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After reviewing basic facts about large-order behaviour of perturba-
tion expansions in various fields of physics, I consider several alternatives
to the Borel summation method and discuss their relevance to different
physical situations. Then I convey news about the singularities in the
Borel plane in QCD, and discuss the topical subject of the resummation
of renormalon chains and its application in various QCD processes.
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1. Introduction. Some history

The problem of the high-order behaviour of the perturbation-expansion
coefficients in field theory calculations has received new interest during the
past two years. Particular attention has been paid to power corrections
to QCD predictions for hard scattering processes. One can point out two
reasons of this growing interest:

e The theoretical problem of how physical observables can be recon-
structed from their (often divergent) power expansions.

e The pragmatic need to assess the usefulness of performing the exten-
sive evaluations of multi-loop Feynman diagrams in QCD. Much effort
has been devoted to the computation of higher-order QCD perturba-
tive corrections; in some cases third-order approximations are known,
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and we seem presently to be at the border of what can be carried out
analytically or numerically in high-order perturbative calculations. So,
why next order? If the series is an asymptotic one, the next order may
represent no improvement to the lower-order result. On the contrary,
at a certain order it will lead to deterioration.

There are good reasons to believe that the vanishing convergence ra-
dius of perturbation expansions of physically relevant quantities is a general
feature of quantum theory; it has been proved in most of the theories and
models considered. Bender and Wu [1] showed in 1971 that perturbation
theory for one-dimensional quantum mechanics with a polynomial potential
is divergent, and they also discussed the very-large-order behaviour of the
perturbation coefficients. In 1976, Lipatov [2] obtained the same results for
massless renormalizable scalar field theories.

Brézin, Le Guillou and Zinn-Justin (3], applying independently the
same method to anharmonic oscillations in quantum mechanics, were able
to rederive and to generalize the results obtained by Bender and Wu.

In QED, after the pioneering work by Dyson [4], a number of papers
appeared discussing the analyticity properties of the Green functions (some
of them are cited in Refs. [5] and [6]). The growth like n! (where n is the
order of approximation) has two sources:

1. The number of diagrams grows like n!, each diagram giving a contribu-

tion of the order of 1.

2. There are types of diagrams for which the amplitude itself grows like n!

7.

Gross and Periwal (8] proved in 1988 that perturbation theory for the
bosonic string diverges for any value of the coupling constant and is not
Borel summable.

The situation in QCD is particularly complex not only because the
expansion coefficients behave like n! and are of non-alternating sign, but
also due to strong dependence of a truncated series on the renormalization
prescription. Of particular interest are situations in which the kinematic
regime allows one quantity, M say, (momentum, rest mass) to have a large
value. Then the matrix element of a QCD operator O containing quark
fields is represented by means of the operator product expansion in inverse
powers of M,

O = C1(M/1)O1(n) + 37C2(M/p) Oz (1) + O(1/M?), (1)

where p is the renormalization scale, O; are local operators of the theory
(ordered by their dimension) and C;(M/u) are the expansion coefficients,
to be calculated in perturbation theory. (As O is independent of the renor-
malization prescription, the renormalization-prescription dependence of the
quantities on the right-hand side must mutually cancel.)
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Relation (1) allows for separation of small and long-distance effects
in the process. Perturbation theory does not allow (as will be discussed
below) an unambiguous computation of the coefficients C;(M/u). This
generates an ambiguity of the order of 1/M (see [9]) in the determination of
C1(M/ ), which implies that one should not include the O(1/M) term in (1)
until Cy(M/u) has been correctly computed. Leaving aside for a while the
question what a correct computation of C(M/u) means we conclude that
the problem of a perturbative determination of Cy(M/p) has to be solved
before passing to, or simultaneously with, higher terms in the expansion
(1). In my talk I shall focus on the former subject, referring for the latter
topic to the recent review talk [9] and references therein.

