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In these lectures we apply the method of causal perturbation theory to
Yang-Mills theories with massive vector bosons. We show how the differ-
ential property of the BRS-charge leads to the introduction of scalar gauge
fields. The general relationship between gauge invariance and unitarity is
pointed out in detail by using Krein space techniques.

PACS numbers: 11.15. Bt

1. Introduction

Recently, massless Yang—Mills theory has been successfully studied in
the framework of causal perturbation theory [1-4]. This work has been
rewied by M. Duetsch at this conference. Here we study the application of
causal peturbation theory to massive Yang- Mills theories. A very detailed
presentation of the material covered in these lecture notes is given in [26].

Let us first briefly summarize some essential points in the construction
of massless Yang—Mills theories. The central object in causal perturbation
theory is the causal S-matrix

S[g]=1+Z/d4x1---d4$nT(")(x1,---,xn}, (1'1)
n=1

T specifies the theory. For massless Yang-Mills theories it is given by

T (z) def —iefape{s : Aua A FFY = Apaupdtise 1} (z), (1.2)
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e is the coupling constant and f,p. are the structure constants of a non-
abelian semi-simple compact gauge group G. A} are the free gauge fields,
defined by .

9-0AL(x) =0, [Af(z), Af(y)]- =18asg" " Do(z —y),  (1.3)

where Dy is the Pauli-Jordan commutation function for m = 0. F!" are
the free field strenghts:

Frv i gu gy _ gvar (1.4)
and u, and 4%, are the free ghost fields:
0 0ua(c) = - Dita(®) =0, {ua(w),is(y)}+ = —ibasDo(z —4), (1.5)

{ua(2), up(¥) }+ = {@a(@), Gs(y)}+ = 0. (1.6)
A detailed discussion of the algebraic properties of these ghost fields can be
found in [5].
Differentiating (1.3) we get
[0, A% (2), 0 A} (y)]- =0,
[0uAL (), FfAy)]-=0.

Despite their simplicity, these equations have important consequences. For,
let us consider the operator

def

Q= / B3 7 (9, A% (2)) o ua (). (1.9)

rg=const.
Using the Leibnitz rule for graded algebras gives

F=3QQu=5 [ ¢7 [ &

zg=const. yg=const.
x {[0u AL (2), 0, A% ()] 8,0 Oy (va(2)us(v)
+ (B0 A (1)0p A% (2)) 0,0 Do {ua(e), ()} | =0.  (110)

Thus Egs. (1.6), (1.7) make @ a differential operator in the sense of
homological algebra. This allows for standard homological notions [6,7]: Let
F = {F} be the field algebra consisting of the polynomials in the (smeared)
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gauge and ghost fields and their Wick powers. Consider the ghost charge
operator [5]
def

Q,% / BF : g (z) o ua(e) : (1.11)

rg=const.

and the corresponding derivation &4 in F

5,FQ,, F1-. (1.12)
We say an operator F has ghost charge z if
O F = zF. (1.13)

Since Qg4 has integer spectrum [5] we have z € Z. The operators F, with
ghost charge z form the subspace F,, and we obviously have

F=p F- (1.14)

z€Z
which makes F a Z-graded algebra. Consider the unitary operator [5]

E¥ (1)@ E2=1. (1.15)

It induces the canonical involution w in F by

wFE EFE, W'=1. (1.16)

We define the bosonic part F and the fermionic part F of an operator F

by

def
Fyp = 0 Hw)F = wFp = & Fyy (1.17)

and the graded bracket of two operators F and G by

de
[F,G] = [Fy+Ff,Gp+Gy] =f[Fb,Gb]~+[Fb,Gf]—+[Ff,Gb]——+{Ff7GEf}1w§)-
1.
We also define on F the operator dg by

doF¥Q, F]= QF — (wF)Q. (1.19)
This is a differential operator:

dy =0, = {Q,[Q Fil-}+ =[Q,{Q, Fs}+]-=0 (1.20)
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and an antiderivation with respect to w:

dg(FG) = (dgF)G + (wF)(doG) . (1.21)
The commutator relation
[Q4,Q] = -Q (1.22)
implies
[5g,dQ]_ = —dQ, = dQ]'—z CF. (1.‘23)

i.e. dg is a homogeneous homomorphism of degree (—1) over F. This
implies in particular that it anticommutes with the canonical involution:

{dg,w}+ =0. (1.24)

We conclude that the quadruplet {F,d,,w,dg} fits well into the definition
of a graded differential algebra [6].
Let us study the action of dg on F more explicitly. We find

dgAl(z) = 10" u,.(z), (1.25)
doue(z) =0, dgia(r) = —i0,AL(z). (1.26)

Egs. (1.7), (1.8) immediately give two gauge invariants:
dQi AL (z) =dgFlY () =0. (1.27)

The above actions of dg on F may be called free or asymptotic BRS
variations since the (formally defined) full BRS variations of interacting
fields [7] reduce to them in the absence of interaction. It is exactly these
free varations we are intersted in when.applying causal perturbation theory,
since there we are looking for symmetries of the S-matrix which is defined
in the Hilbert-Fock space H of free asymptotic fields. The algebra and
homology of free BRS operators is well studied in [7, 8]. The variations
induced by dg are also called operator valued gauge transformations in
[1] since they emerge from the usual asymptotic gauge variations in QED
[12] by replacing the gauge function y with the ghost operator u. We will
often simply call this asymptotic BRS variations gauge variations and their
invariants gauge invariants.

