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Nonzero quark and gluon condensates generate nonzero value of pion
mass, even in the zero limit of current quark mass. In turn, the nonzero p
meson width is due to the nonzero pion mass. Nonzero quark and gluon
condensates are also necessary conditions for permanent confinement of
quarks and gluons. The notion of permanent confinement means: (7) the
nonexistence of any asymptotic quark or gluon states, (%i) the nonexis-
tence of any asymptotic continuum partonic states, and (%) the nonexis-
tence of any colourfull bound systems. Only colourless hadrons composed
of permanently confined partons are present. These hadrons must be cal-
culated as solutions of truly relativistic bound state equations. Masses of
constituent quarks are defined in hadrons, and crucially depend on the
magnitude of a space-like Wightman—Garding relative momentum. The
dominating binding potential of constituents in hadrons is the QCD ana-
log of Coulomb interaction. There is no place for any interaction between
constituents which could increase indefinitely with a space-like separa-
tion of constituents. For example, a linear interaction, with singularity
(¢—¢')~* in momentum space, is ruled out on two grounds: (i) as contra-
dicting Dyson—Schwinger equations, and (i) as being in conflict with the
cluster property of local QCD, if there is a nonzero mass gap. For QCD
with quark condensate for up and down quarks the Goldstone theorem
fails. If it would hold it would require massless pion for massless quarks,
and the possibility of approximating the pion field by a local field. Non-
perturbative QCD with permanently confined quarks says “no” to both
of these claims.
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1. Introduction

AQCD is truly nonperturbative QCD mass scale. It arrises from di-
mensional transmutation when proving asymptotic freedom in the domain
of large space-like virtualities. For these virtualities there are absent any
physical singularities, and perturbative QCD calculations are appropriate.
In the nonperturbative domain of QCD beside AQCD there are other mass
scales such as the quark and gluon condensate mass scales. These mass
scales are of the same order of magnitude as AQCD'

The mass scales of quark and gluon condensates are present in the trace
of the QCD energy momentum tensor

a —
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where (| & : G9,G¢” i) = v* is the gluon condensate with Shifman-

Veinshtein -Zakharov [1] mass scale v = 331 MeV, 7, is the mass anomalous
dimension, my is the current quark mass of the QCD Lagrangian density,

and Yy is sum over all flavours. The quark condensate is (| Va : ¥ i

) = —x3, with /& to account for the same logarithmic factor as provided
by the variation of m¢ under the renormalization group equation, to make

(| vV : 99 :|) independendent of any momentum scale. For u (d), s, c,
b, and t quarks the mass scale x is approximately equal to the following
fractions of GeV:1/4,1/5,1/10, 0.06, and 0.02, respectively. More precisely,
the mass scale x is: 240 MeV for u and d quarks, 222 MeV for s quark, 90
MeV for ¢ quark, 60 MeV for b quark, and 20 MeV for t quark.

The dynamical origin of x and v is still unknown except for their pres-
ence in ©%, and at this moment the numerical values of x and v must be
taken from phenomenological fits such as the QCD sum rules. However,
once these condensates are recognized as being nonzero, then we can self-
consistently reproduce their values from nonlinear equations which arrise if
we calculate a vacuum-to-vacuum transition by closing up in the position
space either quark or gluon line. In these closed loops we put nonperturba-
tive propagators, and for renormalization purpose we have to subtract loops
corresponding to perturbative propagators.

The condensate mass scales x and v are also present in the residua of
physical singularities, in inverses of quark and gluon propagators [2],
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where m is the current quark mass, and M is the mass of the corresponding
pseudoscalar meson: 7 for u, d; K for s; D for ¢; and B for b.

In the above expression for S~!(p) beside the mass scale x there is also
the mass M of pseudoscalar meson. The value of M is uniquelly determined
from truly relativistic bound state equation as the position of the physical
pole for this hadron which is the pseudoscalar meson.

