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ON CERTAIN GRADED LIE ALGEBRAS
ARISING IN NONCOMMUTATIVE GEOMETRY*

R. MaATTHES, G. RUDOLPH AND R. WULKENHAAR

Institut fur Theoretische Physik der Universitat Leipzig
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Given an algebra, a finite projective right module and a differential
algebra over this algebra, a graded Lie algebra with derivation is con-
structed. It is shown that the algebraic structure of the Mainz-Marseille
approach to the standard model may be obtained making use of this gen-
eral construction in a special case. Thereby, a rigorous mathematical
link between Connes’ noncommutative geometry and the Mainz-Marseille
approach is established.

PACS numbers: 02.40. -k

1. Introduction

The ideas of Connes, ¢f. [2] and [3], have been the starting point for
numerous attempts to construct unified field theories using the tools of
noncommutative geometry, the main achievement being, perhaps, the iden-
tification of the Higgs field as a gauge field. Slightly more modest seems
to be — at first sight — the Mainz—Marseille approach, [4], which reaches
essentially the same aims without using the precise geometrical notions of
Connes, starting from a certain Zy-graded Lie algebra with derivation. We
can, however, show that the algebraic structure of this latter approach can
be derived in the scheme of Connes. The main point is to use a finite projec-
tive module (a notion which was avoided by the Mainz-Marseille group) and
a differential algebra over the (underlying) algebra to construct a graded Lie
algebra with derivation, which may be mapped by a partial homomorphism
onto the graded Lie algebra of the Mainz-Marseille approach. Thereby we
are able to give a precise geometrical meaning to all objects appearing there.

We will here only scetch the main mathematical ideas and refer to
our paper [6] for all details. Moreover, we only mention, that there is a
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nice physical application of our method: Avoiding the “projection” to the
Mainz-Marseille algebra, but nevertheless using the ideas of [4], it is possible
to derive the standard model from the simplest two-point K-cycle originally
used in [3] to derive the electroweak theory, see the last section of [6] and
for details [7].

2. 2pA for the simplest two-point K-cycle

We will freely use several notions of noncommutative geometry whose
definition seems to be by now standard. We refer to [2, 3, 5, 6] and the
references given there for a detailed presentation. The first notion we will
use is that of an even K-cycle (A, h,7, D,T) over an algebra. Every such
K-cycle gives rise to a differential algebra 2pA over A. We will need the
following example:

Let X be a N = 2n-dimensional compact Riemannian spin manifold,
let L2(X, S) be the Hilbert space of square integrable sections of the spinor
bundle, let D¢ be the classical Dirac operator, and let 4N+1 be the prod-
uct of N orthonormal sections of the linear part of the Clifford bundle.
Moreover, let

_ O M ”___ 1n><n 0
M_<M* 0)’ F‘( 0 —1nx,,)’

where M € M, C with MM* ¢ Cl,xyp. Consider the K-cycle consisting of
A=C®(X)®C?, h=L*X,5)®@C"sC") =L*X,5)eC"®C?,

D'®Lluxn VT M
7N+1®M* Dd@ln)uz

fl) f1®1nxn 0 > N+1 I
ﬂ(f2 0 f2®1nxn ' 7 ®L

This K-cycle was used in [3] for a construction of the Weinberg-Salam
theory.

An explicit description of £2pA for this K-cycle was given in [5]. The
results obtained there may be summarized as follows: Let us denote M} =
(MM*)t, Mt = MIM, M} = (M*M)*, M} = M*M} and notice that there
is a positive integer m such that in each series (M;)t=0’1,m (¢=1,2,3,4)
just the first m terms are linearly independent in M,C. Then we have

Ok 4 D, AF2 @ CM} D, A2y N+ g oMY
D Zl:O Ak—2t—17N+1 ® (C]\/Ié :TL:O Ak—-?t ® CM; 3
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where AF denotes the space of differential k-forms on X and the right mul-
tiplication with vV *1 is nothing but (a certain variant of) the Hodge star.
The product e in 2pA is given by