The interaction (1.2) is gauge invariant, i.e. we have

doTMW (2) =8, TW#(z), TV (2) % ¢ fape : ua{Aya FF” + LuydPii} : (2).

(1.28)
The quintessence of causal perturbation theory is that all higher terms
T(™ n > 2in (1.1) are determined from T(}) by Poincaré invariance and
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causality [9-12]. This determination is unique up to some (finite!) normal-
ization constants, which can be determined by the re(%uirement of symme-
tries and (finitely many) normalization conditions. 7{™) is given symboli-
cally by

T2y, 2y) = OITM (z1) - - T ()], (1.29)

where © means the time ordered product. This, however, cannot be con-
structed by multiplying with step functions, since this would lead to the
well known UV-divergences[9, 10]. Instead one has to use the method of
distribution splitting, developed by Epstein and Glaser [11] and applied to
QED, for example, by Scharf [12]. Using exactly this construction Duetsch
et al. [1-4] have shown that the Yang-Mills theory specified by (1.2) is
gauge invariant in all orders, i.e. the following equations hold true:

doT™ (21, 24)] = E%T("){”(m, e Th), (1.30)
=1

TOE @y, ) O[T (21) - - Ok () TD ()], (1.31)

Thus the gauge variation of the T(") are total divergences. One would like
to conclude from this the more convential form of gauge invariance:

lim1 dgSlg]=0. (1.32)
g—)

While this adabatic limit is well controlled in massive theories [13] the situa-
tion is far more difficult in massless theories, where it generally fails to exist
in the S-matrix elements [12, 14]. The strength of Eq. (1.30) is to give a for-
mulation of gauge invariance which is completely independent of the infrared
problems encountered when passing to the adiabatic limit. The importance
of the gauge invariance (1.30) lies in the fact that it enables one to proof
the unitary of the physical S-matrix Sphys defined in the physical subspace
Hphys of the total Hilbert-Fock space H. The former one can be defined as
the cohomology space of Q) or, equivalently, as {KerQ} &, {RanQ}.

The interaction 71 (z) in (1.2) admits gauge invariant generalizations
[26]. A particular symmetric one is

Ts(l) — iefabc : (*‘ %AuaAII;FCl“I —_ %Auan ap' ﬂc) . (1-33)

doTM =0, TMu, T = efupe : ua (AVbFC“”+%Ag‘8,,AZ+%ub aH u) :
(1.34)
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It is invariant under the ghost charge conjugation Cy. This unitary operator
reflects the gauge charge:

CyQeC; ' =-Qy (1.35)
and acts on the ghost fields in the following way:

Cytia(2)C7Y = tiig(z), Cyiia(z)Cy

p Sl =g (). (1.36)

This implies indeed:
CyTC; =T. (1.37)

Ts(l) is actually not only invariant under ghost charge conjugation; it is
invariant under SU(1, 1) - “rotations” in ghost space, too [5].

Let us also remember how matter fields couple to massless Yang-Mills
fields [15]: They form conserved currents j5 whose coupling to the gauge
fields is given by:

Tl(nla)tter = iejt‘ztA/,ta - (138)
This coupling is gauge invariant:
1 .
QT Drier = Op{—ilua} - (1.39)

Here current conversation: 8,74 = 0 has been used: Nonconserved currents
cannot couple to massless Yang—Mills fields in a gauge invariant way.

The lectures at hand aim at the construction of Yang-Mills theories
with massive gauge (and ghost) fields. This is usally done via the Higgs
mechanism which is known to give a renormalizable, gauge invariant, and
unitary perturbation series. While not_questioning the validity of this re-
sult we here want to develop a different approach. This is for the following
reason: The Higgs mechanism is mainly based on a classical picture. It
extensively uses gauge transformations of interacting classical fields. Also
the so called “vacuum expectation value” of the Higgs field is nothing but
the minimum of the classical Energy as a functional of the field configura-
tions. Causal perturbation theory, on the other hand, does not take any
reference to classical fields and classical gauge transformations since it lives
in the space of (free) quantized fields from the very beginning. Instead,
(asymptotic) BRS-invariance and nilpotency of the BRS-charge are the cor-
nerstones of the theory. So we will base our discussion of massive Yang-Mills
theory on these fundaments.
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2. Massive Yang—Mills fields and the algebraic
introduction of scalar gauge fields

