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In this paper usefulness of Kaluza-Klein-like description of charge
carriers in some condensed matter systems is suggested. Application
for description of polarons and bipolarons in some synthetic metals is
proposed. Connection between this approach and the more standard,
one-dimensional one, is shown. The multidimensional description is rel-
ativistic, applies multidimensional Dirac or Klein-Gordon equation. The
one-dimensional description applies Schrédinger or Dirac equation with
appropriate periodic potential. Physical consequences for the “multidi-
mensional” mechanism of conductivity in synthetic metals are discussed
and comparison with experiments is given.
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1. Introduction

There is a believe among theoretical physicists that the fundamental
interactions have geometrical nature and can be described in purely geomet-
rical terms. The first example of a succesful theory of this type is Einstein’s
general relativity describing gravitational interactions by curvature of the
space-time considered as a pseudo-Riemannian manifold. In the time of orig-
inating the Einstein’s theory only one more interaction was known, namely
the electromagnetic interaction. The first attempt towards geometric uni-
fication of the two interactions made Kaluza in 1919 (published in 1921
[1]). He used the principal bundle picture with the 4-dimensional space-
time being a pseudo-Riemannian manifold, like in general relativity, and
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with 5-dimensional total space, the fibers of which were identified with cir-
cles diffeomorphic to the U(1) manifold. The action of the theory was taken
to be the action of 5-dimensional general relativity, with the Lagrangian
equal to the 5-dimensional scalar curvature. Interpreting appropriately the
components of the 5-dimensional metric tensor as the combinations of the
4-dimensional metric tensor, and of the electromagnetic potential, one ar-
rives (in an ansitz where the Brans—Dicke scalar is constant) at the unified
theory of gravity and electromagnetism. The first objection against this
unification was made by Einstein, who questioned the theory which is not
5-dimensionally generally covariant. Nevertheless, from these times many
theories of the Kaluza-Klein type were proposed for unification of gravity
with not only electromagnetism but also with weak and strong interactions
(2, 3], among them supergravity and superstring theories {4]. An important
problem in the theories of this kind, interesting also for our further dis-
cussion, is the problem of introducing matter fields into the theory. If the
multidimensional matter fields are massless, they usually become massive
when considered limited to the external space. Therefore, for the opera-
tors of the field equations that split into a sum of operators acting on the
external and internal space, the mass spectrum problem is equivalent to
the eigenvalue problem for the internal space operator. As a result, typical
masses obtained this way are inversely proportional to the characteristic
size of the internal space.

Typical problem we meet in the usual theories of the Kaluza—Klein type
is the size of the internal space is of the order of the Planck length. There-
fore, the usual masses of particles in the theory are extremely large. This
result causes one should look for some additional fields, but this complicates
the theories, which we believed to be simple and fundamental. Another op-
tion is we can use similar picture of the space-time in other areas of theoret-
ical physics, for example in some models of condensed matter. The model
we introduced recently in description of conductivity in synthetic metals [5]
is an example of such application. Here we remind the fundaments of the
model, with special emphasis on the Kaluza—Klein like mechanism of getting
masses by formerly massless quasiparticles. In our case the quasiparticles
are charge carriers in the synthetic metals.

The crucial problem for further discussion is physical interpretation
of these results. Our interpretation of the mass spectrum for polarons in
synthetic metals of the type of polyaniline as the energy spectrum for these
charge carriers found a support from experimental results [6-8]. We remind
here also these results. Furthermore, we find some connection between this
Kaluza-Klein like approach and the quantum mechanical approach, with
appropriate potential.
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The plan of the paper is as follows. Firstly, the Kaluza—Klein approach
to description of charge carriers in synthetic metals is reminded. Secondly,
the correspondence between the Kaluza—Klein approach to description of
polarons and bipolarons and the one based on usual quantum mechanics,
is introduced. Thirdly, the physical interpretation of the results and com-
parison with the experiments is given. Finally, conclusions on the future
prospects for this approach are presented.

2. Kaluza—Klein type approach to description
of charge carriers in synthetic metals

We begin with reminding our recently proposed approach [5] to de-
scription of charge carriers in synthetic metals, especially of the polyaniline
— like synthetic metals. The description is in terms of multidimensional
Kaluza—Klein-like theory. In our model the external space, being the phys-
ical space, is flat. The internal space is treated as the space connected
directly with the order parameter, in the mostly used picture it is the space
where the order parameter takes its values. In the models we were consider-
ing to describe polarons in polyaniline, polypyrrole and polythiophene, we
used SU(2) group manifold as the internal space. For bipolarons, on the
other hand, the internal space can be different homogeneous manifold.