TABLE I
High-order behaviour of perturbation expansion coefficients
Theory Notation and references High-order behaviour
1 Disp. relation Imf(z) ~ 27 %2/* Jfa~(=a)"I'(n +b)
2 Anharmonic En=3 o Enng" Emn~(=3)"n!
oscillator (1]
3 Anharmonic Hg)~ [ el=2?12=0a gy [, ~ (-1)" £ n!
oscillator, ¢* [1, 11]
4 Instantons, m > 6, [2, 10] Cr(m) ~ (—a)"e"(l_"‘/z)n(m"'D)/2
D=2 m =4, [2] Cn(4) ~ (55255)"n*
5 Field theories 2= Za(~5)" Zn ~ Cn®A™" !
without fermions [3, 13-16]
6 Field theories [11] fn ~I'(n42)
with fermions [17] Jfar~ (—'CY)"AnnF(%")
7 Yukawa theories  [11] Zn r~ n“"A‘"cos(”T")F(nd—;%)
d=2 (18] Zn~A""(Inn)"
8 QED (17, 19] Zn ~ (=1)"A"T(5n)
9 QCD [20] ~ A" n!
10 Bosonic strings  h is # of handles, [8] ~ h!

Table I gives a survey of the large-order behaviour of the expansion
coefficients in some typical theories and models. It is intended for first
information and should not be used for systematic analyses because some
important conditions or restrictions are not mentioned. (Let me also point
out that references in the Table as well as in the talk as a whole are often
made not to the original papers but rather to reviews or more recent papers.
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As a result, a number of relevant valuable papers are not quoted; I apologize
to their authors.) For details the reader is referred to the original papers
and to the anthology by LeGuillou and Zinn—Justin [6](which contains a list
of references till 1990).

The series are divergent in all the cases indicated, with vanishing radius
of convergence. In this connection, two remarks are in order. The first
is that the estimates are based only on certain subclasses of higher-order
diagrams which, in the case of QED (QCD), are obtained by inserting an
arbitrary number of fermion loops into the photon (gluon) lines of the lowest-
order radiative correction. It is not known what additional contributions
come from other diagrams; whether they are negligible or give the same or
even a greater contribution, or finally whether they cause cancellations in
the original estimate.

The second remark I want to make is as follows. In most of the items
of Table I, the coefficients exhibit factorial large-order growth (items 1-5, 9
and 10). It would however be misleading to conclude that all these theories
face the same divergence and ambiguity problems, which could be treated
in the same way. Knowledge of the high-order behaviour shows only one
part of the problem of a perturbation expansion, the other ones being those
of summability and of uniqueness of the summability prescription. Some
details are discussed in Sections 2 and 3.

2. Useful facts on power series

Certain important facts on power series are overlooked in physical con-
siderations. It may therefore be useful to recall some of them here because
spontaneous intuition is often misleading.

1. The divergence of a perturbation expansion does not signal an in-
consistency of the theory. (See an analogue in item 5.)

The problem is not that of convergence or divergence, but whether
the expansion uniquely determines the function or not. The method of
Feynman diagrams allows one to find, at least in principle, all coefficients
of the perturbation series, which may determine the function uniquely even
if it is divergent and may not do so even if it is convergent. This depends
on additional conditions.

2. The requirement of asymptoticity of a perturbation series,

f(z) ~ Z anz", (2)
n=0

is not a formal assumption. It has physical content.
When a perturbation series is divergent, it is usually re-interpreted as
an asymptotic series. This is a weaker assumption, but not a technical one.
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It is by no means trivial; it physically means that there is a very smooth
transition between the system with interaction and the system without it.
For certain classes of observables the perturbation series is believed to be
an asymptotic expansion.

3. If f(z) is singular at the origin, its asymptotic expansion (2) may be
a convergent series.

Consider for example the function f(z) = g(z)+Ae~%/* with A real and
o positive, where g(z) is analytic at the origin: the asymptotic expansion
of the singular function f(z) in the right complex halfplane is a convergent
series. This convergent series is asymptotic to many functions (most of
which are singular at the origin), but its values converge only to one of
them, g(z). They do so inside the Taylor circle, which extends to the nearest
singularity of g(z).