M is also the physical pole, in the sense of the Feynman pole, in
the quark- gluon-quark three-point vertex function. This is demanded by
Slavnov—Taylor identities, and the Feynman singularity at p?> = M? pro-
duces a nonzero absorptive part and results in the nonzero cross section mea-
sured in the experimental counters after quarks and gluons undergo a soft
hadronization. In the language of high energy physics the soft hadronization
is manifestation of the “Local Parton - Hadron Duality”, with “Local” refer-
ing to momentum space, and “Duality” meaning that after soft hadroniza-
tion (also known as the “soft blanching”), hadrons follow colourless clusters
of parent partons in momentum space.

Physical singularities present in Eq. (2), together with corresponding
singularities in three-point vertex functions, allow us to solve exactly at
these singularities a decoupled finite subset of Dyson-Schwinger equations.
The mathematical basis for this solution are nonperturbative logarithms of
Stingl [3] directly connected with ultra-violet divergences of loops and their
renormalization. The square of unrenormalized coupling constant, present
in Dyson-Schwinger equations, is canceled out by a sum of a nonpertur-
bative logarithm and a divergent term in dimensional regularization. For
such cancelation to take place it is essential that the remormalized running
coupling constant is small for an arbitrarly small parton virtuality.

In three-point vertex functions there are two sets of singularities: (%)
singularities demanded by Slavnov-Tylor identities, i.e. by algebraic con-
straints in momentum space on the longitadinal projection of three-point
vertex functions and inverses of propagators, and (7i) physical singularities
in the transverse part of three-point vertex functions which are beyond con-
trol of Slavnov—Taylor identities. We do not have any infrared singularities
in loops because the nonzero mass scales y and v protect us from infrared
problems.

A very important bonus of physical singularities in inverses of quark
and gluon propagators in Eq. (2) is the immediate fulfilment of the neces-
sary condition for permanent confinement of quarks and gluons in hadrons.
Inverting algebraically Eq. (2) we find following expressions for gluon and
quark propagators [2]
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where two complex quantities Z and p are uniquely determined by the pseu-
doscalar meson mass M, the current quark mass m, and the quark conden-

sate mass scale y

ReZ=1, ImZ= (M — m)/4 ,
VXM =} (M = m)?
Rep=h(m+ M), Tmp=1/x3/M ~ L(M - m)?. (5)

In Egs (3) and (4) we see that any asymptotic states either for gluons
or for quarks are absent, i.e. we do not have any real momentum poles
in Egs (3) and (4). The presence of complex poles in these equations has
nothing to do either with the breaking of causality, or with the breaking
of unitarity. We must remember that causality restricts commutators (an-
ticommutators) of the fundamental QCD fields and this restriction is very
well respected both by Dyson-Schwinger equations and by Slavnov-Taylor
identities.

The unitarity condition is on the physical S-matrix in the hadronic
world, with hadrons being the asymptotic states. In contrast to hadrons the
fundamental QCD fields do not have any asymptotic states. The asymptotic
hadrons are represented by the physical poles in many-point Green func-
tions, with their residua expressed in terms of relativistic wave functions.
These wave functions are calculated in momentum space. If we Fourier
transform hadronic poles to position space, then we find that hadrons must
be represented by nonlocal fields. The nonlocality of an effective hadronic
field in position space is one of the basic reasons for the absence of the
Goldstone theorem for the physical pion. Qur pion is a bound system of
permanently confined quarks and gluons, and as such it can not be approx-
imated by a local field in position space.

For large parton virtualities both quark and gluon propagators in Eqgs (4)
and (3) reduce trivially to the well known perturbative (asymptotic freedom)
propagators. Then, and only then, the perturbative QCD S-matrix makes
sense and unitarity condition is obviously satisfied.

2. Constituent quark mass M(q?)

Relativistic, relative four-momentum ¢ of two constituents of masses
m1 and m» must be a space-like four-vector to insure two basic properties
of the relativistic relative-motion:
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1. The space-like character of ¢(g?> < 0) which is the necessary condition
for the proper relativistic definition of angles between various relative
momenta during relativistic relative-motion with cosine of angles in the
interval [-1.0,1.0]. This restriction on the cosine of an angle is neces-
sary for any sensible angular momentum (partial wave) analysis. It is
also necessary for defining the orbital angular momentum in Minkowski
space, and consecutively the total spin of a hadron as the bound system
of constituent quarks.