( a1 ®M{'  agyNt! ®M§2>.< PeMt gyt ®M§2)
037N+1 Q Mgs s ® Mi‘; ﬂ§37N+1 R M;s i4 ® Mj“

! t
a1 /\ﬁll ®M1t1+82 a1 A ﬂ£27N+1 ® M21+32

_*_(_1)130[2 /\ﬂés ® Mf2+'93+1 +(—1)l4a2 Aﬁi&} ® M2tz+s4 "
1

I

(—1)11013 A ﬂi17N+1 ® M3t3+81 (—1)l2oz3 /\ﬂ;z Q Mi3+32+1
oy /\ﬂé3’7N+1 ® M§4+33 oy Aﬂ}f ® MI4+34

where we put Mf = 0 for t > m, and the upper index of the §’s de-
notes the form degree. This is just multiplication of 2 X 2-matrices com-
bined with exterior product of differential forms plus suitable signs arising
from the exchange of a differential form with v 1, and the following rules
for the multiplication of the M/} (coming also from matrix multiplication):
MIM3 = M{ToH MEMS = MyPHY, MEMG = MY, for the other val-
ues of (4,7) (k(1,1) = 1, k(1,2) = 2, k(2,4) = 2, k(3,1) = 3, k(4,3) = 3,
k(4,4) = 4). The differential d can be written

d = d+ [wN+1? -]g )
where d is the componentwise usual exterior differential, .e.

d( a1®Mf1 a27N+1®M2tZ>__< da1®M1tl da27N+1®M2t?>
a37N+1®M3tB a4®Mi4 dd37N+l®M3tB dOl4®M4t4 ’

N+1
N+1 = _; 0 oM
wN+1 — <7N+1®M* 0 € 2hHA, and [.,.], denotes the
graded commutator with respect to the product e. Notice that £2pA is also
a differential algebra with differential d.

3. The algebraic structure of the Mainz—Marseille approach

The central mathematical object of this approach is a certain Z;-graded
Lie algebra with derivation contained in the Zs-graded differential algebra
A(X) ® MyC, the latter one being considered as the Zs-graded tensor prod-

uct of A(X) and M4C. Even and odd parts of M = (é g) € M,C
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A 0 0 B .
are defined to be My = 0 D) and M; = (C’ 0 ) With the usual
matrix multiplication, M4;C becomes a Z,-graded algebra, and with the cor-
responding graded commutator a Zg-graded Lie algebra, which we denote

by pl(2,2). The graded differential is introduced as the graded commutator

0 Iaxo
Iax2 0
ential of the graded Lie subalgebra sl(2,2) = {M € MyCltr([\ M) = 0}

l2x2 0
of pl(2,2), where Iy = ( 0 s
to define the graded tensor product A(X)® MyC of differential algebras.
Notice, in particular, that the differential d can be written in the form
db=8QM) =d8R@ M+ (-1)°°8® (m,M] = db+ [1 ® m,b],. It
turns out that A(X) ® spl(2,2) C A(X) ® M4C as a graded differential Lie
subalgebra. Now, define a graded Lie subalgebra of A(X) ® spl(2,2) by

with the odd element m = —i¢ . It is also a graded differ-

€ M4C. Now, it is standard

AX)@spl(2,1) = {b e A(X) R spl(2,2)|b= ebe},

l2x2 0
where e = 0 10 ) Elements of A(X) ® spl(2,1) just have
00
zeroes in the last row and column. The differential d descends to a derivation
(not a differential!) of A(X)® spl(2,1) given by

Db =edb=db+[1Qeme,b],.