4. A very violent behaviour of the expansion coefficients a, at n — oo
might make us expect that no function with the property f(z) ~ Y o—; anz"
would exist. This fear is not justified; it was proved by Borel and Carle-
man (see [21] for details) that there are analytic functions corresponding to
arbitrary asymptotic power series.

5. Borel non-summability of a perturbation expansion alone does not
signal an inconsistency or ambiguity in the theory.

The Borel procedure is just one of many possible summation methods
and need not be applicable always and everywhere. The problem is to find
a method (not necessarily the Borel one) which is appropriate for the case
considered.

6. If the a, behave very violently at n — oo (so that the Borel series
Y oneo 232" has zero convergence radius) one might expect that it would be
sufficient to replace n! in the denominator by a sequence b,, that grows faster
than n!, in order to reach a more efficient suppression of the a,. This can of
course be done, but the price to pay for this is that stronger conditions on
analyticity will be required for the summation procedure to be unambiguous.
Analyticity of the ction expanded must be examined simultaneously with
the asymptotic expansion, otherwise the same series can be summed to

different functions.

We can conclude (and will elaborate below) that uniqueness of a sum-
mation procedure (in other words, recoverability of a function by means
of its asymptotic series, see [5]) requires a balance between high-order be-
haviour of the series and the analyticity domain of f(z). A violent high-
order behaviour can lead to a unique definition only if “enough analyticity”
is available.
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3. Analyticity vs. high-order behaviour: balance for uniqueness

How to deal with divergent series and under what conditions a power
series can uniquely determine the expanded function are questions of funda-
mental importance in quantum theory. Power expansions are badly needed
in physics but to ensure that they have precise meaning additional condi-
tions are required. These additional conditions should reflect some physical
features of the system.

The fact that the expansion coefficients, which grow asymptotically
like n!, are of constant, non-alternating sign, is the origin of most problems
connected with the uniqueness of perturbative expansions in QCD.

Let us discuss a simple example to illustrate this crucial point. Consider
a generic quantity D, calculated in perturbation theory with coupling z,

oo
=Y anz". (3)
n=0

This can be re-written as

= i anz"(l/n!)/dte_ttn. (4)
0

If the series (3) has a non-vanishing convergence radius r, the integration in
(4) can be exchanged with the sum. If, on the other hand, the convergence
radius is zero, r = 0, we can give the series meaning by exchanging the order
of integration and summation. In either case we obtain

D(z) = /dt —tzan (zf /dt ~tB(zt), (5)

where B(zt) is the Borel transform of D(z). Taking a¢, = n! (finite-order
coeflicients are irrelevant for the character of singularities) we obtain

T 1
D(z) = [ dte™ : 6
() = [ate™t Q
0

This integral does not exist for z positive, nor is defined the Borel sum
of such a series. The summation can be defined in many ways; there are
infinitely many functions with the asymptotic expansion ¥ oo, n!z"

Note that non-uniqueness of the summation prescription is not a math-
ematical difficulty; it rather signals lack (or insufficient use) of physics in the
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theory. There are two kinds of conditions for a function f(z) to be uniquely
determined by its asymptotic expansion Y anz™. The function must

(i) have a sufficiently large analyticity domain K

(11) satisfy upper bounds (uniform in z and N) on the remainder f(z) —

Zév anz™ for each N above a certain value. When K has a small open-

ing angle at the origin, the inequalities must be sufficiently restrictive

in order to reach uniqueness. If the angle is large enough, the condition

(ii) may be weakened.

Let us sketch how this works in the case of the Borel summation method.
The series (2) is called Borel summable if

a) its Borel transform,
oo

B(t) = Y_ ant"/n!, (7)

n=0)

converges inside some circle, | ¢ |[< §, § > 0;
b) B(t) has an analytic continuation to a neighbourhood of the positive
real semiaxis Re t > 0, and

c) the integral
o0

o) = [e =B, (®)
0

called the Borel sum, converges for some z # 0.