To construct a theory of massive Yang-Mills fields we have to use free
asymptotic massive gauge and ghost fields:

(0-04+ MY, (z)=0, (2.1)

(0-0+ MHA*(2)=(0 -3+ M?)ug(z)=
-y, (2.2)

[AG (= ) (y)] = 18a59"" Dy (z
{wa(@), w(y)}+ = —16apDpr (2 — ), {ua(2), us(y)}+
= {ta(2), w(y)}+ =0, (2.3)

where Dyy, the Pauli-Jordan commutation function for mass M > 0, ap-
pears. The free massive field strenghts 4" are defined as in (1.4). We have
given all coloured fields the same mass, since we do not discuss breaking
of the global group G here, while the ghost and the gauge fields have the
same mass because they transform among each other under gauge transfor-
mations.

The nonvanishing of the mass M has simple but far reaching conse-
quences: While (1.8) remains true,

[0p A% (2), F* ()]~ = 0. (24)
(1.7) is altered to
(0,48 (2), 0, A} ()]~ = iM*8a3 Dy (z — y) - (2:5)

The nonvanishing of this commutator forbids us to define the gauge charge
in the same way as in the massless case. For, the operator

def - a .
0 [ P70 d o) (2.6)
rgp=const.
is not a differential operator:

1 ].
2 _ 3= 3~
= I = d M) d

rg=const. yp=const.
x { (04 A% (2), 0, A (4)] - 0,0 8,0 (e (2) s (1))
+ (B0 AY (10,44 (2)) 00 Oy {ua(e) ()} ) (27)
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and this is due to the nonvanishing commutator (2.5) unequal to zero. In-
stead it is given by

¢ =iM*Q, , Q.Y / BFug(2) O ualz).  (2.8)

rp=const.

The charge @, has been discussed in the framework of the ghost charge
algebra in [5]. The condition that the gauge (:=BRS) charge has vanishing
square is, however, indispensable. For, as will be shown in the next chapter,
it is one of the cornerstones in the proof of unitarity of the physical S-matrix.
Thus ¢ cannot be the right choice.

To construct a gauge operator with vanishing square we have to replace
the divergences of the Yang—Mills fields by fields which commute with them-
selves. This is done in the following way: We introduce dim G hermitean
free quantized Klein-Gordon fields hq(z) which are, like the gauge fields
A% and the ghosts fields u, and g, in the adjoint representation of G and
which have the same mass as these fields. They obey

(0-0+ M*)hq(z) =0, [ha(z), he(y)]= — 625D pr(z — y) - (2.9)

Their commutuator has the opposite sign to (2.5). It follows that the fields
0, A% (z) + Mh,(z) have vanishing commutators with themselves:

[0uA% (@) + Mha(2), 0, (4y) + Mhy(y)]—-=0.  (2.10)
This suggests the following definition for Q:
Q4! / P (0, AP () + Mha(z)) 9o ta(z) . (2.11)
rg=const.
For, this implies

1 .
Q" =3 / d*F / d*i

rg=const. yg=const.

x { (04 Al (2) + Mha(c), 0, A (y) + Mhy(y))- 8,0 Oy (ta(x) ua(y)
+ (9, AL (y) + Mhy(y)) (0, AL (2)
+ Mha(2)) 950 yo{ua(e), up(v) }+ | = 0 (2.12)

i.e. (§ is indeed an admissible gauge charge.
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The gauge variations of the elementary fields are given by

dgAl(z) = 10" us(z), dgha(z) = iMug(z),
doua(z) =0, dgia(z) = —i(0, A% (z) + Mha(z)) . (2.13)

Consequently,

dQd, Ak (z) = —iM?u4(z), doFH (z) = dg(0,A%(z) + Mhe(z)) =0 )
(2.14
We see that the scalar fields h,(z) are effected by the gauge variation dg
and that they appear in the gauge variations of other fields. Hence it is
appropriate to call them scalar gauge fields. We will see in chapter six that
these fields are unphysical, i.e. their projections onto Hppys vanish.
We now have to study the possible gauge invariant interactions T (z).
This has been done in great generality in [26]. As in the massless case,

different choiches for T(!)(z) are possible. The most symmetric one is given
by:

T =def,. { — L AL A FEY — 2 Apauy 0% e+ 1 Auahy OF hc} , (2.15)

The last term describes the interaction of the scalar gauge fields h, with the
Yang-Mills fields A%. This interaction is a consequence of gauge invariance,
which is expressed as

dQT(l)zauT(l)“,
T p=cfape : ta{ ApFE” + Suy 0% e + 1AL, AL — Lhy 0" h. | -
(2.16)

