not to have to take care with the position
of internal symmetry indices, one assumes that the global gauge group is
compact. The first point is to build up a gauge invariant Lagrangian [16].
For, the mass term 1/2m2(Af‘1)2 must be made invariant under

AL — A% + (D,0)"

with the help of an additional scalar field K®. The most general transfor-
mation on the K¢ field can be written

Ko(z) — Kq(z)+ Lgy60°.

On the other hand, four possible non-abelian generalizations of the combina-
tion m A, — 0, K are a priori possible. One can check that the combinations
mAf —9,K% mA% — (D,K)* and m A% — N*®(z)(D,K), do not work.
Only

2m A% — N°(2)9,K,)?
can be made invariant. This invariance leads to conditions on the unknow
functions of the K¢ fields, N, and K2°

NeL, = méy ,

NG Ly + NEO Ly, = g f4, NS,
where
9
T 0K,
A solution of these equations can be obtained in a perturbative way. It
reads

a

Ny =[F (%KCTC)]: ,
where

E§) = 2_:0 ———-——(:f_)l)! .

The constraint analysis of this Lagrangian leads to the chain
=0 = (D*11%), +1°L;y, =0,

where 1T} and Il are the momenta canonically conjugate to Aj and Kb
respectively.
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The class | gauge condition
Ko=0 == m?A%+ 1L, =0
is such that

{Ka(z), (DFI%),(y) + D) Lep (W) Y BT = Labd(F — )
~ Mo (& — 1) -

so that, if m # 0, it is a good class I gauge for which the effective Lagrangian
is

Lo = —LF2,FF + im? A% AL .
Il leads to the vector boson propagator
by 1§t kuk,
Do (k) = TR mEtae |9 Tz

which is non-renormalizable by power counting.

To the question “Is it possible to find a class III gauge which is renor-
malizable by power counting ?”, the answer is here dramatically “No” be-
cause the K field is, when K # 0, present in N and N introduces non-
renormalizable couplings.

Any attempt to generalize the Stueckelberg formalism without non-
renormalizable couplings leads to a formalism which cannot be proved to be
unitary [16]. Either no BRST symmetry can be found in the physical sector
or a BRST symmetry can be found, it is not nilpotent. This fact is obvious
because any class 11l gauge will always involve the K field. Unfortunately
it does not decouple here.

As a conclusion, it is impossible to find a formulation of non-abelian
vector boson theories without Higgs boson which is renormalizable by power
counting. Let us emphasize again that this does not prove that such theo-
ries are not renormalizable at all. Because the perturbative expansion is a
linearization of a theory which is governed by an evolution operator which
is hyperbolic either with or without a mass term, one does not see why a
mass term would dramatically break the formalism. Therefore massive vec-
tor theories without Higgs are expected to be renormalizable [18] but not
by power counting.

An other argument against their perturbative use is that they are not
unitary order by order in the perturbative expansion [17]. Again this is not
a prove that they are not unitary at all and, in fact, they are.

I wish to thank Prof. R. Raczka for his invitation to this stimulating
meeting.
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