Nevanlinna [22] gave the following criterion of Borel summability:

Let f(z) be analytic in the domain K(7) defined by the inequality
Re-i- > % (with 7 positive), a disc of radius %—77 bisected by the positive
real semiaxis and tangent to the imaginary axis (see Fig. 1(a)), and let f(z)
have the asymptotic expansion (2). If the rémainder Ry(z) after subtract-
ing N terms from f(z),

N-1
=f(z) = ) an2" (9)
n=0
is bounded by the inequality
| Rn(2) |< AcV N1z |V (10)

uniformly for all z € K(7n) and all N above some value Ny, then the sum is
determined uniquely and has the form (8) for all zeK (7).

For other types of regions, similar theorems hold with modified regions.
Details are exposed, along with references, in the review [23]; a survey of
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(a) (c)
(b)

Fig. 1. Three summation methods for three different analyticity and boundedness
domains: (a) the disc K(n), (b) the drop K(7, p), and (c) the wedge W. Crucial
is not the size of the domain, but the opening angle at the origin.

typical cases is given in Table II, together with conditions for a unique
determination of f(z) from its asymptotic expansion.

TABLE I

Analyticity vs. high-order behaviour: a balance is needed for uniqueness.

(2)at z2=0 Uniform bound Transform Summation
on Ry(z)
1 analytic S o Gn2"
is convergent

2 singular, AcV N1 2 | B(t) = g(z) =

fe el
opening angle = 7  in K(n)and N > No Yo -lz‘f e"t/ZB(t)dt

0
3 singular, AcV(NOY? | 2 |V B,(t) = golz) = %Oftllp"l
opening angle > 0 in K{n,p), N> No o F—(“nn;-% exp(—t'/P)B,(tz)dt
4 singular, Au(N)| =z |V M(t) = gm(z) = [ M(tz)

0

opening angle = 0 in wedge W, N > Ny 3o, S t” exp(—e’)dt

n=0 pu(n)

The function u(n) used in Table II is defined as follows (see [25] for
theorems relevant to the wedge-shaped analyticity region)

u(n) = /exp(—et)t"dt. (11)
0
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Note the double exponential function in the integrand, which implies a
(In»)™ behaviour of the function p(n) at large n.

The disc K (n), the "drop” K (7, p) and the wedge W are depicted in
Figs. 1 (a), (b), and (c) respectively. The general rule for the use of Table
2 is as follows: To ascertain uniqueness in the determination of a function
f(z) out of its asymptotic series (2), one has to check if the conditions in
all columns in one row are satisfied for the case considered; otherwise the
function is either overdetermined or not uniquely determined. In QCD,
where the function is, according to [24], analytic only in the wedge W (see
row 4 of Table II), but the a, behave like n! at large orders (row 2 of column
2}, the function is not uniquely determined by its perturbation expansion
and the situation calls for additional (nonperturbative) information.

A simultaneous use of Table I and Table II can tell us to what extent
physical observables and Green’s functions can be reconstructed from the
asymptotic series (2) in a theory. Taking, for instance, the QCD large-
order behaviour, A NYN!, from Table I (item 9), we obtain in Table II the
uniform bound in the 2nd row to be valid on the whole disc K(7) of the
complex coupling constant plane as the condition for uniqueness. Of course,
we do not expect uniqueness in perturbative QCD and it is therefore not a
surprise that the actual region of analyticity of two-point Green functions
in QCD is much smaller, having the form of a horn with zero opening angle
at the origin !, i.e., row 4 of Table II and Fig. 1(c).

"able II also shows that the large-order behaviour of the coefficients a,,
is not the only criterion of the (Borel or some other) summability of the
series (2). Fven a series with a very tame behaviour of the coefficients a,
may not be Borel summable, in spite of the radical suppression of the a, by
the Borel factors n!. An example is discussed in [26].

4. Generalized Borel transforms

1. The functions B,(t) and M (t) defined in Table II are generalizations
of the Borel transform, which can be used in the various situations listed
in Table I to reduce non-uniqueness, provided some additional information
is available. More about the properties of B,(t) and M (t) can be found in
[25-27, 23] and in references therein.

