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Supergravity theories admit a large variety of extended-object solu-
tions that are characterized by the saturation of a Bogomol’ny bound,
with a consequent partial preservation of unbroken supersymmetry. We
present a scheme for the classification of such solutions into families re-
lated by dimensional reduction and oxidation, each headed by a maximal
non-isotropically-oxidizable, or “stainless” solution.

PACS numbers: 04.50.+h, 04.65.-+e, 11.25.-w, 11.27.4d

The effective field theory for the massless modes of the bosonic string
is described, up to order o', by the effective action

Lg= /d%,/——ge—z‘iS [(D ~26) — 3o/ (R +4V?¢ — 4(V9)?
- 11_2HMNPHMNP] +0(a")?, (1)

containing the following massless fields: the metric gps v, the antisymmetric
tensor gauge field By, with field strength Hyynyp = dpyBNyp+InBpym +
OpBpn, and the dilaton field ¢. A similar set of fields occurs as a sub-
set of the effective field theory for any string theory, and in a superstring
theory corresponds to the Neveu-Schwarz, Neveu—-Schwarz (NS-NS) sector
of the theory. The effective action (1) provides a summary of the effective
field equations of the theory. These equations are themselves directly de-
rived by making a self-consistent coupling of the string to a background
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“condensate” of its own massless modes, requiring self-consistency with the
background through the cancellation of BRST anomalies [2], or by the van-
ishing of sigma-model beta functions (39, 82, 3%) [3]. The (D — 26) “cos-
mological term” indicates the critical dimension; in the effective action for
superstrings, this changes to (D — 10).

One should note several major differences from General Relativity in the
theory described by the effective action (1). First of all, the &' corrections
continue on to infinite order, with finite, calculable coefficients. This gives
rise to apparent ghost states, owing to the occurrence of higher-derivative
terms in the effective action. The string theory is unitary, however, so
these apparent ghost states must be purely artifactual. They are similar
to analogous artifacts that would occur in the QED effective action for the
massless photon after integrating out the massive electrons. As in that case,
the apparent ghosts herald the onset of new physical effects not properly
described by the effective action, once a certain energy scale is reached.
In QED, this effect is electron-positron pair creation. In string theory, it
is the excitation of massive-level string oscillations. One also needs to take
account of the physical effects of the additional massless fields Bysny and ¢ in
(1). The scalar dilaton field ¢ plays an especially important réle, because its
presence blurs the identification of the physically-relevant spacetlme metric,
owing to the possibility of conformal redefinitions gprny — € oM N, giving
rise to different “conformal frames”. The effective action (1) is written in a
conformal frame such that Ig = [ dP,/=ge=298%. Another frame that is
frequently used is the “Einstein frame,” in which the e=2% factor in front
of the Einstein—Hilbert Lagrangian \/—g¢R is scaled away.

In superstring theories, there appear additional massless-level antisym-
metric tensor gauge fields. These fields couple to bilinears in the fermionic
variables of these theories, and so belong to the Ramond, Ramond (RR) sec-
tor. For example, in the type IIA theory, the RR sector has a 3-form gauge-
field potential Az p and a 1-form potential A, in addition to the NS-NS
fields. In the type IIB theory, there is a second 2-form potentlal making up
a doublet BMN’ together with a 4-form potential AMNPQ (whose 5-form
field strength is self-dual), in the superstring critical dimension D = 10.

In the following, we shall simplify our discussion and at the same time
shall encompass the effects of all of the scalar and antisymmetric-tensor
contributions to the effective theory by restricting attention to one scalar
field, denoted &, and one (n — 1)-form gauge potential By, ...ar,,_,, With an
n-form field strength Hpy, ..., The D-dimensional Lagrangian for these
fields will be taken to be

L= \/—[ ~ 3(0¢)* —78_“33'[} (2)

where the parameter a governing the coupling of the scalar ¢ to the anti-
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symmetric tensor kinetic terms will play a central réle in our discussion. We
have given a reminder of the order of the form Hi,; in its subscript. The

equations of motion following from (2) are

— a—ad
D¢ = 2n'e H[n] s
RyN = 50MPONS+ Sun
1 n—1
- - —-ad) AR « 2/
Smn 511 [Hi v — (D—Q)H gmnl,
Vg (e7*PHMMry = ¢, 3)