In our approach we are interested mainly in a proper description of
energies and energy spectra of charge carriers in the synthetic metals. We
start with some massless quasiparticles satisfying an appropriate multidi-
mensional wave equation which is either the Dirac equation for polarons or
the Klein—-Gordon equation for bipolarons. Energy spectrum is obtained if
we split the Dirac or the Klein—Gordon operator into parts corresponding
to the internal and external spaces, then we consider the eigenvalue prob-
lem for the parts of the operators on the internal space, and interpret the
results as the mass of the apropriate charge carrier. The usual mass-energy
correspondence shows the energy spectrum is obtained this way.

As an example of application of this scheme let us discuss shortly the
recently investigated case of polarons in some synthetic metals including
polyaniline, polypyrrole and polythiophene, the classification being with
respect to the ordering characteristics of these materials. We proposed [5],
that due to the internal order in these nematic-like materials, the internal
space is the SU(2) manifold. Polarons, which are fermions, are described
by the multidimensional massless Dirac equation. The Dirac operator D
splits into a sum of the Dirac operator on the exernal space D**t and the
Dirac operator on the internal space D'*t: D = D¢*! 4 D' According
to the scheme sketched above we consider the eigenvalue problem for the
Dirac operator on the internal space. In the case in which the internal space
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is the SU(2) manifold, as we proposed, we have to find the eigenvalues for
DSU?) | the Dirac operator on the SU(2) manifold, it means the constants
A satisfying: -
DSUy = \p . (1)

For this aim we identify the SU(2) manifold with the 3-dimensional sphere
S3 and apply the results on the spectrum of the Dirac operator on S3,
obtained by Trautman [9]. The resulting spectrum is

E; = (l+g-> Ey, (2)

where Ej is a constant, [ are integers. From this form we can deduce that
the energy spectrum of polarons in these materials should be of such form
that consecutive energies of transitions are integer multiples of an energy
unit. In the next section we discuss physical interpretation of this result
and its comparison with experiments.

3. Bipolarons and polarons: connection of Kaluza—Klein
approach with one dimensional potential approach

We discuss here shortly (recently found [10]) a connection between the
Kaluza-Klein approach to description of charge carriers in synthetic metals
and the more common approach using potentials. Let us begin with bipo-
larons. Let us postulate for a moment they are described by the Schrodinger
equation with the potential of the type (sinz)~2, which is periodic as it
should be since the chain is periodic and has infinite values on the ends of
the chain’s units. Then it reads

(—h—zﬁJr ¢ )u'/ EW. (4)

2mdz? ' sinlz

This Schrodinger equation is discussed in the context of quantum inte-
grable systems [11]. The ground state wave function is of the form ¥y (z) =

sin® z, where p satisfies the condition g% = %u(p - 1)—7'\’—712— The solutions of
(3) are then numbered by integers [ and are of the form ¥, = ¥y¢;. The
functions ¢; satisfy the following equation:

1[d? d
2[(1 2+2,ucot:1:;1—— ]qb h2Ed>1 (4)

2 )
Here the operator B = %5 + 2u cot a;d% is the radial Laplace-Beltrami

operator on the n-dimensional sphere S™ for yu = @;—1) The eigenfunc-
tions of this operator satisfy the equation (3) and they are zonal spherical
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functions. Such form of the equation implies the energy spectrum of the
form: E} = 2"—;—(1 + p)?. This energy spectrum is physically undistinguish-
able from the spectrum of the radial Laplace—Beltrami operator since they
differ only by a constant. Since the Laplace-Bertrami operator is the part of
the Klein—-Gordon operator connected with the internal space, we have the
desired correspondence with the relativistic multidimensional description of
bipolarons.

The correspondence thus established for the particular case of the 3-
dimensional sphere gives a correspondence with the case of the SU(2) man-
ifold, and with polyaniline, polypyrrole and polythiophene.

Now along similar lines we would like to establish analogous connection
for polarons. Polarons should be described by a spinorial wave function
that satisfies the Dirac equation. Let us consider the Dirac operator on
the SU(2) manifold, which is equivalent to the Dirac operator on the S3
manifold. Let us consider the eigenproblem on this manifold. For this aim
let us introduce on the S3 spherical coordinates: ¥, 8, ¢, for convenience.
Our eigenproblem reads:

aJ 1 g 1
Y t 2 — 4+ =cotf
[7 (6X+CO X>+7sinx(89+2co )

N )
sin Xsine(?qb]d)_ AP

+7

As the next step let us use the fact that the free motion on a manifold
is geodesic and introduce appropriate coordinates: 8 = 6y, ¢ = ¢o.
Then we split the ¥ function to get the following form of the equation:

Y1
P = ii splits into :i; ) , (:ﬁi)
Ys
A1 i-{—cotx +72Vo| 6= Ao
dX Y ¥
where
_ [ 1siny _ { ¥3siny
¢= (¢2sinx) o 9= (dusinx)
with

const - - —
sin x for y=uyo and z=2z2g.

