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I review different methods used in description of the high-energy pro-
cesses in quantum gravity. As a first I discuss the result obtained within
the eikonal approximation. Next I describe the derivation of the effective
action for the quantum gravity in the multi-Regge kinematics.
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In this lecture I review some results obtained in studies of quantum
gravity in the multi-Regge limit. When the energy E involved in a scattering
process exceeds significantly the Planck mass Mp

E> Mp (1)

quantum effects become important. Unfertunately, the problem of con-
struction quantum theory of gravity is unsolved till now. One of the main
obstructions is that the quantization of general relativity leads to perturba-
tively non-renormalizable theory. A consequence of this fact is the general
opinion that studies of quantum gravity which are based on perturbation
theory are without predictive power.

It turns out that in the case of processes occurring in the multi-Regge
kinematics (MRK) one can obtain definite predictions. In this kinematics,
the produced particles which arise in the scattering of two high energy par-
ticles fly mainly in the direction of one of the incoming particles. They have
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very large and strongly ordered longitudinal momenta and small transverse
momenta. The calculations of scattering amplitudes show that renormal-
ization effects do not contribute to leading and next-to-leading terms. In
particular, Lipatov has calculated the inelastic amplitudes corresponding to
production of gravitons in MRK and graviton’s Regge trajectory [1]. More
recently Amati, Ciafaloni and Veneziano have calculated the quantum cor-
rection to the classical deflection angle of a graviton in the field of a black
hole {2].

Gravity in MRK is a strongly interacting theory with the effective cou-
pling constant sG, where G is Newton constant and s is the energy in the
c.m.s. squared. For the case of the elastic processes this fact implies that the
t-channel intermediate state with n gravitons leads to a contribution which
behaves as s, i.e. t-channel exchanges involving more gravitons are more
important. This is due to the spin of graviton ¢ = 2. One should confront
the above result with the analogous contribution due to gluonic exchanges
(0 = 1) in QCD which is of the order s (modulo Ins’s), independently of
how many gluons are exchanged.

As a consequence of the appearance of the big coupling constant sG,
to obtain reliable results, one should sum the contributions corresponding
to an arbitrary number of gravitons in the t-channel. The eikonal diagrams
are those which for given power of G provide the contributions with the
highest power of s.

The calculations of eikonal diagrams in the case of gravity proceed in
a similar way as analogous calculations in QED (compare [4]). Kabat and
Ortiz have calculated the leading terms of those diagrams in the case of
scalar-scalar scattering by graviton exchanges [5]. The obtained result for
the scattering amplitude M is the following
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where p is a graviton mass which serves as an infrared cut-off. Performing
the integrals in Eq. (2) one gets
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This result can also be obtained using other methods, which do not
refer to Feynman diagrams. t’Hooft has considered [6] the scattering of
gravitons as a quantum mechanical problem of one particle moving in the
gravitational field of the other particle. This gravitational field has the form
of ”shock-wave” as described by the Aichelburg-Sex! metric [7]. Amati,
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Ciafaloni and Veneziano [2] as well as Muzinich and Soldate [8] derived
Eq. (3) by considering the low energy limit of string amplitudes. Finally, E.
and H. Verlinde obtained this result by constructing the effective theory for
gravity in Regge kinematics [9]. This effective theory emerges as a result
of a natural separation of longitudinal and transverse degrees of freedom in
the underlying kinematics.

Although Eq. (3) was obtained by summing the leading terms arising in
each order of perturbation theory, it needs to be corrected. Let us observe
that the product of the last two factors in Eq. (3)

(1 —iGs) [4u?\ "
T(1+iGs) (’3) 4)

is a pure phase. This means that in order to obtain a meaningfull result
one should correct the above calculations by taking into account non-leading
terms which were previously neglected. In particular it is not enough to cal-
culate the eikonal diagrams only up to leading accuracy but higher precision
is needed. Moreover, it is necessary to consider also diagrams in which the
exchanged t-channel gravitons interact each with other. In the MRK this
corresponds to taking into account inelastic diagrams with the production
of many gravitons in s-channel. The importance of non-leading terms for
the final result is clearly shown up in calculations of quantum correction to
the classical deflection angle [2]. For distances close to the Schwarzschild ra-
dius the magnitude of the quantum correction is of the order of the classical
expression which requires a further improvement of the approximation.