Kaluza—Klein dimensional reduction

Now we consider the reduction of the system described by (2), (3) from
D' = D+1 to D-dimensional space-time. We shall consider only consistent
truncations of the fields, i.e. restrictions of the fields such that solutions
of the restricted theory are at the same time solutions of the unrestricted
theory. We shall let the (D + 1)-dimensional quantities be indicated with
M _ ( M

careted indices: =z ,2). The line element in D + 1 dimensions is

taken to be

T

ds? = e?*%ds? + e2P¢(dz + Appdz™M)? . 4)

The Kaluza—Klein ansatz for the metric is then (4) together with a restric-
tion to z-independent fields ¢(z) and Aps(z). The constants « and 3 will be
chosen shortly. Insertion of the ansatz (4) into the Einstein—Hilbert action
produces an action for a D-dimensional theory. Now fix 8 = —(D — 2)a,
to maintain the Einstein-frame form of the D-dimensional action, and fix
o? = [2(D - 1)(D — 2)]7! to normalize the ¢ kinetic term.

We also need to specify an ansatz for the antisymmetric tensor gauge
field B[n_l] (where the superscript indicates the order of the form). Since
only one of the (n — 1) antisymmetrized indices may take the value z, one
has

Blu—1) = Bln-1)(z) + Bia—g)(2) A dz. (5)

For the field strength H[n] = dB[n 4] it is convenient to define G[ | =
G[n] G[n—l] AA, G[n] = dB[n~l] and G[n 1] = dB{n 2] giving
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Substituting these decompositions into (2), one obtains the dimensionally-
reduced Lagrangian

£ =y=g[R~ }(06)? - 1(8p)? - Le~ P p?
1 1

T 2(n —1)!

2{n~N)ap—a¢, v 2
2n! G["]

e2(D—n)a<p—&¢G{n_l]2} ’ (7)

where F' = dA is the field strength for the Kaluza~Klein vector emerging
fromﬂthe (D+1)-dimensional metric gasn and a is the ¢ coupling parameter
for H{, in the (D + 1)-dimensional theory.

Note that the prefactors of the terms an]z and G[n_1]2 are both of the

form e“a["]‘»[”], where the qg[n] are SO(2)-rotated combinations of ¢ and .
Restriction of the fields in the original (D + 1)-dimensional Lagrangian (2)
to obtain the dimensionally-reduced Lagrangian (7) is a consistent trunca-
tion of the theory. Further restriction to keep just one of the three n-form

terms, F? (corresponding to n = 2), G! .2, or Gy,,_11%, together with an
g [n] r [n—-1] g

appropriately-rotated scalar-field combination @[] while setting the orthog-
onal scalar-field combination to zero is also a consistent truncation. This
last truncation gives once more again a Lagrangian of our standard simple
form (2). Since all of the restrictions made have been consistent trunca-
tions, solutions of the restricted theory will also be solutions of the original
unrestricted theory. Consequently, studying solutions of (2) in the diverse
possible spacetime dimensions D for supergravity theories will also give us
sets of solutions of the original superstring effective field theories.

p-brane solutions

Now we concentrate on solutions to the standard system of field equa-
tions (3) following from (2). For the line-element in D dimensions, we make
the metric ansatz

ds? = e*Adztdz"n,, + e*Pdy™dy 6 mn (8)

where z# (1 = 0,...,d — 1) are coordinates on a translationally invariant
d-dimensional subsurface embedded in the D-dimensional spacetime; these
are to be interpreted as the “worldvolume” coordinates of the p-brane. The
y™ (m = 1,...,D — d) are coordinates of the “transverse” space to the
p-brane. The functions A(r) and B(r) are taken to depend isotropically on
the y™ coordinates, i.e. only through the SO(D — d) rotationally-symmetric

combination r = /y™My™.
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For the (n ~ 1)-form gauge potential Bay,...pr,_,, there are two types
of ansatz for the solutions that we shall consider:
Elementary p-branes
In this case, the antisymmetric tensor Bpy,...pr,_, couples directly to the
worldvolume of the p-brane, so d = p+ 1= n — 1, and we make the ansatz

c
By pp_1 =€pypn_1® (r) (9)
where the as-yet undetermined function C(r) again depends isotropically
on the transverse y"™ coordinates. Components of By, ...ps,,_, With indices
pointing into any of the transverse directions are set to zero. As a conse-
quence of this and of isotropicity, the field strength Hy takes the form

