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1. Introduction

We propose a construction of a symplectic structure for classical field
theory for special type of observables. We use some generalization of differ-
ential geometry for infinite dimensional manifold of solutions to field equa-
tions. Formalism presented here seems to be useful for future geometric
quantization of fields. All the results obtained here are preliminary.

2. Symplectic structure

Let us consider a classical field theory of ¢, such that @ 3 z —
¢%(z) € R, is a collection of fields on a curved spacetime ¢, where « is an
index labelling a certain representation of a Lorentz group.

Let us suppose that we deal with a local theory defined by the Lagrangian
density L(¢“, Vbapﬂ), where V} is the covariant derivative with respect to
the connection of the spacetime metric and where 6 =10,1, 2, 3.
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From the variational principle we get the following field equations

oL :va(%), 0

I dpg

where ¢ = Vg%,
Let M be the infinite dimensional manifold of solutions of Eq. (1). We
assume that an observable, (J, in our theory is of the form

M3 6% 5 0L ief) = [doe@ @ ) e R (@)

where X C @ is a spacelike Cauchy surface, do is the volume on £, f €
= (Q).

Let us define T,M, the tangent space to M at . A tangent vector to M
at @ is a solution of Eq. 1 linearized about ¢ (see [1]).
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where Xbﬂ =V, X7.
Now we define an algebraic form of a vector field on an infinite dimensional
manifold M (a manifold of functions). In order to do it we generalize a
notion of a vector field in finite dimensional case using Gateaux derivatives
in the following way.
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where X (O)|,, is a directional derivative of O along X at ¢ € M and DO|,
is a Gateaux derivative.
We define the dual T*M to the TM by

7%49X>+wa7::/ddxgxa+xwmxf)em. (5)
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In this way the element of T*M is a covector field, which generalize a notion
of one-form field on a finite dimensional manifold to an infinite dimensional
case.

For special type of observables considered here we can use the following
representation for X and X*

0 J
X:/daw[X"z————}—X;’x————-}, (6)
J XD gaatey T O )
X = [ do@)X2(e)de? (o) + X3%(0) die ), 7)
i
where ga';a‘, a—%; and dp®, dpg are vector fields and one-forms on X, re-

spectively. It is easy to check that we can get Eqgs. (4) and (5) by simple
manipulations modulo the following properties
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C=(TM) > £ Fy () = [ dota)f(2)6(z,)
b

) f for ye kX
'“{Jw for yg > (10)
with properties
/da(:c)c?(:c, y)=1, (11)
x
[ to@) @3tz = [ dot@) @6, o). (12
x X
/da(m)é(z, 2)8(z,y) = 8(z, y). (13)
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Now we pass to the symplectic strucure on M. We define the 1-form 6 on

M by
6|, = /dana%fld¢a, (14)
where n? is the unit vector normal to 2.
One gets
| 0= /dOnaXaaii:- (15)

It is clear that 6 depends, on the choice of X.
Now, we define the 2-form w on M by

TM x TM > (X,Y) = w(X,Y) := §6(X,Y)
=X(Y |9-Y(X ]6)-[XY]]6, (16)

where [X,Y]:= X(Y) - Y(X).
One can show (see Ref. [1]) that Eq. (16) leads to

)_..

2
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(17)

One can also find Eq. (17) by the formula

w=466:= /danad< oL O‘)
dpg
X

2 27
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and our expressions, Eq. (6), for X and Y.
One can prove that w is independent on the choice of X. The 2-form w is

closed on M and if det [é—ﬁ%] # 0, then (M,w) is a sympletic manifold
el

(because w is weakly nondegenerate).
One can show that the field equations, Eq. (1), are equivalent to the set of -
equations

X |w+dH=0,
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where

0
Xz/da(n goaaaa-i- (pabﬁcp )

o
H = /do( L):=/d0‘h e, ﬁ»
4 5o (0%, 0p)
> by

§H = /dadh, % = VyVae®. (19)
X

In order to be closer to the canonical formalisms of classical mechanics
and classical field theory (see [2]), we introduce new type of variables

(o) > (st = (% 25). (20)
atpb
The above formula means that we deal with a map from the infinite dimen-
sional manifold M to the infinite dimensional manifold N, where N is a
manifold of functions ¢ and nbﬂ. We assume that this map is smooth and
invertible.
Now we have

0= /ddnaﬂ'gdgoa, (21)
w=40= /danadﬂg A dp?. (22)
b
One can show that in the new variables Eq. 1 reads
dh
%(; = ~V,7q,
oh o
= 23
ora Vap®, (23)

which are equivalent to the equations

X |w+éH=0,

a a
= o 24
X /do(X 950 aaﬂg), (24)

where
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3. Conclusion

It seems that the symplectic formalism for local classical field theory
would be constructed according to the general lines of this paper and would
be a good starting point for a future program of geometric quantization of
fields analogous to the finite dimensional case, i.e. classical mechanics [1, 3,
4].

One of the authors (W.P.) would like to thank the organizers of this
symposium for a pleasant and stimulating atmosphere.
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