2. The cluster decomposition property in the sense of decoupling the rel-
ative motion dynamics, described by three degrees of freedom of con-
strained momentum ¢(gP = 0) from the overall motion of the whole
hadron with the total momentum P on its mass-shell P? = M?2.

The space-like character of ¢ is guaranteed by the condition ¢FP = 0,
with P the time-like hadron momentum. The condition ¢P = 0 is kept as
a constraint on the truly relativistic hadronic wave function. Such q is the
Weightman-Garding vector 4]

1 m2 — m2 1 m2 — m2
= - 1_._.1..__.2 - - 711 2 ‘P:, 6
q 2( P2 )pl 2 (1+ P2 YO R Y4 + p2, ( )

=2 . - . . . .
where P” is a positive quantity determined by the negative value of ¢2, i.e.

we have
2
-2
P E<\/m%-—q2+\/m%-q2> . (7)

Note, that if we make an off-shell continuation in the relative motion of two
constituents in a hadron the quantity ¢? is.unconstrained and it is always
non-positive.

We have to demand the orthogonality condition ¢P = 0 of the space-like
relative momentum ¢ and the time-like total momentum P = pj + pg. For
the time-like total momentum P, constrained by P? = M?, we can go to
the bound state rest-frame P = 0, and there gP = 0 means, that the time-
component of the Wightman-Garding relative momentum is zero (¢° = 0),
what proves the space-like character of ¢ (¢ < 0). It also shows that
the off-shell continuation in total energy of this system is done only in the
time-component of total momentum, without changing reflection symmetry
properties under the change of the sign of the off-energy-shell continued
time-component of total momentum.

In the case of two constituent quarks in a hadron the product of two
Wheeler quark propagators S(p1)S(p2) is equal to four terms with various
combinations of complex quantities p? and p*2. For four combinations of
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p? and p*? we introduce four analogs of the Wightman—Garding relative
momentum ¢, and four accompanying quantities P

—2
g=3(p1 —p2), P =4(p* - %), (8a)
—%2 .
g=3(p1-p2), P =4(p?-¢%), (8b)
1 2 %2 1 _
da =3 1—% -3 1+u— P2,
P, Pa
2
—2
P, z(\/pz—q%\/p*z—(ﬁ : (8e)
1 *2 2 1 *2 _ 2
B=73 1*/)——__‘78* -3 1-1-'0—__2L P2,
By Py

2
=2
B = (\/pz ~ g5 + \/p*2 - q?) : (8d)

The real relative momentum q corresponds to two terms with two pairs:
(p%, p*) and (p*?, p*?). Only for these pairs we can demand the crucial
constraint ¢P = 0. For the remaining two pairs: (p%, p*2) and (p*?, p?) to
which correspond ¢, and g, respectively, it is impossible to set equal to zero
either ¢, P, or g3 P. The easiest way to see it is in the bound state rest-frame
(P = 0), where the vanishing of either Im (¢2), or Im (¢ 7) is prevented by
the nonzero value of Im p.

The Wheeler propagator for the relative motion of a confined quark
and antiquark which form a bound system of mass M must depend on the
relative momentum ¢ obeying ¢P = 0 with P? = M?2. This propagator
is a sum of two terms, corresponding fo two pairs of terms: (p?, p?), and
(p*2, p*?). The remaining two pairs: (p2, p*?), and (p*?, p?) are absent
because Im p # 0. Therefore, the Wheeler propagator of the relative-motion
of confined constituents is

Z2B1+p)(p2+p) ]
(p? - p?)(P3 — p?)

(226010 )
(p? — p*2)(p} — p*?)

