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The model of induced nonlocal quark currents based on the hypothesis
that the QCD vacuum is realized by the (anti-)self-dual homogeneous
gluon field is suggested. The field produces quark confinement and chiral
symmetry breaking. Nonlocal extension of the bosonization procedure of
quark currents is developed, which leads to the ultraviolet finite unitary
S-matrix on the space of meson states. The model has a minimal set
of parameters: quark masses, vacuum field strength and the quark-gluon
coupling constant. The vacuum field provides qualitative regimes in the
meson spectrum: mass splitting between pseudoscalar and vector mesons,
Regge trajectories, masses of heavy quarkonia and heavy-light mesons in
the heavy quark limit. The masses and weak decay constants of mesons
from all qualitatively different regions of the spectrum are described to
within ten per cent inaccuracy.

PACS numbers: 12.38. Lg, 12.40. Yx

1. Introduction

In my talk I would like to present the model of induced quark currents
formulated in our recent papers [1].

Achievements of the Nambu—-Jona-Lasinio (NJL) model in description
of meson masses, decay constants and so on are well-known [2-4]. This suc-
cess can be explained by the bosonization procedure which makes possible
to extract collective modes and dynamical breaking of SUy, (3) xSUR(3) and
Ua (1) symmetries. At the same time, an incorporation of quark confinement
into consideration, description of heavy quarkonia and heavy-light mesons,
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radial and angular excitations of mesons, as well as different form-factors
require an essential modification of the NJL model (eg, see [5]). Another
general disadvantage is the nonrenormalizability of the local four-fermion
interaction.

In [1] we have suggested a model that in some sense can be considered
as an extension of the standard NJL model. There are two crucial modi-
fications. First, our model is based on the hypothesis that the QCD vac-
uum to be realized by the (anti-)self-dual homogeneous background gluon
field. Second, the effective quark-quark coupling is described by the nonlo-
cal four-quark interaction induced by the one-gluon exchange in presence of
the (anti-)self-dual homogeneous gluon vacuum field which is a stable con-
figuration [7]. This vacuum field ensures the analytical quark confinement
and breaks the chiral symmetry. The model of induced quark currents gives
a basis for investigating of all the above-mentioned problems from a general
point of view. The main features of the model are as follows [1].

— There is the quark confinement. The quark propagator being an en-
tire analytical function in the complex momentum plane [6] has the standard
local ultraviolet behavior in the Euclidean region, and is modified essentially
in the physical, i.e., Minkowski region.

— The one-gluon exchange is decomposed into an infinite sum of current-
current interaction terms, in which the quark currents are nonlocal, color-
less and carry a complete set of quantum numbers including the orbital and
radial ones. This effective quark-quark interaction generates a superrenor-
malizable perturbation expansion.

— The bosonization of the nonlocal four-quark interaction leads to ul-
traviolet finite effective meson theory. Mesons are treated as extended non-
local objects.

— The model contains the minimal number of parameters: the quark
masses, quark-gluon coupling constant and the tension of the background
gluon field.

The model describes all qualitatively different regions of meson spec-
trum to within ten percent inaccuracy, breaks the chiral symmetry and gives
rise to the splitting between masses of the pseudoscalar and vector mesons
with identical quark structure (p — 7, K — K*). This spin-field interaction
drives also the weak decay of pion and kaon.

Furthermore, the vacuum field produces three rigid asymptotic regimes
for the spectrum of collective modes. The spectra of radial and orbital
excitations of light mesons are equidistant for £ > 1 or n > 1, i.e., they
have Regge character. Localization of meson field at the center of masses
of a quark system provides other two asymptotic regimes. In the limit
of infinitely heavy quark, a mass of quarkonium tends to be equal to a
sum of the masses of constituent quarks, while a mass of heavy-light meson
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approaches the mass of a heavy quark: Mg5 — 2mg 00 Mg = mq+
Aqg- The next-to-leading terms Ago angng do not depend on the heavy
quark mass. The same reasons provide the correct asymptotic behavior of
the weak decay constant for the heavy-light pseudoscalar mesons: {;‘%
2. The model of induced nonlocal quark currents
2.1. Basic assumptions, approzimations and notation

The representation of the Euclidean generating functional for QCD, in
which the gluon and ghost fields are integrated out, serves as a starting
point for many models of hadronization. This starting representation for
the case of nontrivial vacuum gluon field [8](see also [9]) looks like

Ng
Z:/davac/DqueXP{/d4zZQf($)(i7#Vﬂ—-mf)qf(x)'{"l’?}1
f

= *//dwdyju )Gin(z,y| B)is(y) (1)

where Np is the number of flavors corresponding to the SU(Np) flavor
group and

qu Yvut®qs(z), @u:('?”—it“Bz.