A connection in the Mainz—Marseille approach is an expression

—1®; —idy B
0 0 0

V=ed+a
with
Ann Az -9 0
a=-a*=| A An -i% 8 € A(X)® spl(2,1)
0

and Aij = —/iji € AI(X), B=-Be¢ AI(X), A11+ A =B, ®; € AO(X)
The curvature of such a connection is defined by f= V? = e(de)(de)e +
Da + i[a,a],. Gauge transformations are defined on the infinitesimal level:
T;y T 0 O
Ty T2 0 0

0 0 T33 0

0 0 0 0

vi(a) = a — Dt + [t,a], with t = —t* = € AX)®
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spl(2,1), where T;; = —Tj; € A°(X) and tr(Iot) = 0. In [4], the gauge
and Higgs bosons of the electroweak theory were unified in the “connection
form” a. Notice that the above constructions may be easily generalized
using Mo, C instead of MyC, which leads to pl(p, p), spl(p, p) etc.

4. A general construction of graded
Lie algebras with derivation

Let us start with the following data: Let A be a unital x-algebra over C,
let (A4,e,*,d) be an involutive differential algebra over A (A% = A), and
let £ = eAP be a finite projective right A-module with Hermitian structure
(-y.)e. We put

o0
£ =Pk, where £F =£@4 4.
k=0
&* is a right A 4-module in a natural way, and there are natural extensions
of the Hermitian metric to mappings (., .)’g.’l LIy L AZ‘H. Now, we
define

H=@Pn, 1'=Homu(€ 5.
k=0

H can be given the structure of an associative N-graded involutive algebra
over C: The product e is defined by

(" 0 p')(&) = (ide ®a @) 0 (p* ®aid y )0 p'(8).-
idg is the unit for this multiplication, and the involution is defined by

€ (5 (€NE* = (o4 (€),6)%°.

With the graded commutator, # becomes also an N-graded Lie algebra,
and it acts from the left on £*: p* e &l = (idg @4 @) 0 (pF ®4 idA’A)(gl)'

Finally, there is a graded derivation Dy : HF —s #**1 inherited from the
canonical compatible connection Vg on &, which stems from the differential
d of Au: .k
(Drp®)(€) = Vo(p*(€)) — (=1)*p" ¢ (Vo(€)) -
D fails to be a differential:
D}(p) =69 ep—peOo,

where O is the curvature of V. For the curvature of a connection V =
Vo + p, one obtains
O=609+Dup+pep.
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These definitions have a nice matrix form: Let (&;)f_; be the canonical
basis of AP (¢; having the unit of A as entry at the i-th place, zeroes at
the other places). Then, the projection e is given by e(¢;) = €jej;, ej; € A
with e;jejr = e;r. &€ € £ is characterized by (ef); = €;;§; = §. An
element p € H* is characterized by a matrix (Pij)f,jzl’ pi; € Aﬁ, with
eijpjkert = pil (in short, epe = p), the multiplication in # is given by
matrix multiplication, (p e p')i; = pik OP'kj, and the derivation Dy is given
by componentwise action of d: (Dp)ij = e;xdprier; (Dyp = edpe). Notice
that (90)1']' = e;rdeg @ delmemj.

In order to come from these general definition of an algebra with deriva-
tion to the algebraic structure of the Mainz-Marseille approach, we have first
to specify the data of our definition. For the chosen case, it is possible to
introduce a suitable condition of tracefreeness on H and a certain surjec-
tive mapping whose application just leads to the structures of the foregoing
section. First, we take the algebra A = C*°(X)® C? and the differential
algebra A4 = 2pA of the K-cycle described in the example of Section 2.
For this case, and for any module £, we can construct a certain graded Lie
subalgebra Mg of H as follows: We define a C-linear map Ty : A4 — A(X)

by
Mtl anvy N1 ®Mt2
T o1 @ My 27 2 =a; +oy.