{oo for y#yo or z#z
Vo =

We interpret this form of the eigenvalue problem as the Dirac equation
in one dimensional space with a potential of the (sinz)™! type and this is

the proposed connection of the two descriptions for polarons.
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4. Physical interpretation and comparison with experiments

In this section we would like to compare our results with experiments
and give them a physical interpretation. Let us remind the results on UV-
Vis spectra for charge carriers in polyaniline, polypyrrole and polythiophene.
Since there are a few kinds of charge carriers in these polymers: polarons,
bipolarons, and in a sense solitons, it is difficult to discriminate the lines
in the spectra which correspond to various carriers. Different experimental
methods show that some of them are most likely of polaronic origin. These
are: 1,2,3,4 eV for polyaniline, 0.7, 1.4, 2.1 eV for polypyrrole, and 0.6, 1.3,
1.5-1.8 eV for polythiophene. There are also some other lines connected
with different charge carriers or with interchain hopping of charge carriers.
All the other lines have energies of the similar order to the polaronic ones.
Another observation is that the lines are not sharp but rather broad ones.

Our model is a single band model of conductivity of synthetic metals
in which we assume additionally that charge carriers are highly delocalized.
This delocalization of charge carriers causes they are influenced by the ge-
ometry of macromolecules. Let us now interpret physically the observations
concerning the spectra. First observation, which we made some time ago
[12, 5], is that the sequences of energies for the polymers are in such order
that satisfies the formula (2). This fact supports our mathematical model
of the Kaluza-Klein type. The problem that appears is that the energy
unit is of the order of 1 eV (1 eV for polyaniline, 0.7 eV for polypyrrole, 0.6
eV for polythiophene). Materials for which the energy gaps are so big are
expected to be isolators. The experience with semiconductors could suggest
that dopants change the energy levels picture, by introducing additional
levels inside the energy gap. However, this argument does not seem to be
correct, since the UV-Vis spectra discussed below are taken for materials
for which the dopants are already present. We suggest we should look for
a different mechanism of conductivity in the synthetic metal. We suggest
the following mechanism of conductivity in the class of synthetic metals:
The sharp energy lines for charge carriers are broadened by interaction of
the carriers with particular structures present in the polaronic chain. The
charge carriers, either polarons or bipolarons, translate along the polymeric
chains, with the energy being all the time inside the narrow band which
originates from the energy level. We believe that conductivity for the case
with high density of dopants is not described by a model similar to the one
for polarons and bipolarons. We would expect rather solitons being formed
as a result of a phase transition when the density of polarons or bipolarons
is high.
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6. Conclusions

In this paper we discussed possiblity of application of the Kaluza-Klein
type description of space-time in physics of synthetic metals. We suggested,
in similar scheme as the one used in our paper [5], that the proper description
of charge carriers in synthetic metals could be one that deals with a multi-
dimensional space-time of the type similar to the Kaluza—Klein theory. We
discussed comparison of the theoretical form of energy spectra of polarons
in synthetic metals like polyaniline, polypyrrole, polythiophene, with their
experimental counterparts, that gives very good agreement. We proposed
in this paper a new physical interpretation of these results. Namely, con-
ductivity of synthetic metals could be not semiconductors-like with many
additional energy levels inside the energy gap, because there is too big en-
ergy gap in synthetic metals; their energies measured in experiment are at
the range of 1 eV. We would rather assign the conductivity in synthetic
metals to narrow bands, that result from sharp energy lines discussed, by
smearing of the energy levels connected with local interaction effects.

As a further perspective for our research we would like to find appropri-
ate spectra for bipolarons by eigenvalue problems for the Laplace operators
on internal spaces. It seems reasonable to look also for different internal
spaces to include different synthetic metals. Such internal spaces could
be either Lie groups or homogeneous spaces of the Lie groups. Next, the
comparison with experimental data on energy spectra for various charge
carriers and various synthetic metals is a necessary test of our theoretical
considerations.

In the paper we were concerned also with a connection between two
approaches to descriptions of charge carriers in synthetic metals of the type
of polyaniline, the one using an internal space and free multidimensional
carriers and the other using a potential of interaction with the polymer.
We discussed recently found connection between the two approaches [10].
For bipolarons the potential is of the (sinz)~% form, for polarons of the
(sinz)~! form. This problem still deserves further explanation, but the
general conclusion is that if we accept anyone of the two approaches, this
would mean we accept that internal geometry and not a detailed chemical
structure of a synthetic metal is crucial for the mechanism of conductivity.
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