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Using the method of averaging we construct two perturbation al-
gorithms anologous to the classical constructions. One of them repro-
duces the known Rayleigh-Schrodinger perturbation theory (PT) in quan-
tum mechanics but with new closed form expressions. The other (Kol-
mogorov’s PT) yields a new PT where the resulting expansion is in terms
of functions of the perturbation parameter.

PACS numbers: 03.65. -w, 31.15. Md, 02.30. Mv, 02.90. +p

1. Introduction

The use of Hamiltonian or symplectic methods has been very fruitful
in dynamical systems in general and in classical mechanics in particular.
It has produced deep structural insights {e.g. KAM-Theorem) as well as
techniques (e.g. reduction of systems with symmetries) and algorithms (e.g.
canonical perturbation theories).

Quantum mechanics on the other hand has mostly been treated using
the tools of functional analysis although it is fairly well known that the
Schrédinger equation may be written as an infinite-dimensional Hamilto-
nian system [1]. What seems to prevent the transfer of Hamiltonian methods
known in classical mechanics to quantum mechanics is the fact that classical
mechanics lives on a finite-dimensional symplectic manifold whereas quan-
tum mechanics on an infinite-dimensional Hilbert space. This, however, is
only an obstacle if the classical information is formulated in a coordinate
dependent manner. At least formally most geometric concepts of classical
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Hamiltonian systems can be transferred to quantum mechanics. Loosely
speaking, the main philosophy behind this is:

a) formulate the classical theory in as purely geometric a fashion as possible

b) formulate the Schrédinger equation as an infinite-dimensional Hamil-
tonian system

c) repeat the geometric construcions of a) for the system in b).

This way many formal expressions in the quantum version arise which
may reproduce known concepts or yield new ones and which in most cases

will require functional analytic concepts to make them mathematically well
defined.

In the light of this “philosophy” the work presented here concerns per-
turbation algorithms for self-adjoint operators using the method of aver-
aging. This method has been well known in classical mechanics and is
used there to construct perturbation theories (PTs) free of so called sec-
ular terms. It is only quite recently, however, that I have extended the
method of averaging to self-adjoint operators and with the help of that
method have constructed analogues of the classical Poincaré-von Zeipel [2]
as well as of Kolmogorov’s so called superconvergent PT [3]. In the case of
the Poincaré-von Zeipel perturbation algorithm the analogue construction
for self-adjoint operators yields a new way of constructing the well known
Rayleigh-Schrédinger PT [2]. The analogue of Kolmogorov’s algorithm for
self-adjoint operators, however, leads to a new perturbation theory for the
spectra and eigenvectors of of self-adjoint operators [3].

The extension of the method of averaging to self-adjoint operators thus
permits to investigate Rayleigh-Schrodinger PT from a new point of view
and it allows the construction of a KAM-like theory for self-adjoint operators
in general and quantum mechanics in particular. Using these constructions
it is not only possible to elucidate the relation between quantum PT and
the PT of the corresponding classical system but the new Kolmogorov-type
algorithm may yield better convergence properties than the known PTs.

These perturbation algorithms for seif-adjoint operators so far have been
constructed purely on a formal level by formulating the classical theory in a
geometric fashion using the language of symplectic geometry and exploiting
the fact that the time dependent Schrodinger equation built with the self-
adjoint operator can also be viewed as an infinite-dimensional symplectic
system. Construction on a formal level means that one can write down
operator equations and their solutions at each step in formulae and also
evaluate these expressions in some examples. But so far only few results
about the convergence of the resulting series or the rate thereof are available.
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2. Poincaré-von Zeipel PT

The perturbation algorithm for self-adjoint operators along the lines of
the classical Poincaré-von Zeipel PT has been developed in [2]. Let Hy be
the unperturbed Hamiltonian operator which is assumed to be diagonal in
some basis and let -

Z

be the perturbed Hamiltonian with ¢ as the perturbation parameter and
Hpy,p > 1 the perturbations. In order to diagonalize this Hamiltonian we
seek a unitary transformation operator &(¢) such that

(1)

w;m

B(c) TH(e)B(e) = K(e) = ) =K, (2)

commutes with the unperturbed operator Hy in which case we could diag-
onalize K (¢) in the given basis. According to (2) K (¢) is unitarily related
to H(e) hence the diagonalization of K (¢) amounts to solving the spectral
problem for the perturbed operator H(<).