The function G’Z’,’, (x,y | B) is the exact (up to the quark loops) 2-point
gluon Green function in the external field Bj. This function is unknown,
and some approximation has to be introduced. For instance, the local NJL
model corresponds to the choice G2 = §%%§,,6(z — y). Our aim is to
investigate the mesonic (¢g)-collective modes.

Representation (1) implies, that there exists some vacuum (classical)
gluon field B%(z), which minimizes the effective action or effective potential
of the Euclidean QCD. In the general case, the vacuum field depends on
a set of parameters {oyac}, and the measure doy,. averages all physical
amplitudes over a subset of {oyac}, in respect to which the vacuum state is
degenerate (for more details see [1] and references therein).

The quark-gluon interaction in Egs. (1) is local, and a decomposition
over degrees of g2 generates a renormalizable perturbation theory. It means,
that an appropriate regularization should be implied. This point has to be
stressed here, since our final technical aim is a transformation of the inter-
action term in Eq. (1), which generates completely new superrenormalizable
perturbation expansion of the functional integral (1).
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The homogeneous (anti-)self-dual vacuum field looks like
B,L(m) = nBu(z), Bu(z) = Buvzy, 7 = n%t?, n?=n"=1,

By, = —Byy, BupBpy = ~B%8,,, Bpw = %EwaﬁBaﬂ =£Buy .

Since the chromomagnetic H and chromoelectric E fields relate to each other
like H= +E, two spherical angles (¢, ) define a direction of the field in the
Euclidean space.

In the diagonal representation of 7 = n%t*, an additional angle & is
needed to fix a direction of the field in the color space # = 3 cos € +® sin €,
for 0 < £ < 27. The one-loop calculations and some nonperturbative esti-
mations of the effective potential for the homogeneous gluon field argue that
the potential could have a minimum at nonzero value of the field tension
B # 0 (e.g., see [6, 7, 10]) and for A = 5.

The vacuum is degenerated with respect to the directions of the field in
the Euclidean space and anti-self- and self-dual configurations. Therefore
the measure doy, has the form

1 T 2m
= — i 2
/davac 87T/d08m9/d<,9§, (2)
0 0

where the sign ), denotes averaging over the self- and anti-self-dual con-
figurations.

2.2. Quark and gluon propagators
The quark propagator S¢(z,y | B) satisfies the equation:
(7Y — mg)Ss(a,y | B) = =8(z —y),
and can be written in the form
Si(e,y| B) =e2 PV H(z —y | Beh =PV,

= i@u(z)'y“-{—mf ;
116) =3t ot ) )

o191 e85 s 3
0

1+t 4 t
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where

m
Py =14(1%vs5), ay= 71£7 (zBy) = 2, Buuy

tS
(pfv) = Pufuvtv f;w = WB[UI v Jupfor = ;w ,

1
—_dlag(33 3) , A*=+3B.

The upper (lower) sign in the matrix P+ corresponds to the self-dual (anti-
self-dual) field.

The term (0B) = 0,5Bas in Eq. (3) describes an interaction of a
quark spin with the background field. This spin-field interaction leads to
the singularity 1/my for my — 0, which is a manifestation of the zero mode
(the lowest Landau level) of the massless Dirac equation in the external
(anti-)self-dual homogeneous field. The mathematical point is that the
spectrum of the operator 7,0, is continuous, whereas the spectrum of the
operator 7,,6‘4(.@) is discrete and the lowest eigen number is equal to zero.
Simple calculations give for my — 0

eh-n}o ml;m ms(Gs(z)gs(z+€))p = _511510 ml}n:)() m s TrH¢(e|B)
-/ L2 lim myTe(p| B) = — oy A (5)
et im0 B) = A

