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An attempt for the formulation of a local version of the spectrum con-
dition on globally hyperbolic spacetime is discussed. It relies on microlocal
analysis.
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The incorporation of gravity into quantum theory is an outstanding
open problem of physics. A modest attempt in this direction is the for-
mulation of quantum physics under the influence of an external classical
gravitational field. But even this apparently harmless problem turns out
to lead to some severe difficulties. One may hope, that the investigation of
these problems provides hints for the formulation of quantum gravity. In
addition, the emphasis on local concepts which is essential for the analysis
of quantum fields on curved spacetime might also deepen our understanding
of quantum field theory on Minkowski space.

The mathematical framework in which- these problems are discussed is
that of quantum field theory on a pseudoriemannian manifold with
Lorentzian signature. In a first step one would like to formulate the ana-
logue of the Wightman axioms for fields living on such a spacetime. So one
looks for operator valued distributions, and wants to impose certain general
requirements on them. But whereas commutativity for fields at spacelike
separated points makes perfect sense on a curved background, the axioms
of covariance and of positivity of the energy momentum spectrum have no
obvious generalization. Covariance is not to be expected to be meaningful
on a generic spacetime without nontrivial isometries. The spectrum condi-
tion, however, expresses the requirement of stability of the system, and one
would like to have a local version of stability also in the generic case.

* Presented at the II German-Polish Symposium “New Ideas in the Theory of
Fundamental Interactions”, Zakopane, Poland, September 1995.
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There are different attempts to formulate a stability condition. One
might for instance try a formulation in terms of the energy momentum
tensor. For free fields, this idea led to the concept of a Hadamard state
[1, 2] which is a quasifree state of the free Klein Gordon field on a globally
hyperbolic manifold whose 2-point function has the singularity structure of
Hadamard’s fundamental solution of the Klein Gordon equation. It was
shown by Christensen [3] that in such states the expectation value of the
energy momentum tensor can be defined by a point splitting technique, after
subtraction of divergent contributions which depend only on the local space
time geometry and a scale parameter.

Another idea starts from the observation that, relative to a (nonunique)
definition of particles, particles are created in nonstatic spacetimes. One
then tries to find states with minimal particle production; these are the so
called adiabatic vacua introduced by Parker [4] and carefully investigated
by Liiders and Roberts [5].

These proposals are restricted to free fields. An approach which re-
mains meaningful for interacting fields is due to Haag, Narnhofer and Stein
(8, 9]. These authors look at the short distance behaviour of n-point func-
tions. They show that provided the scaling limit exists the limit is a field
theory on the tangent space. The tangent space is isomorphic to Minkowski
space, and it is natural to impose as a condition of local stability that
the scaling limit theory satisfies the Minkowski space spectrum condition.
Hadamard states satisfy this condition, so this gives another motivation
for the Hadamard condition, but for free fields the Hadamard condition is
not implied by the property of local stability in the sense of Haag, Narn-
hofer und Stein. Recently, Buchholz and Verch [10] succeeded in giving a
very general definition of the scaling limit. It would be interesting to know
whether a condition of local stability in their framework leads to a stronger
conclusion.

A new development was started by the work of Radzikowski [11]. In
his thesis he found a characterization of Hadamard states in terms of wave
front sets. This discovery makes the connection with the spectrum condi-
tion much more transparent. Furthermore, it is technically much easier to
handle.

Let me recall the definition of a wave front set!. The wave front set of
a distribution f on a manifold M is the set of all elements (z,k),k # 0 of
the cotangent bundle T*M with the following property:

! Wave front sets (in the C* sense) were introduced by Hérman der [6, 7]. The
corresponding analytic wave front sets were discussed by Sato [12, 13] and,
independently, by Bros and lagolnitzer [14] (there under the name “essential
support”). Here we use only the C™ version of the theory.
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Let x be a diffeomorphism from a neighbourhood U of z into the tangent
space T M at z with x(z) = 0 and dx, = id. Let ¢ be a test function with
compact support and ¢(z) # 0, and let C' be a conic neighbourhood of k.

Then the function
k, - <fa cpexpi(k', X()))

is not rapidly decreasing in C.

It is sufficient to check this condition for a fixed y.