Honpy ooy = Epg o OmeC .. (10)
Solitonic p-branes

This case is dual to the elementary case above, and for it the worldvolume
dimension is d = D — n — 1. The antisymmetric tensor ansatz is most
conveniently given directly in terms of the field strength,

yP
Hpy o mp = Q€m;—mnp pr+l1? (11)

where @ is a magnetic charge.
Given the above ansitze, one finds solutions by direct substitution into

the equations of motion (3). First, define the worldvolume dual dimension
by

d=D-d-2. (12)
Then one finds solutions with
B=-%4,
d
_adp-2)

ed

—kA k

rd

where k = d + (2d) " 'a?(D — 2), ¢ = +1(~1) for the elementary (solitonic)
solution, and k is a constant related to the charge Q by k = [2(D-2)]~*[(D-
2)2a2 /d? +2d(D—2)/d)*/2¢Q. In the elementary case (9), the function C(r)
is determined by

%(ec(r)) = QeQ;Ar_(J'H) . (14)
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The line element determined by the solution (13) may be written in a
nicely symmetrized form

4d 4d

k\ " (D=-2ya (D-2)A

d82 = (1 + —J) dl‘“dl’ymnz + (1 + %) ) dymdym s (15)
r r

where the constant A is defined by

2
=A- ——. 16

The importance of the quantity A introduced here goes beyond the nice
symmetrical form it gives to (15), for we shall see that A is invariant
under dimensional reduction [1]. Within the present context of solutions
derived from the ansdtze (8)—(11), the values of A that have been found
are A = 4,2,%. Generalisation of this ansatz to excite multiple scalar-
antisymmetric combinations yields further A values [11, 12].

The elementary and solitonic solutions (13), (14) derived from the
ansitze (8)—(11) have a special structure that permits Kaluza-Klein dimen-
sional reduction to be carried out directly on the solution, and not only on
the equations of motion. The special feature of these solutions permitting
this is translational invariance along the worldvolume directions, as man-
ifested in the coordinates used in (13), (14) by the lack of dependence of
A(r) and C(r) upon the worldvolume coordinates z#. Thus, dimensional
reduction may be effected directly upon such a solution by letting the re-
duction coordinate z be taken to be any one of the z#. Such a reduction
automatically preserves isotropicity in the transverse coordinates and maps
elementary — elementary and solitonic — solitonic solution types.

Oxidation, rustiness and stainlessness

The converse of Kaluza-Klein dimensional reduction has been called
“dimensional oxidation.” Whenever a theory in D spacetime dimensions
may be obtained by dimensional reduction from a theory in D + 1 dimen-
sions, then any solution of the D-dimensional theory may be promoted, or
“oxidized” to a solution of the D + 1-dimensional theory. This procedure
does not, however, guarantee that specific features of a solution, such as
isotropicity in the transverse dimensions, will be preserved under oxidation.
Thus, we introduce some more terminology (traditionally fanciful in the
subject of supergravity): if an isotropic p-brane solution in D dimensions
can successfully be oxidized into an isotropic (D + 1)-dimensional solution
in accordance with our ansitze (8)-(11), then we shall call such a solution
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“rusty.” As is immediately apparent, isotropicity in the new D + 1 — d
transverse dimensions requires that the value of the worldsheet dimension
d increase by one in this process (but note that d remains constant). Thus,
a rusty p-brane in D dimensions oxidizes into a (p + 1)-brane in (D + 1)
dimensions.

Clearly, all of the ’brane solutions that can be obtained by dimensional
reduction from solutions in higher spacetime dimensions using translational
symmetries along worldvolume directions are rusty. The process of isotropic
dimensional oxidation and reduction of such solutions corresponds to the
process of double dimensional reduction of p-brane worldsheet actions as
originally discussed in [4]. We shall not concentrate here on the dynamics
of the zero-mode fluctuations of our translationally-invariant p-brane solu-
tions, but these should be described by worldvolume actions generalizing
the Nambu—Goto action for the string. Several of the present families of
solutions fit cleanly into known actions of this type [5]; others appear to
require an extension of the known class of worldvolume actions.

