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In this talk some recent developments in the overlap formulation of
chiral gauge theories on a lattice is briefly reviewed. We argue that the
overlap formalism correctly accounts for all the desirable features of the
chiral Dirac determinant for slowly varying weak external gauge fields.

PACS numbers: 11.15. Ha

1. Introduction

Weyl fermions are the building blocks of matter. The two spinor repre-
sentations v, and g of SO(1,3) can belong to inequivalent representations
of internal symmetry group and maintain their distinct identities under lo-
cal Yang-Mills and reparametrization transformations. These geometrical
facts can also be incorporated in classical field theories involving such par-
ticles. Quantum mechanically, however, the situation is different. The need
for ultraviolet regularization introduces new elements into our description,
which modify the classical picture drasticaly.

Thus starting from a classical action S = S(A4, ¥, ¥ r) we need to con-
struct a quantum effective action I'4 = I'4(A4, ¥, ¥r) which will depend on
a set of regulator parameters A and should incorporate as much symmetries
of S as possible. In an expansion of I'4 in powers of the Planck’s constant
h, S coincides with the A = 0 term. It turns out that in a generic chiral
gauge theory, where the left handed and right handed fermions belong to
unitarily inequivalent representations of the gauge group, there is no choice
of the regularization which makes I'4 to respect all the symmetries of S,
at least with a finite number of regularization parameters A. This is the
origin of chiral anomalies. For the mathematical consistency of chiral gauge
theories like the standard Weinberg - Salam model, it is essential that the
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local gauge symmetries are unbroken, at least in the limit of infinite cut
off. In the standard electroweak model or in grand unified theories based
on groups such as SU(5), where fermions belong to complex representation
of the gauge group, the gauge invariance of the renormalized theory is en-
sured by adjusting the fermionic content such that the anomalies of the local
symmetries are cancelled.

On the other hand there are global symmetries which should be anoma-
lously broken in the standard model. According to our present understand-
ing it is believed that nature is profiting from this symmetry violation.
Indeed the non—vanishing divergence of the flavour singlet axial current

Jz = UYpYsU — J’Y,u')’sd

is at the basis of our theoretical description of phenomena such as 7% — vy
decay [1] and the U(1) problem [2]. This need of preserving all of the
local gauge symmetries and violating, in a very specific manner, some of
the global symmetries is one of the sources of difficulties in constructing a
lattice regularization of chiral gauge theories.

There are of course good perturbative regularization schemes which
enable us to calculate I'4 to any desired order in perturbation theory, at
least in principle. In this talk we would like to address the question of
non-perturbation definition of I'4, i.e. a lattice formulation of chiral gauge
theories. Such a regularization would be needed for examining the non
perturbative features of the standard electroweak model.

There is a generic difficulty with the lattice transcription of fermions
which is independent of the details of the lattice and the details of the
coupling in the fermionic bilinear part of the action. This difficulty is known
as the doubling problem and was realized rather early in the history of
lattice formulation of the quarks in QCD [3]. As will be shown in the
next section in vector like theories like QCD the doublers can always be
removed by adding a space dependent mass term. This of course violates
the global axial symmetries of QCD and thereby gives rise to the 5 anomaly
mentioned above. Infact in the absence of a chiral symmetry breaking term
there would be no axial anomaly because the lattice regularized theory ,
in the absence of explicit symmetry violating terms, is chirally symmetric.
It has been shown by Karsten and Smit that the doublers have pairwise
opposite chiral charges and therefore are responsible for the vanishing of the
axial anomaly [4]. Thus the lattice regularization of the fermionic part of
vector like theories poses no conceptual difficulties. This is not so for chiral
gauge theories. In these theories the chiral symmetry is gauged and thus the
addition of a space dependent mass term would not be compatible with the
guaged chiral symmetry. Furthermore, if the lattice has any crystallographic
symmetry group, it could also prevent the inclusion of a Wilson term to
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remove the doublers. Of course in any practical situation we work on lattices
which possess some finite subgroup of the orthogonal group as its symmetry
group. The fermions belong to the spinor representation of this group.

It was subsequently shown that under certain assumptions chiral gauge
theories cannot be defined on the lattice. This no-go theorem [5] implies
that if I'4 is defined on a lattice its infrared limit, which should correspond
to the quantum description of the classical action S for the slowly varying
fields on lattice scale, is inevitably a vector like theory. In particular, if not
circumvented, the no—go theorem implies that there is no lattice formulation
of the standard Weinberg-Salam theory or SU(5) GUT, even though the
fermions belong to anomaly free representations of the gauge group. Our
aim in this talk is to explain one possible attempt at bypassing the no-go
theorem.