The problem of how to go beyond the eikonal approximation in a sys-
tematic way is unsolved till now. The methods which work well within the
eikonal approximation are difficult to generalize beyond it (for a discussion
of these questions see Ref. [3]). The new approach to this problem was pro-
posed by Lipatov in Ref. [3] and is based on the effective action for gravity
in the MRK. The effective action involves only those degrees of freedom
which are relevant for processes in the underlying kinematics. The analo-
gous effective action to that of Ref. [3] turned out to be a useful tool also
in the superstring approach to high-energy gravitational scattering [11].

In the case of QCD in MRK, the effective action was derived by
Kirschner, Lipatov and the present author from the original QCD La-
grangian [12]. It turns out that using similar method one can also derive
the effective action for quantum gravity in MRK [13]. The main steps of
this derivation are presented in the following.

The starting point is the Einstein action. Because of the MRK it is
natural to perform all derivations in the axial gauge, with the momentum

of an incoming particle taken as the gauge vector (ply = 25—(1,0,0,—-1)).
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The gauge fixing conditions are chosen as
g =g-i=0, g4 =2e¥/7, (5)

where the light-cone variables are defined as x4 = zg &+ 3. The physical
degrees of freedom are represented by the two independent matrix elements
711,712, Where ;; is defined by the transverse components of the metric

gij, 4,7 =1,2
gij = €% 7ij, det(7y;;) =1. (6)

After solving the constraints related to the gauge choice (5) the Lagrangian
will be expressed only in terms of the matrix elements +;;. We parametrize
them as

yij = (eMij,  Sph=0, (7)
and we introduce the complex field h defined by the two independent ele-
ments of the matrix h;; as

h= %(’lu ~ ihy3). (8)

Complex notations will also be used for two-dimensional transverse mo-

mentum and position vectors (z = z! + i22,9 = g—x) as in [12]. Expanding

Einstein’s Lagrangian in powers of h and keeping all terms including the
quartic in h we arrive at the following starting point of our analysis
L=LP 4+ ® @4
£?) = — 2p*(8,0_ — 80*)h,
LB =2a{(_h*d_h)d*?9~h
+ O_h*hd*20" h — 20_h*0*hO* " h +c.c.},
LW =20%{-20-2(8> h*0*0-'h
— 329" h*h) |2+ |0-2 (8% h*0*h — D_0*h*Oh)|
+ 1871 (0-h*8*h — 8*h*O_R)|? — 3|01 (O_h*0*h)|?
+30-1(0_h*0-h)d" (Bh*0*h)
+ [0=%(0—h*d_h) — h*R][Oh*0*h + B*h*Oh
~ 09*0_'h*0_h — O_h*30*9_'h]}.
(9)

In writing down Eq. (9) we included a factor (87G)'/? into the definition of
h; o = (47rG)1/2, where G is Newton’s constant. Moreover, we assume for
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simplicity of notation that the differential operators act only on the nearest
fields.

The fields in Eg. (9) as it stays contain all modes. So our aim is to
eliminate those degrees of freedom which are not present in MRK. Let us
first separate the fields modes according to the MRK

where hy, h and £y contain the modes of the following momentum ranges

hy: lksk—| > |52 ~ g%,
h:lkek— — |62 ~ gl
he + kyk_| < |K[2 ~ |ql?. (11)

The field h; describes exchanged particles in t-channel whereas field h cor-
responds to the scattered particles. The “heavy” modes hy describe highly
virtual particles and these have to be integrated out. This is done in the
first perturbative order by means of equations of motion describing heavy
modes (the saddle point method).

Consider first the kinetic term of the Lagrangian (9). With the separa-
tion (10) it decomposes as

L2 = —2h3(D40_ — 00*)hy — 2h* (810_ — DI Vh + 2hFDO*he.  (12)

The part of the triple interaction vertices £(3) (9) which leads to large
contributions is obtained when the inverse of d_ acts on the field with the
smallest momentum component k_. In order to isolate this part we separate
the modes in £(3) by making the substitution

Here, h denotes the field with all modes i.e. those of h, by and h; whereas
hy describes the fields carrying those modes of h and hy whose momentum
component k_ is , due to the MRK, much smaller than the ones in h.
Next, the interaction Lagrangian for heavy modes is obtained by keeping
only terms linear in hy (which are contained in k). We obtain the following

equation of motion for the modes h(1 )

(040- — 80*)h{”) = —a{0_(0_hA+1) + LO_R(9*A4)
~ 10_h QA% —0_(0*hA4) - B(9-hAY)}. (13)
where
Apq = 0720 2he + 0%R7), Al = —id71(0*%hy — 9%h]),
Ay =20710%h,, A% =20"10h} . (14)
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The form in which Eq. (13) is written down emphasizes the underlying
MRK: the momentum component k_ of A is much smaller than the one of
h whereas the situation is inverse if we consider momentum components k...
Moreover, for simplicity of notation we still use the same symbol h even if
this field does not contain heavy modes any more.