A sequence of p-brane solutions related by isotropic dimensional oxi-
dation must end somewhere. This can happen in two ways. One of these
occurs at the top of a dimensional reduction/oxidation sequence of theories,
where the top theory is not itself obtainable by reduction from any theory
in a higher dimension. The other way involves a theory that can be oxi-
dized to a theory in a higher dimension, but where the solution in question
cannot be oxidized without loosing its isotropic transverse structure in the
process, i.e. without going outside the form of our p-brane ansitze (8)—(11).
In either of these cases where the solution cannot be isotropically oxidized,
we shall call the solution “stainless.” Classifying the stainless solutions will
give us a classification of all p-brane solutions.

Examples

The D = 10 effective action for any supergravity theory includes the
fields present in the bosonic string effective action (1). After a conformal
rescaling to put the action into Einstein frame, one has

1 _
ho = 5o [ @%y75[R- (06 - syeHunpHNP] . (17)

This is of our general form (2), with ¢ = 1, n = 3. The two-form gauge field
Bpsn supports an elementary string (p = 1) solution [6]

2 ka 3/ gV k2 1/ m g, n
dsloz 1+7‘_6 nuydx dz¥ + 1+7’_6 5mndy dy”,

-1
k
Byy = —e®0/2 (1 + ]:_§> e"2% — ¢ 2%0 (1 + ;(2?) . (18)
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This solution has d =2, d=10-2-2=6,a = 1, giving 1 =A-2.2.
6/(10 — 2),s0 A = 4.

The simplified action (17) is obtained from a consistent truncation of
D =10, N = 2A supergravity, whose bosonic sector is:

1 _ ,
ha=55 | d%V=g[R - 1(06)? - e P HE) — yne®®/* R
— e/ Hy*| ~ i A Hig A By (19)
where H['4] = dB3 + A1) A Hz). This action is in turn obtained from

a consistent Kaluza—Klein dimensional reduction of the bosonic sector of
D = 11 supergravity:

1

i = 57 [ /5 [Rm e Harn Q™™ PO) 4 ki A Hyg By
(20)
Since the action (17) giving rise to the elementary string solution (18) is
obtained from a sequence of consistent truncations starting from the D = 11
action (20), the D = 10 string solution automatically oxidizes to a solution
of the D = 11 theory. After a preliminary conformal rescaling to account
for the canonical Einstein-frame normalization of the D = 10 action, one

obtains the D = 11 solution

—2/3 1/3

ko \ 1
B#VP = —Euup (1 + ;.—6_) . (21)

This is the isotropic elementary membrane solution (p = 2) of D = 11
supergravity [7]. Note that the D = 10 dilaton has disappeared, having
been absorbed into the D = 11 metric as g1111 = €*#/3. Since the D = 11
theory does not contain a dilaton, one should consider that the coupling
parameter a takes the value zero, giving 0 = A-2-3-6/(11 - 2), so A4 = 4,
the same as for the string solution in D = 10.

By the above discussion, we have verified the rusty character of the
(p = 1) elementary string in D = 10, since it is isotropically oxidizable to
the (p = 2) elementary membrane in D = 11. The D = 11 membrane so-
lution is itself stainless, since the D = 11 supergravity theory is the largest
supergravity theory, and is not obtainable by dimensional reduction from
any higher dimension. The D = 11 elementary membrane sits at the top
of an oxidation/reduction pathway that reduces down to the D = 10 el-
ementary string that we began this example with, and then toa D = 9
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elementary particle solution, which turns out to be an extreme Reissner—
Nordstrom black hole.