The formalism described in this talk has been called the overlap ap-
proach by Narayanan and Neuberger [6] and is an evolution of an idea of
Kaplan [7]. According to Kaplan the 4-dimensional Euclidean space should
be realised as a domain wall in a 5-dimensional space. The number of the
components of the Fermi fields is the same in 4 and 5 dimensional spaces.
However since the 5-dimensional fields depend on an extra coordinate, from
a 4-dimensional point of view we shall have an infinite number of fermionic
flavours. This is why there is a possibility for evading the no go theorem in
this approach.

Recently there has been few other suggestions to solve this old problem
[8, 9] which shall not be discussed here. For a summary see [10].

2. The no—go theorem

For a bilinear fermionic Euclidean actiont on a lattice with lattice spacing
a = 1, the inverse propagator has the structure

Gl (k) = v*Culk),

where k € T4, with the torus 7 denoting a Brillouin zone in the momentum
space and C, (k) is a vector field on T*. In order for G~ (k) to approach the
standard Euclidean propagator in the infrared we must have Cy (k) — k,
as k, — 0. However, a topological theorem due to Hopf and Poincaré will
then require the existence of at least one more zero of C, (k) on T*. In fact
this theorem states that [11]

|Det C|
Cu(k)=0
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where
oC, (k)
Det C = Det | —t— ] .
¢ v ( Ok, )

Thus the zeroes of C' will come in pairs. A close inspection indicates that
they come in chiral pairs, i.e. in the infrared we will have equal number of
states with y5 = +1 and v5 = —1. Furthermore, the doublers will belong
to the same representation of the internal symmetry group.

For vector like theories like QCD, Wilson suggested [3] a solution to the
doubling problem by adding a k-dependent mass term to G~ 1(k), viz.

Gl (k) =" Cu(k) + B(k).

B(k) is chosen such that as k — 0, B(k) — k2, while B(k) does not vanish
at any other zeroes of C (k). In this way the extra poles of the propagator
are removed. The new term also breaks the chiral symmetry of the original
problem. It has been shown that [4] this breakdown is at the origin of
chiral anomaly in the divergence of the axial current in lattice regularized
QCD. Since the axial symmetry is not gauged in QCD, its breakdown by
the B-term does not create any problems.

Now let us consider Weyl fermions. In this case we expect the lattice
G~ to have the following form

where o are the Pauli matrices. The doublers will of course be still there
and one may think of adding a B-term to remove them. In the continuum
such a term would not be compatible with the O(4) invariance of the chiral
Euclidean action. On the lattice the fermions should belong to a spinor
representation of a finite subgroup of O(4) which would prevent the intro-
duction of the B-term. This argument or the more general no-go theorem
of Nielsen and Ninomya imply that the 2-component Weyl fermions cannot
be defined on a lattice in such a way that a chiral theory emerges in the
infrared limit.

3. The overlap proposal

The basic idea of the overlap approach is to recover the chiral theory
as a limit of a vector like theory [6, 12-14], Thus, instead of starting from a
2-component theory we start from a 4-component spinor theory, in which
case we can add a Wilson type B-term to remove the doubler poles. The
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approach involves two Hamiltonians H4, which differ in the sign of a mass
term, viz.

Hy = Z w(n)Jr Hy(n—m) U(n,m) ¢(m), (3.1)

n,m

where the 1-body Hamiltonians Hy(n — m) are defined in terms of their
Fourier transforms

> Hi(n) e7F™ = 5(i (k) + B(k) £ 4). (3.2)

The U(n, m) in (3.1) are the link variables. For smooth background gauge
fields we shall write U{(n, m) as

1
U(n,m) :Texpi/dt(n-m) <A((1—=t)n +tm), (3.3)
0

where A is the Lie algebra valued vector potential.

Let |A+) denote the normalized states obtained by filling the negative
energy states of H1(A). The phases of these states should be fixed by an
extra condition which we take to be

(£|A+) > 0. (3.4)
Define the functional I’(A) by

o~ T(A)
le/Al—0  (+]=)

, (3.5)

where k is a typical momentum in the Fourier expansion of A. The claim
is that e~ T(4) is a good candidate for the determinant of the chiral Dirac
operator operator on the lattice.

4. Verification of the overlap proposal

Now we would like to explain some of the analytical tests in support of
(3.5).

