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Minimally coupled classical Yang-Mills and Dirac fields in the
Minkowski space-time and in spatially bounded domains are investigated.
The extended phase space, defined as the space of the Cauchy data ad-
mitting solutions of the evolution equations, is identified. The structure
of the gauge symmetry group, defined as the group of all gauge transfor-
mations acting in the extended phase space is analysed. In the Minkowski
space-time the Lie algebra of infinitesimal gauge symmetries has an ideal
giving rise to the constraints. The quotient algebra, isomorphic to the
structure algebra, labels the conserved colour charges. In the case of spa-
tially bounded domains, each set of the boundary data gives rise to an
extended phase space in which the evolution is Hamiltonian. The problem
of a physical interpretation of the boundary data is discussed.

PACS numbers: 11.15. Kc

1. Introduction

This is a report on an ongoing German-Polish collaboration with a
Canadian connection, based on the joint work with Giinter Schwarz
(Mannheim) and Jacek Tafel (Warsaw) on the classical theory of Yang-
Mills and Dirac fields, [1-9]. The present state of knowledge in this field
is comprehensively reviewed in [10]. It consists of a multitude of very in-
teresting results. However, the assumptions under which these results are
derived are often incompatible.

* Presented at the II German-Polish Symposium “New Ideas in the Theory of
Fundamental Interactions”, Zakopane, Poland, September 1995.
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The immediate aim of our project is a systematic study of minimally
interacting classical Yang-Mills and Dirac fields, starting with the extended
phase space and continuing with the analysis of the gauge symmetries, the
constraints, the reduced phase space and the dynamical variables. The ex-
tended phase space consists of the Cauchy data of solutions of the evolution
equations of the theory. Hence, in order to determine possible extended
phase spaces we had to establish the existence and uniqueness theorems
for the evolution equations. Once we know what extended phase spaces are
possible, we can choose one of them for our study, and this is the only choice
we have. We cannot make any ad hoc assumptions at a later stage of the
game.

Coupled Yang-Mills and Dirac fields are governed by non-linear partial
differential equations. Many phenomena can be discovered just by analyzing
the equations. This is well known in general relativity, where most of the
progress comes from the study of the content of Einstein equations. We
try to do in Yang—Mills theory what relativists have been doing for years.
However, in order to get to physically observable phenomena, we have to
get on step further and attempt to draw conclusions in the framework of
the quantum theory.

Many physicists argue that, since the classical non-abelian Yang-Mills
fields are not observed in nature, the classical gauge theory is irrelevant to
physics. However, this belief does not stop them from writing the classical
Lagrangian and deriving from it the equations of motion and the conserva-
tion laws.

The usual basic frameworks used in studying quantum non-abelian
gauge fields are the perturbation expansion, the lattice gauge theory and the
Feynman path integral. The perturbation expansion is not gauge invariant.
Hence, in order to obtain gauge invariant results, one has to consider the
sum over all diagrams in the same orbit of the gauge group. The lattice
gauge theory is not relativistic, and the arguments based on the relativis-
tic invariance of the theory require non-trivial limiting considerations. The
Feynman path integral is both gauge invariant and relativistic. However,
due to the difficulties with the definition of measures in the infinite dimen-
sional spaces, precise statements are problematic.

2. Field equations

Let M C R3denote the region of the physical space accessible to the
fields. We consider two cases: (i) M = R?, and (ii) M is a bounded con-
tractible domain in R® with smooth boundary @M. We consider minimally
coupled Yang-Mills and Dirac fields in R x M. The product structure in
R x M, leads to the splitting of the Yang-Mills potential A, into the scalar
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potential & and the vector potential A = A;dz*. It also allows for the rep-
resentation of the field strength F,, in terms of the electric field F and the
magnetic field B with the components

E; =Fy = 0pA; — 0;9+ [, Aj] and

B] P ‘;’5jmnan = (curl A)} + [AAX, A]J,
where x denotes the cross product, and we use the Euclidean metric in
R? to identify vector fields and forms. 4, E and B are time-dependent
forms on M with values in the Lie algebra g of the structure group G of
the theory, which is assumed to be compact. The Dirac field ¥ is a time
dependent spinor field on M with values in the space V of the fundamental

representation of G.
The field equations split into the evolution equations

0tA = F + grad @ — [&, 4],
OtE = curlB — [AX,B] - [@,E]+ J,
VY = —70(7j8j +im+ 7y + 7jAj)kP,
and the constraint equation
divE +[A;E]=p.