Gauge invariance also determines the interaction of the matter currents j5

Tr(nla.tter = {8 Apa + M7 0y Il ha } dQTr(nla?tter =0y (~J3wa) - (217)
Let us interpret this result. In the case of conserved currents the mat-

ter fields couple only to the Yang-Mills fields and this interaction has the
same form as the coupling of matter fields to massless Yang-Mills fields
[15]. More interesting is the case of nonconserved currents: There the mat-
ter fields couple to the scalar gauge fields, too. We conclude that the scalar
gauge fields are a very important part of the whole theory: They allow a
consistent treatment of massive Yang-Mills fields and of nonconserved cur-
rents at the same time. We also notice that the coupling of the nonconseved
currents to the scalar gauge fields is proportional to the inverse mass of the
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gauge fields. That is only possible if this mass does not vanish, which is in
striking agreement with physical reality: The conserved strong vector cur-
rents couple to massless (though confined) gluons while the nonconserved
weak axial currents couple to the massive weak bosons!

We now have carefully studied the interactions of quantized Yang-Mills
fields, ghost fields, scalar gauge fields, and matter fields. Though only
working in first order T'! we have discovered very interesting structures. To
complete the theory, we would have to study gauge invariance in all orders,
Eq. (1.30). Before we take on this Herculean task we like to know what we
get if we succeed. It is the unitarity of Sppys. This is shown in the next
chapter.

3. Gauge invariance and unitarity of the physical S-matrix

Unitarity of the physical S-matrix in the case of massless Yang—-Mills
fields was proven in [4]. Here we treat the massive case, i.e. the interaction
constructed in the two preceding chapters.

Let us begin with discussing the Krein structure [5, 8, 16, 17] in the
Hilbert-Fock space of the gauge fields. The massive Yang-Mills fields are
quantized as

3
At = Y [k {Barattye* 4 e, (et} (3
A=0

k is always on the mass shell M:

k% ko, K) , ko & +[(R)? + M2)2,

def &k 1y def 3 X

= — kY€ &3 (k- & 3.2
b sy o DUk = k) ' 2ko(2m) (F-F) (3.2)

I], “ . .. . .
¢ are four polarisation vectors satisfying

def k#* Y
Gg(k) =M g,,,,e’;(k)en(k) =Gk
v 14 kl‘k"
Zfﬁ(k)ex(k) = - [g“ ~ 2 ] ,
A=1
3
D" gk (k)ek(k) = g, h(k) = el (k) (3.3)
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axq(k) are 4(dim G) standard (distributional) bosonic annihilation opera-
tors [12,17,18,19] acting in the Hilbert-Fock space

Ha= 6_90 {v {éo d:élG [L*(M, dk)])\,a}} (3.4)

which is equipped with the standard positive scalar product (g,b) 4. The
operator O denotes the adjoint of O with respect to this scalar product.
The Fock space operators fulfil

[ax,q(k), a:,b(k’)]._ = Sxnbapd(k — k') . (3.5)
The number operators for a given polarization A are defined by

def
Ny = /dkam JB)acny o (k). (3.6)

The Krein operator J4 in H 4 [5, 8, 16, 17] is defined by

Ja (=)Mo, (3.7)

It defines a pseudo-conjugation O® [4, 5, 12, 16, 17] of an operator O by

oF ¥l .0t 74, (3.8)

Sometimes the form < a,b > 4:= (g,J4b)a is called an indefinite scalar
product. We will not follow this terminology here. The word orthogonal
(hermitean, unitary) will always mean orthogonal (hermitean, unitary) with
respect to the positive inner product. Otherwise we say pseudo-orthogonal
(pseudo-hermitean, pseudo-unitary).

The gauge invariant physical Yang-Mills fields Appys have only the
three transversal polarisations:

(Aphys /dk 6 k)a)\ a( ) ikz+€l;(k)a-)f\-,a(k)e_ikx} y
doAphys = 0 (3.9)

and the commutator

[(Aphys)4(z), (Aphys)s (¥)]- = — [guu + 3;8;] Sab(—1)Dm(z —y) . (3.10)
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The unphysical Yang-Mills A,yphys fields are given by

def -1
(Aunphys) () S AL (@) = (Apye)h(a) = T3040, 4%(@) . (3.11)
The following conjugation properties are easily checked:

_ 4K _ 4K _ at — Ak - +
A=A" | Aphys = Aphys = Aphys » Aunphys = Aunphys - "AunphyS'
(3.12)
We also note

Fiv ok AY — 9% A = 0 (Apnys)’ — 0" (Aphys)t = ()1 = (Fi) T,
. (3.13)
By AE = 0, (Aunphys)? = (8,44 F = — (8,417 . (3.14)