Now consider an example of a solution where oxidation can be per-
formed, but where the isotropic character is lost. In D = 9, there are two
independent 5-brane solitonic solutions, whose metrics are:

\ Al k
dsg pmy = (1 + ;) dz*dz"n,, + (1 - ;) dy™dy™, p=0,---,5,(22)
B\ ~2/7 12/7

ds%A:? = <1+ ;) dw“den“V+ <1+ ;) dymdyn’ m:6?""8-
(23)

In both cases, there is a 1-form potential A,s, with field strength

2%k p

Hpn = Y (24)

ALZEme T

Since the D = 9 theory can be obtained by a consistent Kaluza—Klein
reduction from D = 10, both solutions (22), (23) can be oxidized, but with
different results. The A = 4 solution (22) can oxidize isotropically, since the
D = 10 theory has a By 2-form potential with a A = 4 scalar coupling
and so can support an isotropic solitonic 6-brane solution:

B\ /8 B\ /8
ds?y Ay = (1 + ;) detdz" nu, + (1 + 7—) dy™dy,
yq
Hmnp = _ksmnpq'?j . (25)

Since it can isotropically oxidize, the D = 9, A = 4 solution (22) is rusty.

By contrast, the D = 9, A = 2 solution can only oxidize by having
the A = 2 1-form Ajp; become part of the D = 10 metric, since there is no
appropriate A = 2 2-form gauge field in D = 10. One then finds the D = 10
metric

e\ 17
ds%O warped — (1 + ;’) (dwudzun#u + (dZ + Amdxm)z)

k 7/4
+ (1 + ;) dy™dy™ . (26)

In this metric, z has become a coordinate on a non-trivial U(1) fibre bundle:
the metric has become “warped.” Thus, we have an example of the second
kind of stainless p-brane in the D = 9, A = 2 solution (23): although it



2704 K.S. STELLE

can be oxidized to a higher-dimensional spacetime, this oxidation does not
preserve the isotropic character of our p-brane metric ansatz (8).

Supersymmetry

All of the solutions so-far discussed have been purely bosonic; although
they are solutions to supersymmetric theories, fermion fields have been set
to zero in these backgrounds. As with the simplest flat-space solution,
however, such solutions may nonetheless preserve several supersymmetries
unbroken. Since we are dealing with supergravity theories, the full super-
symmetries of the action are local; what might remain unbroken in a given
background is generally only a rigid supersymmetry. Nonetheless, since in
gravitational theories one is frequently dealing with solutions that asymp-
totically tend to flat space, the standard of comparison for the unbroken
supersymmetries is not the original full local supersymmetry of the action,
but the asymptotic supersymmetry of flat space. Thus, one may speak of
“half” of the supersymmetry being preserved by a solution, meaning that
the solution leaves unbroken half as many supersymmetries as the usual
asymptotic flat spacetime. The preservation of half of the flat-space super-
symmetry turns out to be a hallmark of the class of solutions considered
here.

To see how some supersymmetry may remain unbroken in a purely
bosonic background, consider once more the membrane solution of D = 11
supergravity, in which the spin-3/; gravitino field 15 is set to zero. Under
the full local D = 11 supersymmetry transformations, but restricted to a
vanishing gravitino background, the gravitino transformation is

89 Ml y=o = Due
= (aM + LofBr g — L (IPORS | 8FPQR<SSM)HPQR5> £.(27)

Now make a 3 + 8 split of the I’ matrices:

Fa=(7.Q 19,10 %), p=0,1,2, m=3...,10,

I'g =233%4---%10, r@=1. (28)
Using this split, one may retain covariance under the unbroken SO(2,1)®
SO(8) symmetry of the membrane solution (21). In searching for unbroken

supersymmetries, we shall take the SO(2,1)®SO(8)-covariant ansatz for the
supersymmetry parameter

ez, y™) =e@n(r), (29)
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where ¢ is a constant spinor under SO(2,1) and 7(r) is an as-yet unde-
termined SO(8) spinorial function of the isotropic transverse coordinate
r= Vi

Using now the fact that the membrane solution (21) obeys our elementa-
ry-form ansatz (8), (9) with A = C/3, B = —C/6 + const., one finds that
one can make a supersymmetry transformation that maintains d¢y, = 0
with the parameter ansatz (29) provided n(r) satisfies

n(r) = e~ C(/6py (30)
(1-I9)n=0, (31)

where 7 is a constant SO(8) spinor, and the condition (31) requires 7 to
be chiral with respect to SO(8). The chirality condition and the functional-
dependence condition (30) reduce the number of independent components
(€, mo) in the supersymmetry parameter (29) to half the number of rigid
supersymmetries of D = 11 flat space, i.e. to 16 real constant spinor com-
ponents. Thus, we say that the solution (21) preserves half the supersym-
metry [7]. Half-supersymmetry preservation also characterizes all the other
p-branes that we are considering here.