A<(037N+1®M§3 oy © Mt 1o

This is a generalized trace in the sense that T4(I's[A, A]y) = 0, where

[y = 1®1nxn 0 € A. Now, we define Ty : H — A(X) by
0 -1®1luxn

P
Tu(p) =Y _ Tallapii),
1=0

which is also a generalized trace: Tx([p,ply) = 0. Therefore, Ho =
D>, HE, HE = {p € H*|Ty(p) = 0}, is a graded Lie subalgebra of #.
Recall that there are two differentials d and d on 2 A. For both we can con-
struct, using the corresponding compatible connections Vo and Vg, graded
derivations Dy and Dy of H, which turn out to be also graded derivations
of Hy. They are related by

Dyp = Dyp + 1, ply s
where p = e(1pxp @ wNt)e € HL.

To come to the Mainz—Marseille setting, we now have to perform two
steps:
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1. In matrix representation, elements of H are p X p-matrices with entries
from A4 C A(X) ® End(C*) @ MaC. We treat them now as 2 x 2-
matrices with entries from A(X)® End(C") ® M,C. This is just going
from one standard representation of a Kronecker product of matrices
to the other one. Moreover, we can remove the vV *1 without loosing
information. Thus, we get an injection

1: 44 Q@ MC— A(X)Q MpC® End(C") @ MaC
of vector spaces. Elements of (A% ® M,C) have the form

( Af—2t1 ® Mltl Aé:—ztg—l ® M2tg>
A§—2t3—-—l ®M§3 Ai:-—th ®M;4

with Al € A'(X)® M,C. Moreover, we have i(e) = (601 6(1) with

eq = eg = e; € C®(X) ® MpC. Elements of i(#) are characterized
by A1 = 61‘4161, A2 = 61A2€4, ‘43 = €4A3€1, A4 = 6414464, those of
i(Hp) in addition by trA; = trA,. Transporting the product e of H
leads to a product of the same form as in A4 = £2pA, formula (1).
One has to replace there « — A, 3 — B, one has to omit y¥ 1!
and one has to interprete A as exterior product of forms combined with
multiplication of p X p-matrices.

2. We define a surjection p : (A4 ® MpC) — A(X) ® M,C by

<A1®M1t1 A2®M;2>_(A1 Ag)
Az @ MP AgoMt)  \As Ag)

Theorem 1
(i) poi(Ho) = {b € A(X) ® spl(p,p)|b = ebe} with e = i(e) = (601 6(1)
(see above).
() (poi(p)” =
(i) o (s, ol
pe .
(iv) poi(Dy(p¥)) = D(p oi(p¥)) for k < 2m, p* € H*.

Notice that also the analogue p o i(Dx(p*)) = d(p o i(p*)) of (iv) is
true.

The theorem says that p o i is a partial homomorphism of Zy-graded
involutive Lie algebras with derivation. This mapping is not injective on
H or Hy, its restriction, however, to any sum of subsequent homogeneous

poi(p*), p €.
) = [poz(p)poz p¥)), for k+1 < 2m 4+ 1, p* € #HE,
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components (A’jl P A§+1) ® M,C is injective. Since we assume MM™* ¢ C1,
we have m > 1. Therefore, in particular, p is a monomorphism on the
graded Lie subalgebra i(#° @ #1), and it commutes with the derivation
of elements of i(#°) and i(#!). However, under the application of p the
N-grading of i(H) is lost and only a Zy-grading remains. It is now easy to
see, that we arrive at the algebraic setting of the Mainz-Marseille approach
10
0
0 1 -
. Using
0 10
(O 0
the above theorem, it is almost obvious that under the mapping p o ¢ the
geometric objects living in the projective module £ = eA? are transformed
into corresponding objects of the Mainz—Marseille scheme. In particular,
due to the partial injectivity of p o4 discussed above, no information about
the objects relevant for gauge theories (connections and curvatures) is lost.
Moreover, the scheme is completed by giving a natural definition of the

(noninfinitesimal) gauge group and of the module where the connection
acts.

starting with the choice p = 2 and e = (
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