The representation of the proper Poincaré group Pl in H 4 is defined
by

Uala,A)A*(2)Us(a,A) "1 = A* A% (Az+a) , Ua(a,A)R24 = 24, (3.15)
where {24 is the vacuum in H 4. It is pseudo-unitary:
Uala, NUa(a, ) =1 (3.16)
and, since it commutes with J4:
JaUx(a, A)J 4 = Uxla, A) (3.17)

unitary as well:
Uala, YU y(a, A)T =1. (3.18)

The last two equations fail in the massless case where € (k) cannot be chosen
covariantly.
Next we come to the hermitean scalar gauge fields which are quantized

in the usual way:
ha(z) = / dk {b,,(k)e—"“ + b;(k)e"kx} = h}(z) (3.19)

as operators in the Hilbert-Fock space

Hy = é {\n/ {di?éc [LQ(M,dk)]a}} (3.20)

n=0 a=1
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with standard positive scalar product (a,b),. We have

[Ba(K), b (K'))= = Sa8(k — k). (3.21)
We do not introduce an additional Krein structure in Hy. This is equivalent

to saying that Jj, = 1 and that the two conjugations agree over Hj: OF =
O7. The same is true for the two forms over Hj: < a,b >p= (a,b)p. The

representation of Pl in Hy: Uy (a, A) is unitary. The total number of scalar
gauge particles is given by

Ny = / dk bF (k)bg (k) . (3.22)

Now we consider the ghost fields. They have been extensively studied

in [5]. So we summarize only the most important formulae here. The ghost
fields

ug(z) = /dk {cl,a(l::)e_i"':I + cfl’a(k)eikz} ,
g (2) = /dk { = ecralbe™ 4 of (e (3.23)

are defined in the Hilbert—Fock space

- Bpla T )] o

e
n=0 n

with positive inner product (@,b)y. The index ¢ distinguishes ghost from
antighost particles. We have

{eia(k), €f (KN} = 8ij8a8(k — ¥') . (3.25)
The Krein operator in Hy is defined by
Jg =Nl (3.26)
Here N, denotes the total number of ghost and antighost particles:
N, = / dhs cF o (k)i a () (3.27)

while I is defined by

r= /dk {cF (kye_1(k) + ¢y (R)er (k) } . (3.28)
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Again one considers the indefinite form < a,b >g4:= (@, Jyb) and defines
O¥ = J,0%J,. The representation of Pl in Hg: Uy(a, A) is unitary and,
since it commutes with Jg, pseudo-unitary as well [5].

The scalar and Dirac matter fields are quantized in their own Hilbert—
Fock space Hpatter in the usual way. The scalar product in this space is
again positive and the Krein structure Jyatter is the unit operator. The
representation Umatter(a, A) is unitary.

The Hilbert space H of the total system is the tensor-product of the
spaces above:

H:HA®Hh®Hg®Hmatter- (3'29)

The Krein operator and the representation of Pl factorize accordingly:
J:JA®Jh®Jg®Jmatter7 (330)
U((l, A) = UA((Z, A) ® Uh (a1 A) ® Ug (a7 A) @ Umatter(a’ A) : (331)

This U is unitary and pseudo-unitary, since it commutes with J. The posi-
tive scalar product in H is denoted by (g,b) and ||a|| := (g, @), < a,b >:=
(a, Jb), OK = JotJ.

Our next task is to study more closely the gauge charge Q It is expressed
in momentum space as

Q=M [ dik {ct o (8) lao,a®) + 3500 = [af o 1) + 63 (B)] 1,08}
(3.32)
Its adjoint Q7 is given by:

ot =M / dk { o (k) [~a0,0(k) + iba ()] + [0 4 (k) — b ()] c-1,0(k) }
(3.33)
Q and Q7 are both pseudo-hermitean Pl invarinat differential operators:

Q@*=(@")*=0, Q=QF, (@")" =Q", U(e, HQPU(a,2) 7' =QD.

(3.34)

We now follow Razumov and Rybkin [8] who showed that the physical

Hilbert space of a gauge theory with quadratic BRS charge () can be defined
as

Hphys def yernel {Q,Q%}+. (3.35)

Razumov showed the equivalence of this definition with the more conven-
tional one using equivalent classes in semidefinite metric spaces [7]. Razu-
movs definition is advantageous because it realizes Hp}ys as a concrete sub-
space of the Hilbert space H which has a clear particle interpretation. To
work this out we only have to calculate the above anticommutator. We find:

{Q,QT}4+ = 2[No + Ny + Ng] &' 2N (3.36)
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i.e. N is the number of longitudinal Yang-Mills fields plus the number of
scalar gauge fields plus the number of ghost and antighost particles. Thus all
these particles are unphysical. The only physical particles are the transverse
quanta of the Yang-Mills fields and the matter particles.