IqP:() qu:O

Here, the individual momenta of constituents are p; and p2, and they
have to be replaced by the space-like relative momentum q and the time-like
total momentum P. The dependence on P in Eq. (9) must be extracted,
and then in the relativistic relative-motion propagator we find in the denom-
inator of two complex conjugate terms of Eq. (9) the expression | p? - q* |
which is the QCD analog of a similar factor (q42 + mz), known in the center
of mass system when each constituent has the rest mass equal to m.
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For a hadron of momentum P, with P2 = M? and Pq = 0, we introduce
the notion of a constituent quark mass M(g?) by writing the identity

| 2 — ¢* |= M*(¢*) - ¢*. (10)

and the expression for M follows from Eq. (10)

M(@®) =[] p? — ¢* | +¢?

= \/\/(mM' +x3/M)? ~ g2(m? + M2 = 2x3 /M) +¢* +¢*.
(11)

It is interesting to note, that in the non-QCD limiting case, when x =0
and M = m, i.e. p = p* = m, the constituent mass M(¢?) = m is indepen-
dent of ¢? and coincides with the mass m of the equal mass constituents.
On the other hand in QCD, i.e. when x # 0 and M # m, there are two
other limiting cases for the value of M(¢?): a) ¢ — 0, and b) ¢* — —oo.
Respectively, we have

MO)=|pl=+/mM+x*/M, and M(-o0)=0. (12)

The constituent quark mass M (g?) takes its maximum value at the mimn-
imal value of —q2, i.e. when both quark constituents are at rest in their
relative motion in the bound-state rest-frame. The constituent quark mass
M(¢?) decreases to zero at the largest value of —g?, independently of the
quark flavour.

Numerical values of M(0) = | p | depend on the value of M which in
turn can be adjusted by chosing a particular value of the angle ¢4 which
determines the complex quantity p. There is a cubic equation for M with
three parameters: m, x, and ¢,

M? — 2mM?cos(2¢,) + m*M — 4x3cos? (¢4) = 0, (13)

and for the u (d) quarksin the limit m, 4 — 0 wefind M= x(4cos? (gzﬁ.wi))l/3
and M(0)=|p| = X/(Qcos(gbq))l/3‘ For x = 240 MeV and ¢, 4 = 79° we
have M = 126 MeV and M(0) = | p | = 331 MeV, and for x = 250 MeV,
$u,d = 78° we get M = 139 MeV and M(0) = 335 MeV. For heavy quarks
(c, b, t) we have: M ~ m(142 sin(¢.3)) ~ m(1+ v2/ v/3 m?) ~ m, and
M(0) = | p| =~ m (the current mass).

Although the u (d) quarks have negligably small current mass m, nev-
ertheless their constituent quark mass M/(q?) at zero relative momentum
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(q? = 0) is M(0)= 0.33 GeV, i.e. M(0) is of the order of Agcp for light
quarks u and d. In many models of hadrons composed of the light valence
quarks u and d it is crucial to have sizable constituent quark mass M (g?) in
the description of static properties of hadrons, while for the deep inelastic
structure functions of the same hadrons, when constituent virtualities are
very large, the constituent quark mass M (g¢?) must be very close to zero to
agree with negligably small helicity spin-flip amplitudes.

3. Pion mass and rho meson width both # 0

Nonzero pion mass M and nonzero p meson width follow from solu-
tions of truly relativistic bound state equations for constituent quark and
antiquark. To write these equations we must assume nonzero values of the
mass scales y and v. They are explicitly in inverses of quark and gluon
propagators in Eq. (2), in the relative-motion propagator in Eq. (9), and in
the quark-gluon-quark vertex function. Transverse part of the quark-gluon-
quark vertex function contains many terms with real constants determined
from simultaneous solutions of a decoupled subset of Dyson-Schwinger equa-
tions.

The quark-gluon-quark vertex function is given below, and for ilustra-
tion we write only one transverse term which explicitly generates the QCD
analog of Coulomb interaction between quark constituents exchanging a
nonperturbative gluon

A xX*/M 1
e P AN ANAND ® -
(P1, 9 qvpl) 2{ pl_'y-—M%—’t'é"y p’l.’y-—M+‘l€
+Ax3 PLYYEPLY 1 n 1 (14)
M (g-q)2+ie \pi-M2+ic  pP-M>+ic) |’

where p1, and p’; denote the incoming, and the outgoing quark momentum,
respectively, ¢ — ¢' is the outgoing gluon momentum, A is one of real con-
stants determined from solutions of a decoupled subset of Dyson—-Schwinger
equations, and 74 = (¢ — ¢)*(¢.v — ¢ )/ (¢ — ¢')* = v*.