The source terms can be described in terms of an orthonormal basis {7, }in
the Lie algebra g,

p = p°T, = wiTowT,
J* = Jker, = ot (1048 @ 7T,

where the latin indices are lifted in terms of an ad-invariant metric on g.

3. Gauge conditions

Since the linear part of the evolution equations contains the operator
curl? which is not elliptic in the space L#(M) of square integrable vector
fields on M, we have to decompose the fields A and E into their longitudinal
and transverse parts,

A=A+ AT E=EL+ET,,
where the longitudinal parts AL and EL are gradients, and

div(AT) = div(ET) = 0..
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If M is a bounded domain with non-empty boundary OM, one also requires
vanishing on M of the normal components nAL and nEL of AL and EL,
respectively.

The evolution equations do not involve the time derivative of the scalar
potential @. In order to get a uniqueness of the evolution we have to choose
a gauge condition relating @ to the dynamical variables A and E. Here we
use the condition:

grad @ = -EL,

In order to determine & uniquely, we have to add a normalization condition.
If M is a bounded domain in R®, the normalization condition is

/@dg(l‘:o.

M

For M = R3we use a weighted normalization condition

&(1+ xz)-z d3z =0.
RS

4. Existence and uniqueness theorems

We denote by Hk(Rg,g) and H*(R3,V @ C*) the spaces of g-valued
forms and spinor fields, respectively, which are square integrable together
with its derivatives up to order k. The existence results in the Minkowski
space-time are given by

Theorem 1. For every (Aq, Eo, W) € H*(R?,g)x HY(R3, g) xH*R®V®
C*), there exist mazimal 7+ > 0, 77 > 0, and the unique classical solution

(A(t), E(t), ®(t)) € H*(R®,g) x H'(R®,g) x H*(R*,V @ C*)

of the evolution equations, defined for t € (—7—,7%), which satisfies the
initial conditions A(0) = Ao, E(0) = Ep, ¥(0) = ¥s.

For a bounded domain, the initial data have to be supplemented by the
boundary conditions. We specify on the boundary the tangential component
t(curlA) of the curl of A, I'(¥) = (Id — iy*ny)W|0M, and I'(D¥), where
D = —y%y*a; + im) is the free Dirac operator in R3®. For each A €
H%(M,g), t(curl A) € HY/?(OM,g). Similarly, for ¥ € H?(M,V ® CY),



What Can We Learn from the Classical Theory... 2501

r(®) € H32(dM,V @ C*) and I'(D¥) € HY/?(OM,V ® C*). Moreover,
the range of I is characterized by the condition (Id + iv*n;)I" = 0.

Theorem 2. Let (A, p,v) be a differentiable curve of boundary data in
HY2(0M,g) x H3/2(0M,V ® C*) x HY/2(0M,V @ C*) such that A =
A +grad x, for Ay and x in H3/2 (OM,g), and (u,v) satisfy the conditions

(Jd+iv*n)p=0 and (Jd+iv*ng)v=0.
For every (Ao, Eo, %) € H*(R®,g)x HY(R3, g) x H*(R?,V®C™) satisfying
t(curl Ag) = A(0), I'(Wy) = p(0) I'(D¥,) = v(0),
there exist mazimal T+ > 0, 7~ > 0, and the unique classical solution
(A(t), E(t),®(t)) € H*(R®,g) x H'(R®, g) x H*(R*,V ® C*)

of the evolution equations, defined for t € (—7~,77T), which satisfies the
initial conditions A(0) = Ag, E(0) = Ey, ¥(0) = ¥y, and the boundary
conditions

t(curl A(t)) = A(t), [(¥(t)) = u(t), T(DP(t)) = v(t).