The result of integration over heavy modes £(1) is given by the kinetic

term with opposite sign for fields hg()) (13). The result takes the form

E(l) :(}'2T_._:Z-++ y
T__ =0_h*d_h,
Tip =~ (07" Apy 90— Arq)
+ {007 Ap Ay — Ay 07 A%) + 0A4107%0" Ay + e}
(15)

Let us now observe that, although we integrated out over heavy fields
propagating in the s-channel, Eq. (15) is factorized in the t-channel. The
result (15) can be obtained from the new Lagrangian which contains:

a) the kinetic term for t-channel fields h; from Eq.(12), smallskip
b) the leading triple vertex

(3+) _ T
[’Ieading = QCYT.._.A++ (16)

supplemented by Eq. (15) and Eq.(14) in which we restrict ourselves to
t-channel field only,

c) the new induced vertex Cf; <)i which is given by formula

L) = —ado*A__Tiy, (17)
where we have introduced t-channel field A__ defined as
A__ = %33(86*)"2(8*2ht + 82ht*) = :}-84_(86*)—2A++ . (18)

The above results permit us to read off some vertices of the effective
Lagrangian. Let us consider the leading vertex (16) in which we restrict the
modes of both fields appearing in T_ _ (see Eq. (15) to the modes of A fields
only. This leads to the effective scattering vertex of gravitons off the A4 4
field

£(8+) = QG’T__..A++ s
T__ =8_h*0_h. (19)
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The vertex (16) gives also a contribution £3~%) to the production
vertex. It is obtained by restricting the modes of one field h to the modes of
the £ field and keeping in the second field h only the modes of the h; field.
Also the induced vertex (17) contributes to graviton production. In this
case one of the fields in Z4 carries the modes h and the other the modes
ht. The sum of these both contributions leads to the following effective
graviton production vertex

L) = 20(0*2A__0% Ay — 00" A__00* A4 )0 2h +cc..  (20)

Let us note that the production vertex (20) contains the non-local ex-
pression ™ 2h. As our aim is to have an effective Lagrangian which is local
we introduce a new s-channel field ¢ defined as

b= —sigh (21)

(compare [12]). In this way we obtain the following kinetic term for the
s-channel fields

L3P = —26* (8,0 — 00%)9%0"2%4 (22)
the scattering vertex off A4 4 fields

L1 = 200_0*2¢*0_9% A4y, (23)
and the production vertex
L) = 20(0*2A__0%Ayy — DO*A__00* A4 4)d + coc.. (24)

In order to complete the derivation of the effective Lagrangian we have
to determine the vertex £(3~) describing graviton scattering off the field
A__. The parity invariance of the theory implies that £337) is obtained

from £3%) (Eq. (23)) by the simultaneous exchange of + +» — and ¢ < ¢*
LO7) =20 A__8,8%2¢0,0%¢* . (25)

However, this way to derive £(*7) is not satisfactory. The reason is that
our derivation of the effective Lagrangian is performed in the peculiar axial
gauge (5) which breaks the + <+ — symmetry of the whole procedure. Of
course the final result does not depend on this choice of gauge but expres-
sions in the intermediate steps are gauge dependent. Therefore, to check
the consistency of the method it is necessary to reproduce the vertex L)
by careful collecting all ingredients which contribute to it. It turnes out
that the scattering vertex £{1) (23) is obtained in a rather straightforward
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way whereas many terms contribute to the vertex £(*~). This part of our
derivation is rather technical and tedious so I skip the details (see Ref. [13]).
I want only to mention that the consistency of the calculations requires that
the t-channel fields A4 and A__ have to be treated as independent fields,
despite the fact that they were originally defined by Egs. (14) and (18) in

terms of the same field h;. This requirement leads to the kinetic term Eﬁz
for those fields

£ =24, 00" A__ (26)

which differs by a factor 2 from the expression obtained by formal substi-
tuting definitions (14) and (18) into Eq. (12). In such a way we have arrived
to the effective Lagrangian £(¢T) for gravity in the MRK which is given by
the sum of the terms

LEID = £ L £ 4 p(50) 4 23 4 p(=4) (27)

where the elements of the sum are given by Eqgs. (22), (26), (23), (25), and
(24).

The author is grateful to the organizers of the Workshop for an invita-
tion. He thanks Roland Kirschner and Lev Lipatov for collaboration.
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