The QCD analog of Coulomb interaction arrises from two singular fac-
tors 1/(q¢—¢')? in two quark-gluon-quark vertex functions of the nonpertur-
bative one-gluon exchange, and one factor of the gluon momentum squared
(qg—q')? of the exchanged gluon. After canceling two factors (¢ —¢')? in the
numerator and in the denominator, the remaining singular factor 1/(g—¢")?

of the one-gluon exchange interaction becomes 1/(§ — q7)2, because both
relative momenta ¢ and ¢’ obey the Wightman-Garding orthogonality con-
dition: ¢P = 0 and ¢'P = 0, i.e. ¢° = q,0 = 0 in the hadron rest frame
(P=0).
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Singular terms in the gluon momentum generate the QCD-Coulomb
interaction 1/(¢§ — ¢')? in the hadron rest frame. Remaining terms of the
quark-gluon-quark vertex which are nonsingular in the gluon momentum,
for example, first two terms of Eq. (14) required by Slavnov-Taylor identity,
give rise to non-Coulomb corrections. However, all terms in Eq. (14), except
for the perturbative part of the quark-gluon-quark vertex contain singular
terms in quark momenta. These factors, depending on the individual quark
momenta and not on their differences, are the main source of a nonlocal
dependence in position space of the quark-antiquark interaction. Also these
terms are responsible for the nonlocality of an effective hadronic field in
position space.

It is totally impossible in nonperturbative QCD with permanently con-
fined quarks to generate quark-antiquark interaction with the (¢ — ¢')™¢
singularity. In gluon momentum, the highest singularity of the quark-gluon-
quark vertex function is only (¢ — ¢')72, and in the numerator of nonper-
turbative gluon propagator there is always the factor (¢—¢')2. The absence
of the (¢ — ¢')™* singularity, in the context of a nonperturbative gluon
propagator, is shown in Ref. [5] as producing even more singular terms than
(¢g—¢')~* in Dyson—-Schwinger equations, if extended beyond one loop level.

If one would allow for the singularity (g —¢')~, then the Fourier trans-
form of it in four dimensions gives a logarithmically rising potential in po-
sition space, while for the case of ¢° = q’0 = 0 the Fourier transform in
three dimensions leads to a linerly rising quark-antiquark interaction. For
the case of QCD with nonzero values of quark and gluon condesates which
generate nonzero hadron masses, i.e. a nonzero mass gap in the hadronic
spectrum, it is possible to prove that the nonzero mass gap necessairly leads
to the cluster property [6] and excludes the possibility of any rising potential
either logarithmically, or linearly.

The QCD-Coulomb interaction between constituent quark and anti-
quark is proportional to the mass scales \ and v, therefore it can only act
if x # 0. In turn, the nonzero value of the pion mass M which is mainly
generated by the QCD-Coulomb binding is due to x # 0 and v # 0. For the
QCD-Coulomb interaction it is possible to extend the well known results of
Fock and Schwinger [7] for the exact solution of hydrogen, or positronium,
to the domain of complex numbers. The S-wave positronium wave function,
in units of the electron mass set equal to unity, is

2wl (¢ + g /4) 77, (15)

where a, is the QED fine structure constant, and ¢ is the electron-positron
relative momentum in the positronium center of mass system.



2610 J. NAMYSLOWSKI]

For pion the dominating QCD-Coulomb interaction allows us to ap-
proximate the relativistic pion wave function by a difference of two complex

conjugated terms
(p/A)?  (p*/A)? (16)
(@ +p%)? (@ +p)?
where ¢'is the space component of real Wightman-Garding relative momen-
tum ¢ of a constituent quark with respect to a constituent antiquark in the
pion rest frame, and real constant A is the same one which appears in the
transverse part of the quark-gluon-quark vertex function.