! This nonperturbative result (see ’t Hooft [24]) is obtained by combining ana-
lyticity and unitarity of two-point Green functions in the complex momentum
squared plane with asymptotic freedom. Of interest is a remark by Moroz
[26] that the use of the Callan-Symanzik equation is not crucial in 't Hooft’s
argument, which works also if theoretical evidence of asymptotic freedom is
replaced by the experimental one (if available). Then the argument is free of
the problem of a suitable definition of the coupling constant.
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2. I will now discuss another type of generalization of the notion of Borel
transform, [28-30], which makes use of specific structures of singularities
that are typical for QED and QCD.

Let me first make a general remark. Until now I have been mostly ex-
posing mathematical methods. Now I will pass to some practical aspects of
my talk, assuming that two-point Green’s functions have special singular-
ities, the renormalons, in the Borel plane, a structure that is now almost
universally adopted. These ideas are based on various mathematical models
developed in late 70’s and early 80’s, but nowadays these features are often
considered as true features of Nature. With this reservation I am passing
to this subject.

The electromagnetic current-current correlation function is a useful ex-
ample to explain a typical structure of singularities in the complex coupling-
constant plane. Denoting this function IT#¥,

= / dtzeH% < 0| T(54(z)5(0)) | 0> (12)
= (¢""¢* - ¢*¢") 1 (—¢*) (13)

and taking R, the ratio of the total cross section for ete~ — hadrons to
that for ete™ — muon pairs, which is related to its imaginary part,

R(s) = 12xImII (s +i0%), (14)

one introduces a modified quantity I7 defined as

. d
2y 22 2
(@) = -47°Q* (35 1@ (15)
(where Q? = —¢?), to avoid inessential logarithmic terms. The perturbation
expansion of II in the powers of the coupling constant has the form

7 2

p Z I (as(Q7)™
n=0
The dependence of IT on a,(Q?) exhibits a complex structure of singularities
in the coupling constant complex plane at and around the origin [24]. Their
nature can be conveniently displayed when studied in the Borel plane as
singularities of the corresponding Borel transform. Perturbation theory
suggests the following structure of the singularities of the Borel transform
[29]:

(1) Instanton-antiinstanton pairs [2, 3] generate equidistant singularities
along the positive real axis starting at t = 4, for t = 4{,1 = 1,2, .... Balitsky
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[31] calculated the behaviour of R,+ .- _padrons N€ar t = 4 and found the
leading I — I singularity to be a branch point of strength < LL(Ng— N), where
N and Ny is the number of colours and of flavours respectlvely

(2) Ultraviolet renormalons are generated by contributions behaving
as cjy1 ~ (=bo/)*k!, for | = 1,2,..., leading to singularities located at
t = —2l/bp on the negative real axis. Near the first of the points, [ = 1, the
singularity is (bot +2) 117, where 7 is related to the anomalous dimension
of local operators of dimension 6.

(3) Infrared renormalons are generated by contributions behaving as
ciy1 ~ (-.bo/DFK! 1 = 2,3, ..., leading to singularities located at ¢ = {/bo.
Near the first of the points the singularity behaves as [20] (bot —4) ~1=2*/%o.

Brown, Yaffe and Zhai and Beneke [28-30] use the information about
the structure of the first infrared renormalon. Expanding ImII and II in
powers of the coupling constant with the expansion coefficients a,, and ¢,
respectively and defining their respective Borel transforms

oo
nan
= L — A 17
and o~
- ney
C(Z) =cg + Z m—l)zn s (18)
n=1

they obtain by comparing the expansion coefficients [28] the following rela-
tion between A and C"

A(z) = sin(bp2)C(z), (19)

which turns out to be a consequence of renormalization-group invariance
[30]. Defining a modified Borel transform F(z) by

(14 Az2) "
F(z) = E TR Az) e fu2 (20)

(thereby accounting for the first infrared renormalon), the authors of [29]
and [30] consider the case of a general beta function, which they choose in
such a scheme that its inverse contains two terms:

1/8(g%) = —1/(bog*) + X/ (bog?) - (21)

They find that, for this form of 8(g?), the relation (19) remains valid also
for A(z) and C(z), the modified (according to (20)) Borel transforms of ImI1
and II respectively:

A(z) =sin(bgz)C(z) . (22)
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It was already pointed out that the concept of renormalon is presently
applied to concrete physical situations. This poses the topical problem to
what extent renormalons are physical concepts and to what extent they are
just artefacts of our, maybe inadequate, formalism.