In special cases, the wave front sets can be easily determined. For
instance, the wave front set of the d-function on IR™ is

WF(6) ={(0,k), ke R"\ {0}}

since for all testfunctions ¢

(8, pexpikz) = p(o).

For the massless propagator function D (z) = —372— one finds

zét1exg
WF(Dy) = {(z,k), 22 =0,k =0,kg >0 and z = Ak, A >0},

and this coincides with the wave front set of the massive propagator.

Now Radzikowski [11] (with some gaps filled in by Kohler [15]) showed
that the wave front set of a Hadamard bisolution of the Klein Gordon equa-
tion on a globally hyperbolic Lorentz manifold M is

WF(w2) = {(z,k, ', k') € T*M?\ {0}, k € 9V}, (2, k) ~ (o', =K")}

where (z,k) ~ (¢',k') means that there i§ some lightlike geodesic v from
r to z' such that k is coparallel to the tangent vector of v, i.e., for some
A€ R, (k&) = Mg(&,A)VE € T M, and k' is the parallel transport of &
along ~.

Moreover, he showed that any 2-point function of the free Klein Gordon
field whose wave front set is given by the expression above satisfies the
Hadamard condition in the formulation of Kay and Wald [2].

This result relates the Hadamard condition to the spectrum condition.
In addition, it enables us to use the machinery of pseudodifferential op-
erators and Fourier integral operators. An immediate application is the
construction of new Wightman fields which are not solutions of the Klein
Gordon equation. For instance, for two independent commuting free fields
A and B one can define the pointwise product C(z) = A(z)B(z) [15]. The
n-point functions of C are just products of the n-point functions of A and
B. These products of distributions exist because the sum of the wave front
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sets of both factors does not contain points with zero covectors. E.g., the
2-point function is

w(C(2)C(y)) = wa(z,y)?,

with the wave front set contained in the set
{(z, k1 + ks o' K] + k3) € T*M?\ {0}, k1, k2
€ Vy, (z, ki) ~ (z,-k}),i=1,2}.

In particular, for coinciding points z and z’, k = k; +k2 may be an arbi-
trary nonzero covector in the closed forward light cone; also for conjugated
points z,z’, k need not to be lightlike.

A further class of Wightman fields whose existence follows from similar
arguments are the Wick polynomials of a free field. Their construction was
performed in a collaboration with Brunetti and Kohler [16].

Let us look at the n-point function of Wick polynomials : "1, . .. YY)
Formally, it is a sum of products of 2-point functions wj where r runs over
the set of ordered pairs (r;,r2),1 < r; < r2 < n and wj is the 2-point
function wy in the variables z, ,z,, considered as a dlstnbutlon on M™.
These products are well defined, if the convex hull of the union of the wave
front sets of w, does not contain points with vanishing covectors. But the
latter property can easily be verified. Namely, let 2 € M™ and conqlder an
arbitrary convex combination k = ), A k¥ with (z,k") € VVF(wZ ) and
A ER, A >0, Y, /\,,-—1 Letz1§zgnbethegmallestnumber
occuring in the pairs r¥ with A, > 0. Then the i-th component k; of k is
given by k; = 37, r"—z’\ k¥ with k¥ € oV \ {0} for all v with A, > 0.

Thus k; is a convex comblnamon of nonzero elements of the closed forward
light cone and therefore does not vanish.

The wave front set of such a n-point function is contained in the convex
set just described. We obtain the following theorem [16].

In .

Theorem: Let ¢ be a free Klein Gordon field on a globally hyperbolic man-
ifold, and let w be a Hadamard state of . Then on the GNS Hilbert space
of w there erist all Wick polynomials of ¢ (defined by point splitting) as op-
erator valued distributions with a dense invariant domain, and the minimal
invariant domain of ¢ is a core for all smeared Wick polynomials.

The definition of Wick polynomials used in the theorem depends on the
choice of the Hadamard state w, : ¢! :=: ! :,. Since the 2-point functions
of Hadamard states differ only by a smooth function, a change of w to '
formally amounts to a redefinition of Wick polynomials

" (@) i (o) + Y ele) 10 (2)

I<n
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with smooth functions ¢;. Moreover, since different Hadamard states in-
duce locally unitarily equivalent states of the free field [18], the GNS Hilbert
spaces H,, and H_r may be identified after restriction of the free field to a
bounded region, so the relation above may be understood as a relation be-
tween operators on the same Hilbert space. There is, however, the problem
that the domains of definition of both sides do not necessarily coincide. One
may hope that they have the same closures, but this remains to be proven.

