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A new method of deriving equations of motion from field equations
is proposed. It is applied to classical electrodynamics. As a result, we
obtain a new, perfectly gauge-invariant, second order Lagrangian for the
motion of classical, charged test particles.
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1. Introduction

The motion of classical, charged test particles, in the classical Maxwell
field is derived usually from the gauge-dependent Lagrangian function

L= Lparticle + Ling = -V 1- v? (m + euuA/i(tv q)) ) (1)

where u# denotes the (normalized) four-velocity vector. Since the Lorentz
force eu” f,, derived from this Lagrangian is perfectly gauge invariant, it is
not clear, why we have to use the gauge-dependent interaction term eut A,
with no direct physical interpretation. Moreover, in this approach, the
equations of motion are not uniquely implied by the field equations. As
an example, non-linear forces of the type u“fﬂ)\f)‘y cannot be a prior:
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excluded. This corresponds to the general “folklore”, which says that in
electrodynamics (unlike in General Relativity) equations of motion cannot
be derived from field equations.

In the present paper we propose a new method of deriving equations
of motion from field equations. The method is based on an analysis of
the geometric structure of generators of the Poincaré group, related with
any special-relativistic, lagrangian field theory. This analysis leads us to a
simple theorem, which we call “variational principle for an observer” (see
Section 2). Applying this observation to the specific case of classical elec-
trodynamics, we prove that (up to gauge dependent boundary terms) the
interaction Lagrangian eu” A, is equal to the amount of the total angular-
momentum acquired by the system “field + particle” due to the interaction
of the external field with the particle’s own Coulomb field. In this approach,
equations of motion are uniquely implied by the global conservation laws.

More precisely, our approach uniquely leads to a manifestly gauge-
invariant, second order Lagrangian L:

L= Lparticte + Ling = —V1 - vZ (m+ auuuMlanut (t,q,v)) , (2)
where a* := u”V,u* is the particle’s acceleration. The skew-symmetric

tensor M;L’,ﬁt is equal to the amount of the total angular momentum, which
is acquired by our physical system, when the particle’s own Coulomb field
is added to the background (external) field.

We stress that the new Lagrangian differs from the old one by (gauge-
dependent) boundary corrections only (see Section 4 for a direct proof).
Therefore, both Lagrangians generate the same physical theory (although
the new Lagrangian is of second differential order, it depends linearly upon
the second derivatives and produces the standard, second order equations
of motion).

The above result is an immediate consequence of a consistent theory of
interacting particles and fields (¢f. [1, 2]), called Electrodynamics of Moving
Particles. All the formuale of the present paper could be derived directly
from the above theory in the test particle limit (i.e. m — 0, e — 0 with the
ratio e/m being fixed).

The relation between L and L is analogous to the one well known in
General Relativity: the gauge-invariant, second order Hilbert Lagrangian
for Einstein equations may be obtained starting from the first order, gauge-
dependent Lagrangian and supplementing it by an appropriate boundary
term.

The above theory possesses also very nice gauge-invariant Hamiltonian
structure. It turns out that our approach is perfectly equivalent to that
proposed by Souriau (see [5]) (although the Souriau’s contact structure is
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different from ours, they are, however, equivalent from the physical point of
view). For more details about the Hamiltonian structure see [3].

2. Variational principle for an observer

Consider any relativistic-invariant, Lagrangian field theory (in this pa-
per we will consider mainly Maxwell electrodynamics, but the construction
given in the present Section may be applied to any scalar, spinor, tensor
or even more general field theory). We want to describe the field evolution
with respect to an observer moving along an arbitrary time-like trajectory
¢. The observer’s co-moving frame is related with the laboratory one via
a (time-dependent) boost transformation (see [2, 4] for more details). It is
relatively easy to show (cf. [2]) that the field evolution with respect to the
above non-inertial reference frame is a superposition of the following three
transformations:

e time-translation in the direction of the local time-axis of the observer,
e boost in the direction of the acceleration a* of the observer,
e purely spatial O(3)-rotation w™,

where the vector w™ is given by

emkgvkif

R TR Y Y s

and 0¥ is the observer’s acceleration in the laboratory frame (note that the
above formula is the same as the formula for an angular velocity of Thomas
precession (cf. [4])).