Firstly, if e=7(4) is a good definition for the determinant of the chiral
Dirac operator it should be a complex functional of 4 with a non-gauge
invariant phase, if the fermions are not in the anomaly free representations
of the gauge group. Furthermore, under local gauge transformation the
change in Im I"(A) should be proportional to the consistent anomalies, at
least for smooth external gauge fields.
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In general we should try to verify that I'(A) incorporates all the known
perturbative features of chiral gauge theories. The non perturbative effects
such as those normally attributed to the instantons should also be accounted
for. Here we summrize very briefly what perturbative tests have been carried
out so far.

Firstly any new proposal for the effective action of chiral fermions on
the lattice should reproduce the chiral anomaly correctly. The lattice reg-
ularized overlap passes this test successfully [14]. The U(1) anomaly in
the 2-dimensional continuum overlap and the non Abelian anomaly in 4-
dimensions had been calculated before in Ref. [6] and [13] respectively. In
the next section we shall skech the manner in whcih chiral anomalies are
generated in the overlap approach.

The contribution of fermions to the vacuum polarization in the standard
model has also been calculated in the framework of the overlap formalism.
This is also a test on the contribution of the fermions to the 1-loop -
functions of the standard model. We have shown that (3.5) also passes this
test successfully [15].

On a manifold with the topology of a torus there are non contractible
loops. One can have guage fields with non zero line integrals along such loops
which have vanishing field strength. The effective action for a discretised
torus in 2-dimensions in the background of such flat connections has also
been calculated [16] and the result agrees with what was known from the
string literature [17]. This calculation had also been done numerically by
Narayanan, Neuberger and Vranas [18].

Preceeding these analytic tests there have been several numerical tests
of the overlap by Narayanan, Neuberger, all of them giving substantial sup-
port to the definition (3.5) [12, 18]. These authors have also studied numer-
ically the instanton effects on the lattice and shown that the overlap does
reproduce these effects too [12]. In the continuum version of the formalism
it is not so hard to study the instanton physics and the results seem to be
in agreement with our expectations.

More recently Kaplan and Schmaltz showed that the phase of the de-
terminant of the chiral Dirac operator as defined by Kaplan’s domain wall
formalism or by continuum overlap, in the background of topologically triv-
ial gauge fields, coincides with the n-invariant of the Dirac operator in one
higher dimension [19]. This is in agreement with an earlier result of Alvarez—-
Gaumé et. al, who have shown that the phase of the determinant of chiral
Dirac operator is given by the n-invariant {20].
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5. Chiral anomaly

If the fermions are not in an anomaly free representation of the gauge
group, the effective action will not be gauge invariant. The non gauge
invariance has a precise form given by chiral anomalies. In this section we
indicate the main steps in the calculation of chiral anomalies in overlap
picture.

In lattice regulated overlap the anomalies manifest themselves as a con-
sequence of the fact that the phase convention (3.4) is not gauge invariant.
Insisting on (3.4) in all gauges forces I'(4) to transform anomalously. To
see this, consider a local gauge transformation

Au(z) = A%(2) = €909) (4,() +i0,) e7*007). (5.1)
The link variable U(n, m) transform according to
U(n,m) = U (n,m) = ™ U(n,m) e~ 0™ (5.2)
It follows that the Hamiltonians (3.1) transform according to
Hy(A%) = Uy Hi(A) Uy, (5.3)
where Uy is the unitary operator that acts on the fermions
Ug (n) Uy =" 4(n).

It can be expressed as

Up = exp ( S %(n) 8(n) w(m) - (5.4)

Since the perturbative ground state is not degenerate we must have
UglAL) = |A%%) ¢ 2£(0:4) (5.5)

where @ is real. They are determined precisely from the requirement that
the transformed states |A?+) satisfy the same phase convention as |Az),
viz.,

(£]A%+) > 0.

For an infinitesimal @ one obtains

n t n n
(0, 4)=Re 3 LH¥ )<i€A)+‘>b( J1A+) | (5.6)
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A similar expression gives ®_(6, A).

To evaluate the variation of I'(A) under (5.1) we simply make use of
(5.5) in (A% +]A%-). This implies that the real part of I'(4) is gauge
invariant and the change in its imaginary part is given by

g(6,A) =i (D,(6,A) — _(6, 4)) .

Expand g in powers of § and A. The first order part in 8 gives the chiral
anomaly. Furthermore, using the group property one can show that g(f, A)
satisfies a cocycle condition, which when expanded in powers of 8 upto
second order, it leads to the Wess—Zumino consistency condition.

The formalism described above has been used to evaluate chiral anoma-
lies for the non-abelian continuum [13] as well as the lattice regularized
overlap [14]. It is also powerful enough to produce gravitational anomalies
in 2-dimensional quantum gravity [21].

The work summarized in this report is the result of collaboration with
J. Strathdee to whom I am grateful for many useful discussions.
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