5. Constraints and reduction

The constraint equations are preserved by the dynamics. Hence, in
order to obtain a description of the space of solutions, it suffices to study the
constraint equation at the initial Cauchy surface. On the basis of available
information we conjecture that, for the Minkowski space theory and for
the type of boundary data considered here, the constraint equation define
a manifold in the space of the initial data. It seems that in this case the
reduced phase space is a smooth manifold endowed with an exact weakly
symplectic form.

The bag boundary conditions nA = 0, nE = 0, t(curl A) =0, '(¥) =0
and I'(DV¥) = 0 define an invariant manifold in the extended phase space.
Its intersection with the constraint set is not a manifold. We have shown
in [4] that in this case the resulting reduced phase space is the union of
exact weakly symplectic manifolds parameterized by the conjugacy classes
of gauge isotropy groups of the Cauchy data. Each symplectic manifold
in the reduced phase space corresponds to a definite form of symmetry
breaking which does not lead to vector bosons.



2502 J. SNIATYCKI

6. Colour charges

Colour charges are the conserved quantities corresponding to infinitesi-
mal gauge symmetries of the theory. In the Minkowski space theory, the Lie
algebra gs of infinitesimal gauge symmetries has a direct sum decomposition

gs=gsoDg,
where gsg is the completion in the Beppo Levi topology of the Lie algebra of
smooth compactly supported maps & : R> — ¢, and the second summand g
is interpreted as constant maps from R3to g. It should be noted that gsg is
an ideal in gs. In the language used by physicists gsg corresponds to “local
gauge transformations”, while the second summand g corresponds to “global
gauge transformations”. However, the constant maps from R?® to g do not
form an ideal is gs. Hence, the notion of a “global gauge transformation”
has an invariant meaning only as an element of the quotient algebra gs/gsg.

For each £ € gs, the corresponding conserved quantity is denoted by
Je¢. Since the constraint equation is equivalent to J; = 0 for all § € gso, the
colour charges of states satisfying the constraint equation are parameterized
by elements of the algebra gs/gsg, which we refer to as the colour algebra.
The colour charge J¢ of a classical state (A, E,¥) satisfying the constraint
equation is given by

Je(AE, W)= lim nF¢ dS,
T—00
Sy

where S, is the sphere of radius r centered at the origin and dS denotes the
element of the surface area. The map & : R®> — g appears on the right hand
side only through its asymptotic behaviour at infinity which determines
the projection of & to the quotient gs/gsg. We have shown in [5] that a
gso invariant local charge density of the colour charge J¢ (A, E,¥), which
depends locally on the fields (A, E,¥), can be defined only if the projection
of £ to the quotient gs/gsg is in the centre of gs/gso. This is a classical
analogue of non-central colour charge confinement phenomenon in quantum
gauge theory.

7. Hamiltonian evolution

If & were a function of the space-time variables only, & = ®(z,t), then
the evolution equations would be Hamiltonian with the Hamiltonian

Ha(A, E,0) = /{%(E2 + BY) + WOy (i6) + Ay) + m]¥}dsz
M

+ /{—E(grad ®+[A, D) +PTPW}dsz,
M



What Can We Learn from the Classical Theory... 2503

and the symplectic form
w=d#b,

where 8 is given by

(6(A, E,U)|(64, 6E, 60)) = /(E 5A+ 0T 50)dsa .
M

With the scalar potential ¢ depending on the dynamical variable E, the
Hamiltonian Hg (A, E,¥) generates the equations

_ 6P oD T&b
0 A=E+grad &—[d, A]+/ {—E(grad A ]+ ﬁw} dsz .
M

OE =curl B-[Ax,B] - [®,E]+J,
0w = —70(7j8j + im+ 0P + 7jA]~)!P.
In order to prove the existence and uniqueness theorems for these evo-
lution equations we have to modify our gauge condition and choose @ to be

given by
grad @ = —2EL,

and the same normalization conditions as in Section 3. The statements of
results are the same as in Theorems 1 and 2.