It is, therefore, obvious that the field-theoretical generator of this evo-
lution is equal to

3)

H=+v1-v2 (8 +a*Ry — mem) , (4)

where £ is the rest-frame field energy, Ry is the rest-frame static moment
and Sy, is the rest-frame angular momentum. The factor V1 — v? in front
of the generator is necessary, because the time t = 2%, which we used to
parameterize the observer’s trajectory, is not the proper time along ¢ but
the laboratory time. For any point (t,q(t)) € ¢ the values of the Poincaré
generators £, Ry and S, are given as integrals of appropriate components
of the field energy-momentum tensor over any space-like Cauchy surface
X which intersects ( precisely at (¢,q(t)) (due to Noether’s theorem, the
integrals are independent upon the choice of such a surface).

Given a field configuration, we are going to use the quantity H as a
second order Lagrangian for the observer’s trajectory. For this purpose
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we choose a “reference trajectory” (p and for each point (t,q(t)) € (o we
calculate the corresponding “reference values” of the generators £(t), Ry (t),
Sm(t). Inserting them into H we finally consider the function obtained this
way as a Lagrangian depending on a generic trajectory ¢ via its velocity v
and acceleration a.

Theorem. Fuler-Lagrange equations derived from the above Lagrangian are
automatically satisfied by the trajectory { = (p.

This Theorem may be checked by simple inspection: the Euler-Lagrange
equations derived from H are automatically satisfied due to the energy-
momentum and angular-momentum conservation (it is an obvious conse-
quence of the invariance of the theory with respect to the choice of an
observer).” In the next Section we show that if we add to the background
(external) field a Coulomb field of a charged particle then variational prin-
ciple obtained this way gives nontrivial particle’s equations of motion.

3. Adding a test particle to the field

From now on we limit ourselves to the case of electrodynamics. Suppose
that to a given background field f,, we add a test particle carrying an elec-

tric charge e. Denote by uy,,’u) the (boosted Coulomb) field accompanying

the particle moving with constant four-velocity u, which passes through the
space-time point y. Being bi-linear in fields, the energy-momentum tensor
T2l of the total field

;c;/tal = fuu + ]f'y",U) (5)
may be decomposed into three terms: the energy-momentum tensor of the
background field T7f%¢¢ the Coulomb energy-momentum tensor Trarticle,

. . .. KA . .
which is composed of terms quadratic in f).} ) and the “interaction tensor”
T'™! containing mixed terms:

Ttotal — Tﬁeld + Tparticle + Tint . (6)

Let us try to calculate the generator (4) for such a composed field con-
figuration. For this purpose we have to integrate appropriate components of
Tt0%! gyer any X which passes through y = (¢, g(t)). Integrating T and
Tnt we obtain the corresponding generator for the background field, which
we call Hfield and the “interaction generator” H'™. Because the left-hand
side and the first two terms of the right-hand side of (6) are conserved (out-
side of the particle’s trajectory), we conclude that also T'™* is conserved.
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This implies, that the above integrals are invariant with respect to changes
of ¥, provided the intersection point with the trajectory does not change
(see [1] for more details).

Unfortunately, the Coulomb tensor TP2rticle has an r—* singularity at
y and cannot be integrated. According to the renormalization procedure
defined in [2] we replace its integrals by the corresponding components of
particle _ muy and the total

4

the total four-momentum of the particle: Py

angular momentum: M, particle _ ) The renormalized particle generator is,
therefore, defined as follows:

Hparticle =m /1 — 2. (7)

This way we obtain the total (already renormalized) generator as a sum of
three terms

Htotal Hﬁeld + Hint + Hpa.rticle’ (8)

where the first term is quadratic and the second term is linear with respect
to the background field f,,. To calculate the “interaction generator” H'™*
let us observe that the only non-vanishing term in H'™* comes from the
static moment term R in (4), because the mixed terms in both the energy
& and the angular momentum S vanish when integrated over any X' (see [2]
for the proof).