The spectrum of the number operator N are the natural numbers and 0:

o0
N=Y npP,, (3.37)

where P, is the orthogonal projector on the subspace with n unphysical
particles. (3.35) means that the orthogonal projector on Hppys is given by
Pot

Hphys = PoH . (3.38)

The operator NV can be inverted on the orthogonal complement of its kernel:

N~ ¥R, +Zn"‘Pn,N’”1N NN~ = (1= Pyys)-  (3.39)

n=1

Since Q and Q1 are PJ_ invariant, so are N, N~1 and P,:
Ula, A) {N; N~} P, } U(a, A)™ = {N; N~ P, } . (3.40)
We also note that N, P,, and N~! commute with Q and Q7:
@M, N- =[Q™), P,)- = [, N~]_ =0. (3.41)
We now follow again [8] and introduce the following subspaces of H:

Hyg def kernel @, Hy+ def kernel QT , Hp def range(Q, Hp+ def range Q.

(3.42)
Let us study the relations between these spaces and Hppys. Let ay € Hppys-
By
0= (20, {Q Q" }+00) = l1Q* a0l +1QaolI* (3.43)
we find
thys =Hp N Hgt. (3.44)
Since Q% = (Q1)? = 0 we have
Hr CHg , Hp+ C Hy+ . (3.45)

Let ayy € Hy, bp+ € Hp+. Since

(QK’ QR+) = (ag, Q+Q) = (QQ.KJZ) =0. (3.46)
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Hpyg and Hp+ are orthogonal to each other, and replacing ¢ by QT shows
that the same holds true for Hr and H+:

HylHp , HRLHper . (3.47)
Combining this with (3.46) gives
HplHp+ (3.48)
while (3.44) now implies
Hynys LHR , Hynys LHg+ . (3.49)

We conclude that the three spaces Hppys, HR, and Hp+ are all mutually
orthogonal. Let now a¢ € H. Then we can write

a=Pa+ (1 - P)a=Pa+NNg
= Poa+ 1QQtN'a+ 1QTQN~"a ¢y + ap + ag+, (3.50)

where ag € Hppys, ag € Hg, and ap+ € Hpyt. This shows that the Hilbert
space H is the direct orthogonal sum of the three spaces Hpyys, HR, and
HR-}.I

H:thys @1 Hp ©1 Hp+ . (3.51)

Since the first two of this spaces are subspaces of Hy and the third is
orthogonal to it we can also write:

H=Hg ®) Hg+ , Hx = Hphys ©1 Hp (3.52)
i.e. the physical Hilbert space is also giyen by
thys =Hyg &, Hp. (3.53)

Moreover, since Hphys and Hp+ are subspaces of Hy-+ and this space is
orthogonal to Hgr one can also write

H = Hg+ @_LHRaHK*P:thys ey Hp+ (3.54)
i.e. we get one more characterization of Hpyys as
thys =Hy+ ©L Hpt . (3.55)

The orthogonal decompositions above were already given in [8], and, in
the specific context of massless Yang-Mills theories, in [4]. We denote
the orthogonal projections on {Hpnys; Hy s Hr s H i+ Hp+} by
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{Ps; Pr; Pr; Py-+; Pp+} and the vectors in these spaces by
{ag;ar;ag;ag+;ap+}. From the preceding equations we find:

POPR:PDPR+:PRPR+:O’ P0+PR+PR+=1,

Py =Py, Pr= P}, Pgs = P}, (3.56)
Pr=3QQFN™', Ppt = ;QTQN™. (3.57)

Let us now study the strucure of some important operators with respect
to the orthogonal decomposition (3.51). The operators Q and QT map the
complements of their kernels onto their range. This gives:

Q = PrQPg+ , Q* = P+ Q™ Pr. (3.58)

Then (3.36) implies that the decomposition of N and N™~! are given by
NOD = ppNCYPp 4 Py NV PRy (3.59)

Let now I be a gauge invariant operator, i.e. dgl = 0. Then Hg and Hp
are stable under the action of I, that is

[Py = PiIPy . IPg = PplPg. (3.60)
Thus we get
1 =PFRiF+ P()IPR+ + PriIPy + PrlPg + PRIPR+ + PR+IPR+ . (361)

Next we use the pseudo-hermiticity of Q and Q¥ to get information about
the Krein operator J. Let aj- € Hy, by = Qc € Hr. Then we have

(ax s JbR) =< af, Qe >=< Qag,c>=0. (3.62)

This means:
PyJPr=0. (3.63)

Taking the adjoint gives:
PrJPy =0. (3.64)

Using Q1 instead of Q in the argument above gives
Py + JPp+ = Pp+JPp+ =0. (3.65)

A direct inspection of J in (3.30) gives the additional information that J

agrees on Hypys with the unit operator:

PyJPy =Py. (3.66)



2470 F. KrRAHE

The last four equations are summarized in
J=PFPy+ PrJPg+ + Pr+JPR . (3.67)

The second of Egs. (3.52) means that Hg can be interpreted as a
linear fiber bundle: Hpypys is the base space and the fibers are the elements
of Hp. Eqgs. (3.63), (3.64) show that the fibers are pseudo-orthogonal to any
vector in H . Moreover, writing aj = ay+ap according to the orthogonal
decomposition (3.52) gives

(e, br) = (a0, bo) - (3.68)

This shows that that the form <, > agrees on Hphys With the positive form
(,), that it is positive semidefinite in H, and that its kernel as a quadratic
form in this space are the fibers:

Hp = kernel {, ) g, (3.69)

where (, ) i means the restriction of the form (,) to Hg. So we get another
expression forHppys:

Hphys = Hig © 1 kernel (, ) k. (3.70)

The form (, ) is constant along the fibers in both arguments separately:

(e +ap by +bp) Kk = (ak, b)) K (3.71)

and the same holds true for the matrix elements of any gauge invariant
operator I with respect to this form:

(ag +ap, I (b +bp)) Kk = (ax, [ ) K - (3.72)

This allows to choose any linear cross section Hg in Hg, i.e. any subspace of
H which is a (pseudo-orthogonal but generally not orthogonal) complement
of Hr (in Hy) as a realization of the physical Hilbert space. The scalar
product in Hg is the restriction of the form <, > to this space, and there it
is positive definite. All this spaces are unitarily equivalent, and the matrix
elements of gauge invariant operators do not depend on the section chosen.
So one might also consider the equivalence class of all this spaces and that
is what is usually done in the literature [7]. We prefer to use Hppys as a
concrete realization of the physical Hilbert space since it is the only section
which is orthogonal to the fibers and which allows for a simple interpretation
of the quanta of the elementary fields as physical or unphysical particles.
The projections onto the sections along the fibers are also called gauge
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transformations. For Hypys, and only for it, they agree with the orthogonal
projection.

We now consider again operators A, B, C--- over H. We define the
orthogonal projection of A on Hppys: Ag by

A pAR, . (3.73)

Ayg is still an operator from H toH. It is zero on the orthogonal complement

of Hppys: Hf)jilys' Since this zero is certainly not very interesting we define
Aphys to be the restriction of Ag to Hppys:
def
Aphys = (AO)alhys . (3'74)
The map A — Ap)ys is certainly linear:
(O‘A)phys = aAphys ’ (A + B)phys = Aphys + Bphys . (3'75)

More interesting is the projection of the product of two operators. We
calculate:

PyABP, = POA(PO + Pp + PR+)BP0
= RAPyPyBPy + RhALQQTN~'BPy + PLALN™QTQBP, .
(3.76)

Let us concentrate on the second summand: X. Since P;Q=0 we can replace
AQ by {A,Q}+. We take the anticommutator if A is fermionic and the
commutator if it is bosonic. This gives

X =PRi{A,Q}+QTN~'BR,. (3.77)
Now we use PyQ7T = 0 to replace that by
X=PR3{{4,Q}+,Q"}, N~BP,. (3.78)
And finally we use PN~ = 0 to write

X =P} [{{4,Q)+,0"}; N7 _BR. (3.79)

There are always two commutators and one anticommutator in this expres-
sion. Thus it can be uniquely written as

X = Py(TA)BP,, (3.80)
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where the triple variation T is defined by

Td:ef %6(N~1)d(Q+)dQ . (381)

Here 5(N~1) is the derivation induced by N~1, and dg and d(g+) are the

antiderivations induced by Q and QT, repectively (see chapter 1). Note
that the triple variation of gauge invariant operators vanishes. In the same
way the third summand in (3.77): Y is written as

Y =FRA(TB)R. (3.82)
We thus have found the important projection formula:

AphysBphys = (AB)phys - {(TA)B + A(TB)}

This implies
Theorem I: The product of the physical projections of two operators with
vanishing triple variation, especially of two gauge invariant operators, is
identical to the physical projection of their product. The physical projec-
tion of a group (of an algebra) of operators with vanishing triple variation,
especially of gauge invariant operators, is a representation of this group
(algebra). )
Nezt we consider the physical projection of the pseudo-adjoint AK of
an operator A. So we have to study

phys - (3.83)

P AN P, = PoJAT IR, . (3.84)

Now we use that (3.67) implies

Py =JF =.PRyJP =P (3.85)
to conclude: )
PoAR Py = PR AT Py = (P AP)™T (3.86)
which means i N
(4%) = (Apnya)* - (3.87)
phys

Thus we have found
Theorem I1: The physical projection of the pseudo-adjoint operator is iden-
tical to the adjoint of the physical projection of this operator. The physical
projection of a pseudo-hermitean operator is hermitean.