Due to the spin-field interaction the quark condensate is nonzero in the limit
of vanishing quark mass. Thus the chiral symmetry is broken by the vacuum
field in the limit my — 0 (see also [6]). Namely the spin-field interaction
gives rise to the splitting between the masses of the pseudoscalar and vector
mesons and provides a smallness of pion nass. 5
In terms of the variable ¢ = p,7, the propagator Hs(¢ | B) is an entire
analytical function in the complex (-plane. There are no poles correspond-
ing to the free quarks, which is treated as the confinement of quarks. The
following asymptotic behavior takes place:
myte o Myt by g ¢ = +oo (p? = )
Hf((1B)_) ¢ 2 P 2 . ] 9
O(exp(m)) O(exp(——ﬂg)) if ( = $ico (p* — —oog )
6
Equations (6) shows the standard local behavior of the fermion propagator
in the Euclidean region (p? — c0), while in the physical region (p? — —o0)
we see the exponential increase typical for nonlocal theories (for more details

about the general theory of nonlocal interactions of quantized fields see
(9, 11).
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The gluon propagator fo,’,(z, y| B) satisfies the equation:

(6254“/ + 4i-é;uz)Gup(x’ y ‘ B) = -6M05($ - y) *

The solution of this equation (for details see [1]) can be represented in the
form

Gi(z,y| B) = Dj}(z,y | B) + Ry (z,y| B),
where the function DZ?, (z,y|B) is the confined part of the gluon proparator
Dyy(z,y| B) = 5#VK'2G%(I1§9)D(x -y Az)e%(xéy) ,

1 A2
D(z | A%) = (27)222 eXp{—

} K? = diag(0,0,0,1,1,1,1,0). (7)

The Fourier transform of the function D(z | A%) is an entire analytical
function in the momentum space. It has the local behavior in the Euclidean
region, but increases exponentially in the physical region. This function
describes a propagation of the confined modes of the gluon field. Other
terms R:?,, that contain a contribution of the zero modes and an anti-
symmetric part, will be omitted.

Thus, the central point of our extension of the NJL-model consists in
taking into account the confining influence of the background field both on

the quark and gluon propagators.
2.8. Color singlet bilocal quark currents

Substituting gluon propagator (7) to the interaction term in represen-
tation (1), using the Fierz transformation of the color, flavor and Dirac
matrices, and keeping only the scalar J*5, pseudoscalar JoFP  vector J2V
and axial-vector J%4 colorless currents, we arrive at the expression [1]

2
Ly = %— ZCJ // d*zd*yJb (z,y)D(z — y | AT (y,z) (8)
bJ

7 (2,y) = Gy (2) ML, DI EEBY g, ), )
r’ {J=S5, PV, A}, CSZCP:'sl)’v CV:CAzl—lS"

Here Mjﬁf, are the flavor mixing matrices (b =0, ..., N}%—- — 1) corresponding

to the SU(Np) flavor group. Due to the phase factor exp{i(zBy)}, bilocal
quark currents (9) are the scalars under the local gauge transformations.
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Let us transform integration variables z and y in Eq. (8) to the coor-
dinate system corresponding to the center of masses of quarks gy(z) and

gy (v)

r—=>z+€ — £ &= s ¢ S (10)
fY: YT LY Sf = mp+mp’ T my fmp
This transformation turns out to be crucial for simultaneous description of
the light-light, heavy-light and heavy-heavy mesons. Corresponding trans-
formation of the quark currents looks as

T (2,y) = @p(e + Epy) M} T B g (@ — Epry)
= Gi(x) ML, IRV 1 g (),

Vg (2) = £4(8 +iB(2)) — £4:(0 —iB(z)). (11)

The currents (11) are nonlocal and colorless. Interaction term (8) takes the
form

L= LYo [[ dtattyhen A @0 ). a2
2~87r2 . J z yy2 exp 1 z,Y y,z).

2.4. Decomposition of bilocal currents

An idea of our next step consists in a decomposition of the bilocal
currents (11) over some complete set of orthonormalized polynomials in
such a way, that the relative coordinate of two quarks y in Eq. (12) would
be integrated out. The particular form of this set is determined by the
form of the gluon propagator which plays the role of a weight function in
the orthogonality condition. The physical meaning of the decomposition
consists in classifying a relative motion of two quarks in the bilocal currents
over a set of radial n and angular £ quantum numbers. Thus, we are looking
for a decomposition of the form

T (@, y) = Wl L T, ()

nt
5o e ®) = LaeWATL e (ny), my = y/ VY2 (13)
Here the irreducible tensors T (¢ ) ..ug satisfy the conditions:
14 ¢ 14
T;E,l)...u...u...pz( ) T;(q)...y“.y...ul(ny) y T;g“)Au...yg(ny) =0,