In the Minkowski space theory, we have the usual Hamiltonian evolu-
tion. However, in the case of a bounded domain the Hamiltonian structure
is more complicated. Let 8 = (A, u,v) be a curve of the boundary data
in H/2(8M, g) x H3/2(0M,V @ C*) x H'/2(M,V @ C*). For each time
t, let Pgy be the subspace of H2(R?,g) x H(R?, g) x H*(R*,V ® C*)
consisting of the fields (A, E,¥) which satisfy the boundary conditions

t(curl A) = A@t), I'(¥) = pu(t), I'(D¥) =v(t).

It is an affine subspace of H2(R?,g) x H'(R3,g) x H?(R?,V ® C*) with
the associated vector space Py corresponding to the homogeneous boundary
conditions, i.e. the vanishing of the boundary data. The weakly symplectic
form w in H?(R3, g) x H'(R?,g) x H*(R®,V ® C*), defined above, pulls
back to a weakly symplectic form wg(s) in Pg(s)- Let £g be the union of
Ps(1) over all ¢,

s =JPse-
t

It is the evolution space corresponding to the chosen boundary data 3.1t can
be alternatively described as the affine subspace of H2(R?,g) x H! (R?,g) %
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H*(R®,V ® C*) x R consisting of (A, E,¥,t) such that (A, E,¥) satisfy
the above boundary conditions at time t. The projection onto the time axis
R is a fibration of £3 with weakly symplectic fibres.

The situation here is analogous to the Newtonian dynamics, where we
have the natural projection from the space-time onto the absolute time.
Since the space is not absolute, in order to write the equations of motion
in the Hamiltonian form, we have to introduce the frame of reference (an
observer). Here, the role of a frame of reference is provided by any back-
ground field (a(t), ¢ (¢))satisfying the boundary conditions t(curl a(t)) =
A(t), I ((t)) = p(t), ['(D¥(t)) = v(t) for all t. This give an isomorphism
between £g and Py X R given by (A, E,¥,t) — (A —a(t), E,¥ — (1), 1).
With respect to such a trivialization, the evolution equations for A(t) —a(t),
E(t) and ¥(t) — ¢ (t) are Hamiltonian with the Hamiltonian Hg(A, E,¥)
given above. Note that Hg (A, E, W) as a function of A(t) — a(t), E(t) and
U(t) — ¥(t) may be time-dependent if a(¢) and ¥(t) depend on ¢, that is if
the boundary conditions are time-dependent.

8. Physical interpretation of the boundary data

Yang-Mills fields are commonly studied in the whole space-time. The
resulting quantum theory is sensitive to the global topological properties
of the space-time. On the other hand, the non-abelian gauge fields are
supposed to be carriers of strong and weak interactions on sub-atomic level.
All experiments are made in laboratories of finite spatial extent and they
last for a finite period of time. The experimental data are obtained from the
reading of the detectors surrounding the region in which the reaction takes
place. This suggests that the appropriate theoretical description should take
into account the finiteness of the observational domain, and the behaviour
of the fields on its boundary.

The evolution of the boundary data can be prescribed arbitrarily. Hence,
they cannot describe dynamical degrees of freedom. In order to describe re-
alistically the observed quantum processes one should form a corresponding
quantum field theory in which the physical role role of the boundary data
is taken into account.

A possible interpretation of the boundary data is that they describe the
experimental setting. For example, they may describe the interaction of the
observed system with the detectors which, according to the Copenhagen
interpretation of quantum mechanics, should be treated on the classical
level. In this case, they could induce the symmetry breaking leading to the
splitting of the Yang-Mills field into the vector boson fields and the residual
gauge field. In the classical theory the vector boson fields obtained in such
a way are massless. Upon quantization of such a theory, the mass of vector
bosons might appear as an anomaly.
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