Combining the two theorems above gives:
Theorem III: The physical projection of a pseudo-unitary operator with
vanishing triple variation, especially of a pseudo-unitary gauge invariant
operator, is an unitary operator.
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Now we are well equipped to tackle unitarity of the physical S-matrix.
The interaction T(l)( ) constructed in the preceding chapters is anti-pseudo-
hermitean:

(T(”(x))K = —TW(g). (3.88)

This guarantees the pseudo-unitarity of S[g] [11, 12, 15}
Slg)sk[g)=1. (3.89)

This is [11] equivalent to

Y T(HTR() =0, YN £0. (3.90)
IHJ=N

. K
Here T(I) means T(r)(:cil,---,:v,'r), TK(J) means (T(s)(zjl,-«-,sz)) ,
where r + s = n, and the sum ¥ runs over all direct decompositions of the
set N = {1,---,n} into two subsets I = {¢1,---,%} and J = {j1,*+,Js}-
Let us now assume that gauge invariance holds true in all orders, i.e. we
have

4n
doT(™ = 3" ok ™. (3.91)
k=1

Taking the pseudo-conjugate of this equation gives:

dg (T™) . i ok (1) " (3.92)
k=1

Then (3.83), (3.87) and (3.90)-(3.92) imply

4in
S Tonys(D) Tpnys (D) T = Y 0FWM (X
k=1

I®eJ=X
W) EL S {600 G v don THDTH ()
IeJ=X
+ 85 (K)T (1) (8 n~1ydony TE (1) }phys , (3.93)
where
87 (k) “éf{(l): e y L (3.94)
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This is the exact perturbative, pre-adiabatic expression for the unitarity of
the physical S-matrix. If the adiabtic limit:

SPhYS = gh—rrnl (S[g])phys (395)

exists and has the same analytic properties as in the saclar theory discussed
in [13], and if the boundary terms [ 6"W,£n) vanish, (3.93) will imply

Sphys(Sphys)+ =1. (3'96)

We note, however, that this adiabatic limit may have additional subtleties if
the heavy gauge particles are coupled to light matter, since then the gauge
fields become unstable, i.e. are not really asymptotic fields.

Let us end this long chapter with a short discussion of P! -invariance.
The remark after (3.31) and eq. (3.40) immediately imply that U(a, A)phys

is an unitary representation of PT, while the Pl-inva,riance of Sg]:

def

Ula, A)S[g)U(a, A) ™" = S[ga,4] » ga,a(2) = g (47 (z ~a))  (3.97)

and (3.41) lead direct to
U(a’ A)S[g)physU(av A)—l = S[ga,A}phys (3'98>

which is the P p-invariance of the physical S-matrix.

The situation is different in the massless case where J is not P+
invariant. However, the three theorems above and the projection formula
(3.83) hold true in this case, too. Since Q is Pl—inva,ria,nt also in the massless
case, the theorems show that U(a, A)ppys is indeed an unitary representation

of PT while the PT -invariance of S[g] and (3.83), (3.87) implie that (3.98)
is Vlolated only by boundary terms. The latter should vanish in physical
quantities like cross sections, for example.

4. Discussion

We have based our causal construction of massive Yang-Mills theories
on asymptotic gauge invariance and on the differential property of the gauge
charge. The latter one has led naturally to the introduction of scalar gauge
fields. All these scalar fields are unphysical, as follows from the proof of
unitarity in the last chapter. In this way we have arrived at a Higgs-free
model for massive Yang—Mills fileds. However, our construction is not yet
complete, since we do not have shown that gauge invariance holds true
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in all orders. Actually, very recent calculations by Hurth [20] point out
the appearence of anomalies already in second order. The impact of these
anomalies on a consistent interpretation of the model we have proposed here
remains — in the opinion of the author — to be clarified. The important
results of Section 3, i.e. the projection formula (3.83) and the theorems I-111
remain certainly true, since they are derived by using only certain algebraic
properties of the gauge charge and the Krein structure in the Hilbert space
of the theory while not refering to specific properties of T(%).

Higgs-free models of massive Yang—Mills theories have also been studied
in the Lagrangian framework. There they are known as Stueckelberg theo-
ries [21-23]. A very interesting Higgs-free model which gives a unification
of the standard model and gravity has recently proposed by Raczka and
Pawlowski {24, 25]. We plan to generalize the methods presented here such
that they can be applied to this model, too.

I would like to thank Prof. Raczka for inviting me to this very inter-
esting conference where I had the opportunity to present my results and to
discuss them with other participants. Fruitful discussions with Profs. K.
Fredenhagen, B. Schroer, and A. Burnel are especially acknowledged.
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