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QCD Sum Rules are used to study nonperturbative behaviour of quark
propagators. Instead of using operator product expansion, we use Dyson-
Schwinger equations and Ward-Takahashi identity. We found that good
agreement with the data is obtained for logarithmically divergent effective
quark mass.

PACS numbers: 12.38. Lg

1. QCD spectral sum rules

The basic object used in the sum rules is a current with quantum num-
bers of the states to be investigated. In the simplest case it may be vector
current build from quarks

Iy =ar"q, (1)
where appropriate summation over implicit- color and flavor indices is as-
sumed. Other simple possibilities are scalar, pseudoscalar and axial vector
currents

Js=7qq, Jp=1igysq, J4 =qvs7"q. (2)
Correlator of such currents (we confine here to the vector case)
11#"(q2)::ijfd4wewx(0}I(J#(x)J”(ONO) (3)
is related to its imaginary part
1 [ImII(s)
Hh== [ —=1d 4
) =1 [ s, @
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where IT(¢?) is defined by relation

(¢"¢" - ¢*¢") I (¢*) = 1" (¢%) . (5)
On the other hand, due to the optical theorem, Im II(s) is related to spec-

trum of hadrons with quantum numbers given by J#. This may be approx-
imately written as

9rm?
ImH(s):}I; 4£2R5(5—m,{)+——(1+ 22)o(s - s0),  (6)

where summation is performed over resonances with the same quantum
numbers as the current J#, mp is mass of the resonance R, and gpg is its
coupling to the current. For vector currents gg may be related to electronic
width of the resonance I'p

4ra’mp

T (™)

9k =
For large space-like s L.H.S. of (6) may be calculated perturbatively, and
for small s R.H.S. of (6) is reasonably approximated by lowest resonances.
The basic idea of the standard approach is to choose smallest s such that
II(s) may be calculated perturbatively with nonperturbative SVZ-like [1]
improvements. In actual calculations, instead of using directly relation (6),
there are used two main methods: moments — for heavy quarks, and Borel
(Laplace) transformation — for light quarks [7]. In what follows we will use

moment sum rules to both cases.
Moments of II(s) are defined by

ImH 1 d n 2
v = [ as= 1 () 1

M, calculated using experimental data equals
2 2n n
e = 0 |1y (mR) # i L (14%) (m_R) ,
4gR1mR1 Si{9r, \™R; n4nr T B
(9)

where mp, and mpg, are the parameters of the lowest lying resonance.
Considering ratios of the moments

Tn = (10)
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for high n we immediately obtain r, m};f Thus our aim is to calculate
Ty theoretically.

2. Theoretical calculation of M,

M, is usually calculated semi-perturbatively using operator product
expansion and assuming that only lowest twist condensates are relevant to
this case. Our proposition is to use here truly nonperturbative propaga-
tors. In fact, we are not intended to calculate mpg,, but rather to check
experimentally favoured behaviour of the quark propagator. We start from
Dyson-Schwinger equation for IT#¥

4
m() = [ G Se+ o e+ anSw) . a
where S(p) is full (nonperturbative) quark propagator, I'*(p + ¢, p) is full,
one particle irreducible quark-current vertex and I} is bare quark-current
vertex (for vector current it is simply v?).

If we confine to electromagnetic current (vector) case, then I'*(p+q, p)
should satisfy Ward-Takahashi identity

Gl (p+a,p) =S p+9) -5 (n). (12)
One may divide I'*(p + ¢, p) into two parts
r'“p+q,p)=Ifp+a,p)+ Irp+a,p), (13)
where I'f'(p + ¢, p) (longitudinal part) alone satisfies (12) and
wlr(p+4a,p)=0,  Li(p,p)=0. (14)
From (14) it follows that for small ¢?
I'“(p,p) = I';(pp). (15)

Thus for any given S we may calculate I7(¢?> = 0) (unfortunately it is
divergent), and (with accuracy decreasing with n) moments M,,.
The simplest I'} (k, p) (12) (gauge technique [2]) is

1 1

" _ I3
SWTE (k. D)S(E) = [ p(o) et —do, (16

where it is assumed spectral representation for S(p)

ﬂ@=/;ﬁ¥%&z. (17)
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Eq. (16) may be written also in another form, without using spectral rep-
resentation

k2A(k?) — p? A(p? A(k?) — A(p?
_kCA(RY) —pAp )7u+ (k2)_p2(p )v-k'r“v-p

S(k)I'L ,+(k,p)S(p)

k2 — p2
B(kz)_B(pZ) m u
= sl GRS A 28 (18)

where S(p) = A(p?)y - p+ B(p?).
Another I't, was proposed by Ball and Chiu [3]

R 1 (p+R)* (E(K) D)
I't go(k,p) =5 (Z(kz) T Z(p2)) S k2 p? (Z(kz) - Z(Pz))
1(y-k+7y- plk+p* [ 1 1
g (- ) O
where S0o) = _____Z_(p2_ 20)
A