Table 3 gives a survey of singularities in the Borel plane.

TABLE 111
Singularities in the Borel plane SU{N} QCD
I -1 pairs UV renormalons IR renormalons
position t=4,8,12,... =2/b, 1=1,2,... 2/bs, 1=2,3,...
strength L(N¢=N) (bot + 1)~ (bot — 2)~ 1727/ bo
of the first [31] A = by [bo, [20]

singularity

5. Remarkable phenomena in the Borel plane

A look at the Table III reveals that the positions of the singularities in
the Borel plane as well as their strength depend on N and Ny and will thus
change as they are varied. This is relevant to our discussion because the
position and strength of the singularities nearest to the origin of the Borel
plane determine the large-order properties of the perturbation expansion.
This phenomenon was recently discussed by Lovett-Turner and Maxwell
(32]. Here I'shall repeat a part of the analysis made in Ref. [32] and condense,
with a few additions, a discussion I had with the second of the authors on
this topic.

1. The instanton-antiinstanton pairs are covered by the infrared renor-
malons if Ny = N(mod3). This follows from the condition 4n = 2[/bg,
where by = (11N — 2Ny)/6.

2. The first instanton-antiinstanton singularity (¢ = 4) disappears if
Nt > N and Ny = N (mod 6).

3. Take N = 3 and Ny = 15 as a special case of item 1. Then by = —%
and the [-th infrared renormalon coincides with the I-th I — 1 pair. Since
the first renormalon, [ = 1, does not exist, the leading singularity is the first
I -1 pair.

4. If Ny =16, by = % and the first infrared renormalon is located at
t = 24, coinciding with the 6th I — I pair. The items 3 and 4 are examples
of situations in which, contrary to common opinion, instantons play an
important role in large-order behaviour. Analogous situations occur for
different values of N; it generally holds that when the number of flavours
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is sufficiently high (approaching the flavour-saturation value), instantons
become more important than renormalons.

5. If, on the other hand, the number of flavours decreases, the impor-
tance of renormalons increases. For Ny = 0, by = %I—N and the density of
renormalons is the highest; for 3 colours, there are 9 infrared renormalons
below the first I — I pair, which covers with the 10th of them.

6. The case Ny = 15, N = 3 is very special also from the point of view
of the strength of the infrared renormalon singularity, whose power is 44
in this case. Because of this, the nearest infrared singularity disappears,
but also the nearest instanton-antiinstanton singularity disappears, because
15= 3 (mod 6), as required in the item 2 of this list.

7. It is worth mentioning that if another plane than the Borel one is
chosen (see Table II, p # 1), all the singularities in the Borel plane either
shrink to the origin or run away towards infinity.

Besides these general properties of the singularities in the Borel plane,
considerable progress has been made in recent years in the knowledge of
the singularities in the Borel plane in special physical systems and special
functions. In particular, much is known in the case of heavy-light and
heavy-heavy quark systems. So, in the large-N; approximation there is
a finite set of renormalon singularities [33] and a discrete infinity of the
renormalon poles. Also, in the case of heavy-light quark-antiquark systems
the structure of singularities in the Borel plane is known.

Effects of renormalons have also been studied in application to heavy
quark physics; see [43] for renormalons in heavy-quark pole mass, (38, 39]
for renormalons in inclusive heavy-quark decay rates and [38] for the case
of exclusive decay rates. Connection between renormalons and power diver-
gencies in heavy-quark physics was studied in [40].

6. Resummation of renormalon chains

The renewed interest in calculating higher-order perturbative correc-
tions and in examining the high-order behaviour of perturbative series is
intimately related to the investigation of renormalization scale and scheme
dependence of a truncated series as well as to attempts to estimate its un-
calculated remainder. In the past various criteria of finding a suitable renor-
malization prescription were proposed; they are based on an estimate of the
size of the remainder. Examples are Stevenson’s principle of minimal sensi-
tivity [34], Grunberg’s notion of effective charge [35], and the BLM method
of scale setting [36] by Brodsky, Lepage and Mackenzie. The BLM method,
which is based on an analogy with QED, was recently further developed and
I shall briefly comment on it.