Finally, we have

Htotal Hﬁeld+ /1 — 2 atu VMmt(t q,v )+ 1 — v2 m, (9)

where the interaction term is defined as the following integral

Mint (y) —/{(xu Y )T () = (20 = 9) T (2)  d5¥ (), (10)

x

and Y is any hypersurface which intersects the trajectory at the point y =
(t,q(t)). In particular, using the particle’s rest-frame and integrating over
the rest-frame hypersurface %y we have

e rpa™

Mmt
47!‘ X 7‘3

Dy(z)d’z, (11)

where D, is the corresponding component of the external field f,.

Now, let us consider the generator H*°t*® as a second order Lagrangian
for the particle’s trajectory (. However, as we proved in the previous section,
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the background field generator Hf¢ld does not contribute to the particle’s
equations of motion. Therefore, we finally take

L= —(HPorucle 4 FiMY) = /1 — 2 (m+a*u’ Mt q,v), (12)

“on

as a particle’s Lagrangian (we take the sign to obtain correct La-
grangian for a free particle). This way the formula (2) is fully justified.
The gauge-invariant Lagrangian £ has a direct physical interpretation con-
trary to the standard one.

We stress that in deriving (12) we use only Maxwell equations and some
(physically natural) assumptions about the particle’s structure. Therefore,
our approach may be treated as a natural way of deriving equations of
motion from field equations.

The same method may be used to derive particle’s equations of mo-
tion from field equations in other field theories. We are going to apply
this method to derive the equations of motion for particles interacting with
the classical Yang-Mills gauge field and finally to describe the motion of
particles in General Relativity.

4. Equivalence between the two variational principles

The easiest way to prove the equivalence consists in rewriting the field
fuv in terms of the electric and the magnetic induction, using an arbitrary
(curvilinear) coordinate system. We have:

Ak ~ 0k Ao == fox = ~NDj + emuN™ B!, (13)

where N is the lapse function and N™ is the shift vector. Let us use coor-
dinates (t,z*) defined, for a given trajectory ¢, by the tetrad (e,):

y(t,z) = (t,q(t)) + a*ex(t) . (14)

It is easy to check, that we obtain this way the following transformation
between our curvilinear coordinates (t, z*) and the laboratory (Lorentzian)
coordinates y* := (y°, y*) (c¢f. [2)).

1

Ot, 2%) =t 4 ———e zluy(t),
y (t,2) =0 1(t)

yk(t, 2" =g (t) + (5,’“ + Lp(vz)vkvl) et (15)
The above formula may be used as a starting point of the entire proof.

Calculating the components of the flat Minkowskian metric in our new co-
ordinates we easily get gi; = d;; for the space-space components, whereas
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the lapse and the shift are given by:

M= \/}—@: V1-2? (1+aa'),
—g
Nm = gom = V1—22 emklwka:l. (16)

The transformation (15) is not invertible (there are points where the lapse
vanishes) but it does not produce any difficulty for what follows.

We multiply (13) by %:— and integrate over dz® outside of the sphere
k
S(rg). Observe, that %;-c')kAo = Bk%(l. Moreover, we have:
k

k
%—emklN’”B’ —V1-22 g, (B’“”"‘” ) . (17)

Hence, after integration, we obtain in the limit rg — 0:

zk . 3 2k 3
/Fj'Akd T + 4w Ap(0) =/—T:§-NDkd z (18)
Lt

(Ag is the only surface term which survives, due to the standard asymptotic
behaviour of the field). Observe that the constant part of the lapse function
(16) does not produce any contribution to the above formula, because the
flux of the field Dy through any sphere S(r) vanishes due to the Gauss
law. Hence, we may replace “N” by “v/1 — v2 a;z*” under the integral.
Observe moreover, that Ag in our particular coordinate system is equal
o V1—v? u*A, in any coordinate system. Hence, dividing (18) by 4,
integrating it over a time interval [t1,t2] and using (11) we finally obtain

‘2 t2 k k
L= [L+= T arddz— | Sapdiz] . (19)
4 r3 r3
ty ty EgQ Ztl
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