£ £
T () TS g (my) = Fc,g”(nyny,), (14)
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where C’( ) are the Gegenbauer’s (ultraspherical) polynomials. The poly-
nomials Lng( ) are the generalized Laguerre’s polynomials. The details of
calculation of the currents jb e"M( ) can be found in paper [1]. As a result,
the interaction term Lo takes the form

ben
Glen=C19" 2%(;)(; n)!’ (15)
T () = q(a) Vi (2)q(z), (16)
. LV (@
Vit = v, ()
= MbFJ{{Fn (ngx))T,ﬁf)_.M(%v/(lm)> }} (17)
1
s) = s” B-i-nest.
F,p(4s) /0 dtt (18)

The doubled brackets in Eq. (17) mean that the covariant derivatives com-
mute inside these brackets. Form-factors F},¢(s) are entire analytical func-
tions in the complex s-plane, which is a manifestation of the gluon confine-
ment.

The classification of the currents will be complete if we will decompose

Jg{,ﬁ’* p, With J = V, A and £ > 0 into a sum of orthogonal currents
L’;‘,’f;"’ul with the different total angular momentum j = ¢ —1,¢,£+ 1 (for

detaials see [1]).

For large Euclidean momentum the vertices V7" behave as 1/(p?)1+¢/2.
Therefore, only the “bubble” diagrams are divergent. These divergencies
can be removed by the counter-terms of the form —2Z(z)TrVS. The renor-
malized vacuum amplitude Z takes the form

:/dovac/DqD(jexp{//d4$d4y(i($)5_l($»y|B)‘1(y)
+ E ﬁ(}’jzv/d‘lx Zn(z) - TrVNS]2} . (19)
N

where the condensed index NV = {a,J,{,n,j} is introduced.
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2.5. Bosonization

By means of the standard bosonization procedure [2, 3] applied to
Eq. (19) the amplitude Z can be represented in terms of the composite
meson fields @r [1]:

7z = /];VI D& s exp {%/dz@/\/(:c) ([] - Mﬁ,—) D (2) + gy [QS]} ,
(20)
fine = _%/d4$1/d4$2h}\/hj\/"¢./\/’($l)

X [FJVN/($1,1'2) - 5NN/H§/($1 - 1'2)] @N’/((Eg)

1 m
- Z -n;/d4$1/d4$m H hdest(xk)FNl...Nm(xla"'7$Tn),
Iy N :/davacTr{VNl(zl)S(xl,xz|B)...VNm(zm)S(zm,w1 ]B)} .

Meson masses M s are defined by the equations

where the function ﬁbj(n]' is given by the diagonal part in the momentum
representation of the tensor

IETend  (x —yymy, mps A)

R Z T

= [doacTe [V @S,y | BVE M )Sw | B)] . (22)

Relation (21) is the master equation for meson masses. The function IT can
be calculated using the representations (3) and (4) for the quark propagator
and (17) for the vertices.
The fields &pr (N = {a,J,f,n,3}) with j > 0 satisfy the on-shell con-
dition
p/téj\/'u(p) = Oa for p2 = —Mfz\/a

which excludes all extra degrees of freedom of the field, so that the numbers
£ and j can be treated as the O(3) orbital momentum and total momentum.
The constants

ha = 1/4/T (- M) (23)
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play the role of the effective coupling constants of the meson-quark interac-
tion.

The quark masses my, the scale A (strength of the background field)
and the quark-gluon coupling constant g are the free parameters of the
effective meson theory (20)-(23).

In the lowest approximation the interactions between mesons with given
quantum numbers AN = {b,J, ¢, n,j} are described by the two-point quark
loops the structure of which is the same as in the standard NJL-model,
but in our case the quarks propagate in the vacuum gluon field, and the
meson-quark vertices are nonlocal. Due to this nonlocality the quark loops
are ultraviolet finite. The whole diagram should be averaged by integration
over the measure doyac.

Thus the effective four-quark interaction is represented as an infinite
series of interactions between the nonlocal quark currents characterized by
the complete set of quantum numbers {b, J, ¢, n, j}. The form of the currents
is induced by a particular form of gluon propagator. This new representation
of the four-quark interaction generates an expansion of any amplitudes into
series of partial amplitudes with a particular value of the quantum numbers.
Each partial amplitude is ultraviolet finite. The composite meson fields in
Eq. {(20) are nothing else but the “elementary” collective excitations, that
are classified according to the complete set of quantum numbers of the
relativistic two-quark system.