In finding Eq.(16) we simplified spinor factors in the relativistic bound
state equation, replacing them by effective scalar factors, to get an estimate
of the order of magnitude of M. Within this approximation the pion mass
M, as the eigenvalue P? = M? in the bound state equation, is solution of
a complex algebraic equation

AZ% = \[/p2/M? —1/4, (17)

where Z and p are complex quantities specified in Eq. (5).
The imaginary part of Eq. (17), in the limit of zero current quark mass
of u and d quarks, gives for A the result

A= (433 /MP = 1))\ 2023 /M3 - 1). (18)

The real part of Eq. (17), also in the limit of the zero current quark mass
of u and d quarks, gives quadratic equation for the ratio x*/M?
6 3 3

X X
A _gX 2 g, 19
6M6 7M$+2 0 (19)

Eq. (19) has two solutions: (i) M = 1.04x, and (i) M = 1.52x. This result
means, that the pion mass M is nonzero if, and only if, the quark condensate
mass scale x is not equal to zero. Of course, it is only an estimate of the
pion mass, and the remaining QCD-Coulomb terms which are not written
in Eq. (14) as well as the non-Coulomb interactions correct this result, but
they exclude the possibility of the zero value for M if x # 0.

The p meson is a pole in the transverse part of the vector three-point
vertex function. The position of the p meson pole has both real and imag-
inary part. The nonzero value of the imaginary part of the position of the
p meson pole is due to singular factors in quark (antiquark) constituent
momenta which are present in two quark-gluon-quark vertex functions of
the one-gluon exchange. Singular factors of two quark-gluon-quark vertex
functions, appearing in the kernel of integral equation for the p meson wave
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function, produce a nonzero absorptive part of this kernel. This absorptive
part gives a nonzero decay width of p meson into two pions.

For p meson, considered as the relativistic system of u and d constituent
quark and antiquark, the essential new feature in comparison with pion is a
new domain of the variation of two factors 1/(})32 — M?) in denominators
of two quark-gluon-quark vertex functions in the nonperturbative one-gluon
exchange interaction. Here M is the pion mass, while the mass of p meson
denoted as M, and the width of p meson, denoted as I',, correspond to the
p meson pole at Pg = Mg — iy M.

In the equation for p meson both factors are equal to 1/(2\/13/4 -
ilyM,/4 — M? + ¢?), and their real part is : either positive, or zero, or
negative, since g2 is non-positive, and the orthgonality condition ¢P, = 0 is
enforced as a constraint. The resulting factor 1/(A13/4—iprp/4—M2+q2)
appears in the p meson kernel and is responsible for generating the nonzero
width of the p meson. Also this factor, in the kernel of the integral equation
for the p meson wave function, makes it impossible to apply the Fock-
Schwinger method to estimate the p meson mass. Note, that in the p me-
son CMS (13,, = 0) the constraint P,q = 0 still means ¢° = 0 in spite of
Im (Pg) # 0, and excludes the (p, p*) and (p*, p) terms in the Wheeler
relative motion propagator in Eq. (9), i.e. excludes the possibility of the
continuum asymptotic partonic states, if Im (p) # 0.

The kernel of integral equation for the p meson wave function is dra-
matically different from the corresponding kernel of the integral equation
for the pion wave function, in spite of the fact that in both cases the domi-
nating binding interaction is the QCD-Coulomb interaction. For pion, both
of two factors l/(p%’2 — M?) in two quark-gluon-quark vertex functions in
the nonperturbative one-gluon exchange interaction are always negative for
any value of the space-like Wightman-Garding momentum and the Fock-
Schwinger method is applicable for the estimate of the pion mass M.

4. Absence of the QCD Goldstone theorem

In QCD with confined quarks it is impossible to have massless pion in
the limit of zero mass of the current quark (u, d). The QCD Lagrangian
in this limit is explicitly chirally symmetric. The nonzero quark condensate
mass scale x, 4 means spontaneous chiral symmetry breaking, however, in
contrast to the common believe, it prevents the pion from becoming mass-
less. Of course our pion is the relativistic bound system of the confined,
constituent quark and antiquark. Such pion is necessairly described in po-
sition space as truly nonlocal field.