The BLM prescription is a method of estimating higher-order perturba-
tive corrections of a physical quantity provided that the first approximation
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is known. It consists in the use of some “average virtuality” as scale in the
running coupling. Instead of working with fixed scale,

(@) [ dtkF(1.@), (23)
one averages over the logarithm of the gluon momentum:
2 4 2 4 Bo 2y 1. —K?
as(@prm) [ kF(k, Q! =0,(Q7) [d7k (1 - as(Q )ln*éz— F(k,Q).

(24)
This replacement amounts to acounting for higher-order terms in powers of
a5(Q*) by making use of the renormalization-group evolution

o0 o ) n-1
o) =@ Y (B gt )

n=1

and retaining only the first two terms in the sum. This approach was re-
cently generalized [37, 41, 42] by introducing the running coupling constant
4 (k?) directly into the vertices of Feynman diagrams, with k being the mo-
mentum "flowing” through the line of the virtual gluon. This modification
means replacement of (24) by

as(@"2) / dEF(k, Q) = / dtkary(~k2) F(k, Q) (26)

with as(z?) = 47/(Boln ;\—#) Note, however, that the beta function
Qcp

B(as(Q?)) is approximated by its first term only.

This method has been applied in phenomenology to various physical
observables, like 7 decay hadronic width and heavy-quark pole mass [45,
42], semileptonic B meson decay [44] and the Drell-Yan process [45]. The
method makes maximal use of the information contained in one-loop per-
turbative corrections combined with the one-loop running of the effective
coupling, thereby providing a natural extension of the BLM scale-fixing
prescription.

Ellis et al. [46] use Padé approximants to develop another method of
resumming the QCD perturbative series. The authors test their method on
various known QCD results and find that it works very well.
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7. Concluding remarks. Criticism

A typical feature of the present status of the QCD perturbative correc-
tions is the trend to avoid explicit calculation of higher order corrections
and, instead, to improve the result by making full use of some additional
information we may dispose of. Such information may be, for instance, the
renormalization group invariance (which allows one to introduce the running
coupling constant instead of the fixed one), analyticity, or the structure of
singularities in the Borel plane (where the regular location of singularities,
to be approximated by poles, suggests the use of Padé approximants).

As already mentioned, the notion of renormalons, originally introduced
and used to investigate interesting mathematical models, is now widely con-
sidered to have concrete background in physical phenomena. This universal
belief meets with criticism that argues that the singularities in the Borel
plane are nothing but products of special choice of the renormalization pre-
scription [47]. Methods generalizing the scale-setting procedure developed
by Brodsky, Lepage and Mackenzie meet with criticism [48] arguing that
the approach is not fully independent of the choice of renormalization pre-
scription. Further research will clarify the issue.

It seems that the present effort in further developing the idea of renor-
malon and the corresponding formalism will be helpful in finding a language
appropriate for physical ideas in the nonperturbative sector. Generalizations
of the scale-setting procedures are valuable by implementing new physical
information without calculating higher-order perturbative corrections (what
is not only cumbersome but also doubtful, due to divergence of the series), by
using some additional, perturbatively independent information. This idea
is not new, appearing in theoretical physics whenever technical difficulties
force one to look for methods allowing the exploitation of all information on
the system, including such that the existing formalism does not adequately
take into account.

I am indebted to Professor Ryszard Raczka and members of the Orga-
nizing Committee for this marvellous meeting and for creating the scientific
atmosphere. I would like to thank Patricia Ball, Vladimir Braun, Chris
Maxwell and Chris Sachrajda for numerous stimulating discussions, and
Patricia Ball, Alexander Moroz and Matthias Neubert for carefully reading
the manuscript and valuable comments. Hospitality of the CERN TH Divi-
sion and support by the Grant Agency of the Czech Republic are gratefully
acknowledged.
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