It should be stressed, that the model (20) satisfies all demands of the
general theory of nonlocal interactions of quantum fields [11], which means
that Eq. (20) defines a nonlocal, relativistic, unitary and ultraviolet finite
quark model of meson-meson interactions.

3. Meson spectrum and weak decay constants
3.1. Light pseudoscalar and vector mesons

The parameters of the model are fixed by the fit of the masses of 7, p,
K and K* mesons as the basic quantities. Ther results are shown in the
Tables I and II.

TABLE 1

Parameters of the model

my (MeV)  mg (MeV) m, (MeV) m, (MeV) mp (MeV) A (MeV) g

198.3 198.3 413 1650 4840 3195  9.96
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TABLE 11

The masses(MeV), weak decay constants (MeV) and meson-quark coupling con-
stants h of the light mesons. M* — calculation without taking into account the
spin-field interaction.

Meson s P K K w ¢

M 140 770 496 890 770 1034

Mexp 140 770 496 890 786 1020

fp 126 - 145 - - -
xp 132 - 157 - - -

h 6.51 4.16 7.25 4.48 4.16 4.94

M* 630 864 743 970 864 1087

It is well-known, that there should be a special reason, which provides
a small pion mass and splits the masses of pseudoscalar and vector mesons.
Breaking of chiral symmetry due to the four-quark interaction and two
independent coupling constants for pseudoscalar and vector mesons (gp #
gv instead of our parameter g) play the role of such reason in the local
NJL-model. In our model the interaction of quark spin with the vacuum
field leads to the singular behavior of the quark propagator in the massless
limit and generates a non-zero quark condensate, which indicates breaking
of the chiral symmetry by the vacuum gluon field. In our case the same
spin-field interaction is responsible for small pion mass and for the mass-
splitting between P- and V-mesons. Let us compare a behavior of pion and
p-meson polarization functions II; (¢ = 0, n = 0, J = P,V) in the case
myg=myy = m, K A. Calculations give

fl,r(—z’v.fz;mu,mu; A)=0 (%—) , ﬁp(—ﬁlz;mu,mu;/l) =0(1) (24)
u

and means that the masses of pion and p-meson are strongly splitted and
m, > my when the quark mass goes to zero. The samer picture takes place
for K and K* mesons, but the effect is more smooth since the strange quark
mass is not so small.

The scalar polarization function IIg is positive for a wide range of pa-
rameter values. As a result, Eq. (21) has no real solutions for scalar mesons.
It looks interesting, that the scalar (¢g) bound states do not appear due to
the same spin-field interaction.

Consideration of the SUp(3) singlet and the eighth octet states shows
an ideal mixing both for vector and pseudoscalar mesons. The masses of
w and ¢ are in a good agreement with the experimental values (see Table
I1). An ideal mixing of the pseudoscalar states is not the case, that can
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provide an appropriate description of 77 and 1’ mesons. It is well known,
that the problem of 1 and 7' masses can be solved by taking into account
another Euclidean gluon configuration — the instanton vacuum field [12].
The instantons can be incorporated into our formalism without any principal
problems, and we hope to realize this idea in forthcoming publications.

We have considered the weak decays of # and K mesons. Results are
shown in the Table II. One could get a definite impression, that simultaneous
description of the masses of 7, K, p, K*, w and ¢ mesons, and quite accurate
values of fr and fg are obtained mostly due to the breakdown of chiral
symmetry by the spin-field interaction.

In order to clarify a status of this impression, one needs to investigate
the chiral limit of the model. It is a quite interesting problem, and we leave
it for further investigations.

3.2. Regge trajectories

It has been shown in [1], that the spectrum of radial and orbital exci-
tations of the light mesons is asymptotically equidistant:

Mzﬂn:%ln(-g—)-/l2-n +O(lnn) , for n>> £, (25)

a

M2y, =%In5-4%2-¢4 +O(lng) , for £>n. (26)
Technically this result is based on the exponential behavior of the quark
propagator (6) and vertex function F,, (18) in the Minkowski region
(p?/A? = —o0) and on the specific dependence of the coupling constant
G jon (see Eq. (15)) on the orbital and radial quantum numbers £, n. In
general words, the Regge character of the spectrum is determined in our
model by the confining properties of the vacuum field.