The preservation of half of the supersymmetry is closely related to an-
other feature of the class of solutions that we have discussed. Although these
solutions describe “windows” of infinite extent, and hence have an infinite
amount of field energy, their field energy per spatial unit volume remains
finite [6]. For example, for the D = 11 membrane, one has a finite ADM
mass/unit area expressed as an integral over the transverse coordinates,

M=/fwm, (32)

where 6y is a stress-tensor component. From the local D = 11 supersymme-
try algebra, it follows (subject to certain assumptions about nonsingularity)
that the mass/unit area satisfies the Bogomol’ny inequality [7]
M > |P|, P:%/(*H+%BAH), (33)
s7

where P is the conserved Page charge [8] of the D = 11 theory. Preservation
of half the supersymmetry implies that the inequality (33) is saturated,

KIM =|P]|. (34)

The saturation of the Bogomol’ny inequality guarantees the stability of the
solution.
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Given the preservation of half of the supersymmetry, one can organize
the fluctuations about p-brane solutions into multiplets. Especially impor-
tant among these fluctuations are the Goldstone zero-modes, for which there
is no restoring potential, so they behave like massless wave-like excitations
superimposed on the flat background p-brane “window.” Each broken rigid
symmetry gives rise to a Goldstone mode. Thus, for the membrane solution
in D = 11, one has 11 — 3 = 8 bosonic Goldstone modes coming from the
broken translational symmetries (corresponding to the transverse location
of the membrane) and 3%/, = 16 fermionic Goldstone modes, coming from
the broken supersymmetries. This set of 8 bosonic and 16 fermionic fields is
just what is needed to fill out a multiplet of the unbroken supersymmetries,
which may be considered to be an N = 8,d = 3 worldvolume supermulti-
plet. Recall that supersymmetry requires a balance of bosonic and fermionic
degrees of freedom, but that fermionic wave equations are of first-order in
derivatives while bosonic wave equations are of second order, so that twice
as many fermionic fields are needed to describe the zero modes as for the
bosonic fields.

The stainless brane scan

To summarize the classification of p-brane solutions to supergravity the-
ories, one may plot just the stainless solutions, as we have discussed. Each
of these gives rise to a dimensional-reduction family of descendant p-branes
in lower dimensions, following a diagonal trajectory on the (D,d = p+ 1)
plane. The status of these solutions as possibly ezact string-theory solutions
varies according to the different cases [9]. There is accumulating evidence,
however, that the saturation of Bogomol’ny bounds for these solutions gives
a strong possibility that such solutions will persist in the full theory, perhaps
with some renormalizations.

In the following diagram of the stainless p-branes are included only
purely elementary or purely solitonic solutions; dyonic solutions are also
known to exist, but are not shown. To simplify the diagram, the various
dual formulations of supergravity have also been factored out, with theories
being considered in their forms with antisymmetric tensor field strengths
satisfying n < D/2. Next to each stainless solution is indicated its A
value. The p-brane solutions discussed here preserve /2 of the supersym-
metry of the smallest supergravity theory in which the given solution can
exist, or an amount (14,1, s) of the maximal possible supersymmetry
(corresponding to dimensional reductions of D = 11 supersymmetry) for
the cases A = (4,2,%3). The D = 10 7-brane was recently obtained in
[10]. Additional recent solutions preserving lower amounts of supersymme-
try with new values A = (1,%s, %4, ) involving generalizations of our ansétze
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(8)—(11) have also been found in [11, 12]. Another class of recently-found so-
lutions for supergravity theories with dilaton potentials, but without n > 1
antisymmetric tensor field strengths, has been discussed in [13-15]; the re-
lation of these solutions (not shown in the diagram) to the p-branes and
dimensional-reduction classification discussed here remains to be clarified.
Clearly, an interesting kind of p-brane “chemistry” seems to be emerging.
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Fig. 1. The stainless supersymmetric p-branes
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