The nonzero values of x and v are both necessary and sufficient condi-
tions for permanent confinement of quarks and gluons and for the nonzero
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value of pion mass. The sufficient condition for the nonzero pion mass we
discussed in the former Section, and the sufficient condtion for the perma-
nent confinement in Introduction. Here, we present the necessary condition
for the pion mass to be different from zero, if x # 0 is to represent the qurak
condensate mass scale.

The QCD Lagrangian, and the inverse of the quark propagator given in
Eq. (2) are equivalent to the following local Meissner [8] Lagrangian density
in which beside the quark field ¢ there is an extra ghost-quark field &

L=9(iD -y —m)yp — EGED -y — M)E+ x+/X/M(E¢ + ¢€) . (20)

From this Lagrangian follows Eq. (2) for the inverse of quark propagator.
To find Eq. (2) we must integrate out the quark-ghost field £ in the action
corresponding to this Lagrangian. The easiest way to do this integration is
to make the following shift of the quark-ghost field £

xvx/M
———1. 21
€+ 20y (21)

It should be noted, that the pion mass M appears in the Meissner
Lagrangian in Eq. (20) in two places: (i) as the mass of the quark-ghost
field, and (ii)in the coupling constant of the quark-ghost field and the quark
field. Here M is in the denominator (under the square root) and such M
can not be sent to zero. The appearence of M in Eq. (20) is of course the
consequence of the form of Eq. (2) for the inverse of quark propagator.

In the zero limit of the current mass m, 4 — 0, and the nonzero value
of the quark condensate mass scale \. we have on the level of the QCD
Lagrangian the spontaneous chiral symmetry breaking, while on the level of
the Meissner Lagrangian the explicit chjral symmetry breaking. Moreover,
if we would consider a possibility that in the quark-ghost mass term we set
M = 0, and in the term in Eq. (20) which couples the quark-ghost field
& with the quark field ¥ we set M = y, then we get an explicitly chirally
symmetric Meissner Lagrangian. However, such mass scale x which is the
only one non-perturbative mass scale left in the chirally symmetric Meissner
Lagrangian, has nothing to do with the magnitude of quark condensate.
This is so, because in this case the effective quark propagator, resulting
after we integrate out the quark-ghost field &, is

Py
S(p) = ——, 22
() PR (22)

and the quark condensate mass scale corresponding to this non-perturbative
quark propagator, in Eq. (22), is trivially zero because the trace of such S(p)
is equal to zero.
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To get a nonzero value of the quark condensate mass scale y from the
vacuum-to-vacuum transition, by closing up in position space the Fourier
transform of the nonperturbative quark propagator, it is necessary to keep
in the Meissner Lagrangian the pion mass M not equal to zero, and have the
explicit chiral symmetry breaking in the Meissner Lagrangian, correspond-
ing to the spontaneous symmetry breaking of the QCD Lagrangian.

In field theories without permanent confinement of fundamental fields
it is possible to prove the Goldstone theorem if we assume the existence of
a local current (Swieca [9], Strocchi [10]), and we take for granted that the
zero Goldstone mode has something to do with pion as the bound system
of a constituent quark and antiquark. Such massless pion field necessairly
must be a local field (for example the divergence of an axial current), or at
most it can be a composite field, but still it must be a local field. However,
pion which is the solution of relativistic bound state equation with confined
constituent quark and antiquark, is necessairly a non-local field in position
space, as explained in former Section.

Sometimes, a massless pion shows up as a pole in the longitudinal part
of the axial three-point vertex function. However, from the axial Ward
identity it follows, that the longitudinal part of the axial current must have
in momentum space the particular factors which depend individually on the
incoming and outgoing quark momenta. If we Fourier transform the axial
three-point vertex function to position space, then these factors depend on
the individual quark momenta, and they make the residuum of such pion
pole necessairly nonlocal in the position space of the pion field, in conflict
with the assumption that the pion field can be approximated by a local
field. Our pion is a non-local pole term in the transverse part of the axial
vector three-point vertex function.
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