If one consider perturbative S then both those I'* have improper large
momentum behaviour. To remedy this situation there were proposed ap-
propriate transversal parts of I'. For I'} gt [4]:

yH(k? - p?) — (k+p)*(v-k—7-p)
D(k,p) ’
(21)

S(k)TE S (p) = (Z(k?) — Z(p?))

where simplest D(k, p) = (k? +p2)2.
For I f’ o (19) appropriate form of transverse vertex was proposed by
Curtis and Pennington [5]

o _1( 1 1\ *(k* —p*)— (k+p) (v k—v-p)
0 no =3 (75~ z6) (k. p) 22)

2
with d(k,p) = <k2—1’2)2+(kglgj)+M(k2)) .
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3. Heavy quark (charm) mesons
For vector charmed mesons we take
JH =¢yte. (23)

In this case usual expression for M, including one loop corrections and
gluon condensate, is

1
M, = o Wn (14 asan + b,9), (24)

c

where m, is ¢ quark mass,

3 2%(n+ 1) {(n-1)! . 4n?
b=

472 (2n + 3HN22n 9 <O

Wy =

as
7 GG

0) / (4m?)?,
and coefficients a,, and b, may be found in [6].
Taking I'* = I'}. gt (see (18)) and using Dyson—-Schwinger equation (11)

we obtain
1 d""lA(qQ)

(n—1)! (dg?)"~1
where S(p) = A(p*)y - p+ B(p?).

For I'* =T} pc there is no simple expression for M, and moments
were calculated numerically.

M, =- *Wq, (25}

Results for heavy quarks
e For I'* = Fllj,gt simplest quark propagator giving good agreement
(within 1% for r,, n < 8) with data is

1

v-p—m(p?)’ (26)

S(p) =
where m(p?) = mg [1 —6In(1 - L;):l with mp = 1.28GeV, § = 0.06.
My

e The case I'* = F;,L,CP agrees with the case I'* = Ff’gt within 3%.
o Taking I'* = I'f' g + I'}f g gives another 3%.

e For ['* = F}j gt T ry gt moments My, are divergent.



2588 J. JasiAk
4. Light quark mesons
For light quarks we consider a current
J* = L(uy*u — dy*d) (27)

corresponding to p meson family. For null quark mass perturbative expres-
sions for M, are divergent even in the lowest order, as may be easily seen
from (24). But, on the other hand, nothing special happens for the same
moments calculated from experimental data using (9)!

We assume that null current quark mass means that

S(p) = A(P*)y - p+0 (28)

as it should be in the chiral limit.
Taking I'* = I'}' gt We again obtain for M, expression (25).
In this case Ball and Chiu vertex (19) takes simpler form

B 1 1
1t seten = (75 * 769)

Ly-k+v-plb+p* ([ 1 1
R (e ) -

Expression for M, is in this case much simpler and very close to (25)

1 dn_lA(q2) '
Mn = =T gyt

(30)

where coefficients w!, were calculated fiumerically and differ only slightly
from wy,.

Results for light quarks

o For I'* = I“g gt good agreement with the data (within 1.5% for n < 6)
is for

S() = ey (31)

where m(p?) = mg |1 — %ln(l - %27):‘ with mg = 0.29GeV, § = 0.05.
0

o The case I'* = I'}’ p agrees with the case I'* = I'; . within 2.5%.
e [H = FIlj,BC + F’#,BC’ leads to divergent M,,.

e For 't =T#% 4+ T'Y  moments M, are divergent.
L,gt T,gt g
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Divergence of My, coming from considered F:f,f, does not mean that our

approach is inaccurate, but rather that those F:’pt are wrong — we remind:
experimental data does not lead to divergences in M.

5. Discussion and conclusions

At first view it seems that presented approach to bound states cannot
be correct. As one can learn from Bethe-Salpeter equation for positron-
ium, bound states come from infinite ladder of photon propagators, and
in fact all the information about these states is contained in the electron—
photon vertex. But usual QCD sum rules approach with perturbatively
calculated coefficients in Wilson expansion and phenomenologically treated
condensates also does not contain infinite ladder of propagators. Since many
people claims that this approach works good, there is no reason to reject the
method based on Dyson-Schwinger equation and Ward-Takahashi identity.

Our results for heavy quark system are close to everyone’s expectations:
c quark propagator does not differs much from the usual non confined propa-
gator. We found that logaritmically divergent mass leads to good agreement
with the data, but since we expect agreement only with first few moments
and modification to the constant mass is rather small, other parametrisa-
tions are also possible.

The situation is quite different for light quarks. From the above analysis
it seems clear that the light quark propagator does not contain pole for
p? = 0. For small momenta chiral symmetric part of the propagator behaves
like usual propagator with mass close to the nucleon mass divided by 3.
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