We now want to use the information on the wave front sets of n-point
functions of Wick polynomials for a guess on the wave front set of Wightman
functions of interacting fields. It was again Radzikowski [11] who made the
first attempt towards a formulation of a spectrum condition in terms of
wave front sets. Unfortunately, his proposal is violated by the fields just
described [15].

One possible route towards a spectrum condition is to weaken the condi-
tions which characterize the wave front sets of Wightman functions of Wick
polynomials such that the important properties of additivity (so products
of independent fields exist) and of state independence (every state in the
folium of w, i.e. every state which can be obtained from the reference state
by application of a finite sum of products of smeared field operators, has
the same wave front set) are preserved. So one may assume that the wave
front set of the n-point function w, of an interacting field is contained in a
convex set constructed in complete analogy to the case of Wick polynmials
with the only change that the wave front set of a Hadamard bisolution is
replaced by the larger set

= {(z,k;2' k") e T*M*\ {0}, k € Vi, (z, k) =~ (', = k') },

where (z, k) = (z', —k') means that there is some piecewise smooth curve v
from x to =’ such that &’ is the parallel transport of k£ along + [16]. One then
can show that on Minkowski space the usual spectrum condition implies the
mentioned condition on the wave front set [16]. Actually, as was pointed out
by Rainer Verch [18], in generic spacetimes where the holonomy group is the
whole proper orthochronous Lorentz group, the above condition reduces to
the requirement that the first nonvanishing k; is in the closed forward light
cone, and the last nonvanishing k; is in the closed backward light cone.

One may conjecture that wave front sets of Wightman functions of
noninteracting theories are significantly smaller than those of interacting
theories. This might be a useful local criterion for interaction.

These ideas might be tested within perturbation theory. Perturbation
theory on curved space time has been studied mainly on spaces with eu-
clidean signature. It is likely that the degree of divergences and the struc-
ture of counter terms remains the same on manifolds with a Lorentzian
metric. However, the standard formulation of perturbation theory with its
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emphasis on the role of the vacuum and of momentum space is not well
adapted to the problem.

A candidate for a local formulation of perturbation theory is the Epstein
Glaser method [19]. This method, based on ideas of Bogoliubov, starts
from the observation that the time ordered products of Wick polynomials
are everywhere well defined up to some submanifold of lower dimension.
Renormalization is then the extension of these operator valued distributions
to the whole space. The leading principle for this extension is a causality
condition for a S-matrix depending on a test function which describes a
space time dependent coupling.

As a little remark I want to emphasize that this approach leads to a
completely local construction of interacting fields. Namely, the interacting
fields in a bounded region O are given by Bogoliubov’s formula

#312) = S(0) 51550, P)lnmo,

where S(g) is the S-matrix for a spacetime dependent coupling ¢ € D(M),
g = const on O, and S(g, k) includes a source term ¢(h) in the Lagrangian.
Now consider (g, h) as a 2-component function g and set

V(g,h) = S(g)™'S(g+ h).
The operators V satisfy the causality relation
V(g'l hl + h2) = V(91 hZ)V(gv hl)

provided the future of supphs does not intersect with supph;. Let ¢’ coin-
cide with g on the intersection of the future and the past of O. Then there
are testfunctions g, ,g_ with ¢’ = g+ g, + g_ and such that the future
of suppg, does not intersect with O and the future of O does not intersect
with suppg,. Let supph C O. By the definition of V' and the causality
relation we get

V(g h)=V(g+g_,9:) 'V(g+g_.g94++h)
Vig+g_.,h)
V(g,9_)"'Vig,h+g_)
V(

9.9-) V(g h)V(g,9-),

hence choosing g = (g¢,0), g’ = (¢, 0) we find

Py (2) =V(g,9-)'pg(x)V(g,9-) ,2€0.
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So all algebraic properties of the interacting fields within O are inde-
pendent of the choice of g outside of . In particular the wave front set of
n-point functions in perturbation theory can be computed locally.
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