We try to achieve the commutativity of Hy and K(g) successively by
requiring for each coefficient operator K, of ¢ in (2)

[Ho, Kp] =0, (3)

and in order to achieve this we seek a self adjoint operator
oo €p_‘
=Y Wyt (4)
p=0 "

such that —W (e) generates the unitary operator ®¢(¢)~!. The transforma-
tion ¥(¢) has an expansion

i )

where the following recursive relation for the @, can be derived:

“6|(“

P

i
Dpi1=—— Z() p—1Wig1 and $9g =1. (6)

=0
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From (2) one finds

i

Ko=Hy and Kp= —ﬁ[Wp,HO] +F, for p>1, (7)
where the first few F, are
EF =0,
Fy = Hy,
F2=H2+%[W1,K1 + Hi], (8)
and in general
Fy= Fp(Hoy ..o Hpy K1,y Kpet, Wiy oo, Wp_1) - (9)

The idea is now to construct the W, and the K, successively such that (3)
and (7) hold. This means that one has to find an operator W), such that

1

[H07 5

(W, Hol + Fy] = 0. (10)

This problem can be solved using the averaging method for operators [2].
Let G be a self-adjoint operator, define

By, (t) = exp(—%tHo) B, ()* G = By, (1) G Py (2) (11)
and suppose that
i Ph (CNE-G >
Am T =0, (12)
and
1 T
- H . *
G( o) ::TIE)nOOT/dt¢HO(—t) G, (13)
0
1 T t
. x o 75(Ho)
S () ::Tlfle./dt ds (Pmy(-5)*G -G ™) ()
0 0

exist. Then it follows that [2]

[Ho, %{S(H())(G),HOHG] 0, (15)
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and .
GHo) - 2[SHD(G), Hol +G - (16)
Egs. (12)—(14) henceforth will be referred to as averaging equations along

Hyp.
Thus we can solve (10) by choosing W, = S(H0)(F,) and consequently

T
. H . 1 *
szff‘ﬁzﬁfgf/dmmJ%)Fh (17)
0

Let us see how we can use these constructions to obtain approximative
solutions to the original eigenvalue problem

H(e)l5)(e) = Ej(€)l7)(e) (18)

for the perturbed operator H(g). Define the finite sums

N b
KN =3 T, (19)
PN )
V)= Sy, (20)
p=0""
which give
KN (€)= (@V ()7 H(e) 2V (e) + O ). (21)

Let E]N(E) and [7)N(¢) be eigenvalues and eigenvectors of the finite sum
KN (e)
KN e) = EY (@)Y (e) - (22)

K (g) can be diagonalized in the original basis in which Hj is diagonal,
since by construction [Ho, K (¢)] = 0. Evidently

H()@N €)15)N (€) = EN (€)™ ()1)V () + O™+, (23)

and the eigenvalues Ej(¢) and eigenvectors |j)(e) of the perturbed Hamil-
tonian H(c) are approximated as follows

Ej(e) = EN(e) + 0N+, (24)
1)) = BV 1)V () + OV H). (25)
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For example if we are dealing with a perturbed operator
H(E)zH() +eH, (26)

whose unperturbed part Hy has purely discrete and non-degenerate spec-
trum:

Ho =Y 15 EY| (27)
J
then one finds

Ko = Z U)E?(ﬂ ) (28)

Ki= Jim 1 / dtPuy(—0 Hy = S GG, (29)

J
Ky = llm /dt S, (- <h (W1, Hl])

=QZ! i ZKJIHII;O Gl (30)

1%k J

such that the diagonalization of K?(¢) = Ko + K + %2—1{2 vields exactly
the same second order results as the usual Ralyeig-Schrodinger PT. Indeed,
it can be shown that the PT so constructed coincides with the well known
Rayleigh-Schrodinger PT in the complete expansion for eigenvalues and
eigenvectors in general [2], i.e. including the degenerate case. However, this
way of looking at Rayleigh-Schrédinger PT yields closed form expressions
such as the one for K in (17). These may be difficult to evaluate and they
can be shown to be equivalent to the usual sums over intermediate states
(see e.g. (30) but they are conceptually close to the classical analogue and
(17) permits a semiclassical analysis of the Rayleigh-Schrédinger PT and a
term by term comparison between classical and quantum PT at each order
of the perturbation.