Numerical calculation of masses of the first orbital excitations of 7, K,
p and K* mesons by means of Eq. (21) gives the masses shown in Table III.
The super-fine structure of the excited states of p and K™ mesons coming
from classification of currents over total momentum is qualitatively correct.
Super-fine splitting of the levels with- £ = 1 is not very large.
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TABLE III

The masses (MeV) of orbital excitations of 7, K, p and K* mesons. Super-fine
structure of the £ = 1 excitation of p and K is shown (£ is the orbital momentum
and j is the total momentum (an observable spin) of a state).

Meson { j M M=*P
T 0 0 140 140
by 1 1 1252 1235
K 0 0 496 496
K,1(1270) 1 1 1263 1270
P 0 1 770 770
1 0 1238
ay 1 1 1311 1260
as 1 2 1364 1320
K* 0 1 890 890
1 0 1274
K,(1400) 1 1 1342 1400
K; 1 2 1388 1430

3.3. Heavy quarkonia

Exponential behavior of the quark propagator and vertices is responsible
for the following relation between the masses of heavy quarkonia Mgpg and
heavy quark mg in the leading approximation [1]:

MQQ = 2myq, for mqg > A.

The next-to-leading term in the mass formula can be computed

AW

QQ _ 2(v2-1) A
Y i ng2+0<m—Q)7 (27)

where Cp = 1/9, Cy = 1/18. It should be stressed, that the difference in
the constants

(P) _9A(V)
A 00 = 2A Q0 (28)
originates from the Fierz transformation of the Dirac matrices in the inter-
action term Lo in representation (1). Relation (28) means that the vector
quarkonium state is always heavier than the pseudoscalar one.

The results of numerical calculation of the masses of different heavy
quarkonia states are summarized in Tables IV and V. The fit of the heavy
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meson masses gives m, = 1650 MeV, m;, = 4840 MeV. An agreement with
the experimental values is rather satisfactory. The super-fine splitting (xco,
Xcls Xc2 and so on) is very small, since it is regulated by the terms O(1/mg)
in Eq. (21). Its description is qualitatively correct.

TABLE 1V
The spectrum of charmonium
Meson e J/ Xeo Xex Xea Y U
n 0 0 0 0 0 1 2
£ 0 0 1 1 1 0 0
J 0 1 0 1 2 1 1
M (MeV) 3000 3161 3452 3529 3531 3817 4120

M (MeV) 2980 3096 3415 3510 3556 3770 4040

TABLE V

The spectrum of bottomonium

Meson T X0 Xbo Xbo Y Xbo  Xb, Xy, 1
n 0 0 0 0 1 1 1 1 2
¢ 0 1 1 1 0 1 1 1 0
j 1 0 1 2 1 0 1 2 1

M (MeV) 9490 9767 9780 9780 10052 10212 10215 10215 10292
M<P (MeV) 9460 9860 9892 9913 10230 10235 10255 10269 10355

We conclude that the correct description of the heavy quarkonia in our
model is provided by the specific form of nonlocality of the quark and gluon
propagators induced by the vacuum field, localization of meson field at the
center of masses of constituent quarks and by a separation of the nonlocal
currents with different total momentum.

3.4. Heavy-light mesons

Another interesting sector of meson spectrum is the heavy-light mesons,
characterized by a rich physics [13, 14]. Our calculations show that in the
limit mg > A and my ~ A the leading and next-to-leading terms for the
heavy-light mesons are

J 5
Mqq = mq + AY) +0(1/mg) , (29)
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where the next-to-leading term A(QJ;_) does not depend on the heavy quark

mass mq. In particular, we get

AG) =20 MeV,  AJ) =155 MeV,

Qs =
(P) _ (V) _
Aoy =63MeV, AL =191 MeV.

Results of numerical calculation of the masses and the weak decay constants
for different pseudoscalar mesons are given in Tables V and VI.

TABLE VI

The masses and weak decay constants (MeV) of heavy-light mesons

Meson D D* D, D; B B* B, B}
M 1766 1991 1910 2142 4965 5143 5092 5202
Mexe 1869 2010 1969 2110 5278 5324 5375 5422
fp 149 - 177 - 123 - 150 -

4. Discussion

For conclusion, we would like to point out several problems, that require
more profound studying.

In order to clarify the basic assumption of this paper, one needs to get
a reliable nonperturbative estimation of the free energy density or effective
potential of QCD for the background field under consideration.

More detailed consideration of the chiral symmetry breaking by the
background field is needed.

The coupling constant g in Table I is rather large. This point also has
to be investigated carefully.
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