In addition this way of constructing the standard PT may be more
useful to find out when a perturbative result is exact because under certain
conditions one can show inductively that all K, beyond a certain order
vanish, a result which is difficult to establish in the usual construction.
This will be illustrated with a simple example at the beginning of Sect. 4.1.
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3. Kolmogorov’s PT

Kolmogorov’s PT [4-6] is an improved version of Poincaré-von Zeipel
PT using instead of one transformation ®(¢) an infinite sequence of &7 (¢)
leading at each step to a new transformed operator [3] K" (¢)

("1

O™ ()T TH )P () = K™ (¢) = i_ (31)

’E

for which one repeats the procedure of Sect. 2 but each time with a modified
“unperturbed Hamiltonian” H§ and a modified choice of the generators
Wn
-
Let H) be the unperturbed Hamiltonian and let

o0
P
Ho®):=Hy+ Y %1{,‘3 (32)
p=1""

be the perturbed Hamiltonian which we transform with ®!(e) to K1 (e):

K1(e) : =& (e)*H (e) (3)
oo ep
=Y —K,, (34)
P
p=0
where one has
Ko = Hp (35)
1 L p : 1 1 1 0
Kppr=), (l) (g [W1+1s1‘;3—1J + Tp-z(Hz+1)) : (36)

=0

In particular, one has for K

Ki = = (Wi, HJ] +HY, (37)
such that the choice
wi = s (1Y), (38)
W,=0 Vp>2 (39)
leads to
—(H?
K=" (40)

Kyoy=Fyy Vp>1, (41)
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and thus

K'(e)=H{ +e HO( °)+Z Kl (42)
= 2
—O(H(())) . 0 4
where Hj commutes with Hj. For the second step we treat the “com-
muting” part of K!(e) as the unperturbed Hamiltonian and the higher order
terms as perturbations, i.e. we set

1 e 11 g0 0 1
H"(e) := K" (e) = H, +eH; —|— E FK (43)
=H} + § :-—Hl (44)
such that
1 0 o(Hg) 1 1 -1
Hy = Hy + eH; , H{ =0, Hp:I&p, Vp > 2, (45)

and H!(e) has no perturbation of first order in e. The algorithm may be
summarized as follows. Suppose now that after n — 1 transformations we
have the following Hamiltonian

Hn—l() Hn 1+ Z __Hn 1 (46)
—=on— 1
such that
H} '=0, Vi<p<2"l. (47)

To this Hamiltonian we apply the transformation @"(e) to obtain

K"™(e) =®"(e)*H™ 1 (e) (48)
[ o] ep
= pz_:o HK;; : (49)

where the W;’ are now chosen as

0 if p<ont
n—1
Wy =q sSHo ) (Hp-1) if 2nl<p<2n (50)
0 if 2" <p.
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This choice leads to the following expansion for K™ (e)

Hy ! if p=0
. 0 if 1<p<2n!? (51)
K= (H?™1) 51
P Hp U0 if 2n-l<p<on

+ Wr KR +Fr if 2" <p.

Thus we have

H™(e) = H} + Z (52)
p=2" !
where
271 n—1
—(Hy™")
H=H} '+ Y 2 p, Hp~! (53)
p= on— 1

~ i

commutes with Hg—l
HM=K",  V¥p>2". (54)

Eq. (53) permits us to write down HJ explicitly:
n 2[—1 -1
——(Hy™)
=1 Ho
Hy =H)+ > Y p'H 1 : (55)

=1 p:21 1

How does one use this algorithm to obtain approximations for spectrum and
eigenvectors? Let the unperturbed Hamiltonian be diagonal in some basis

B:={lj)ab| € D;}32,, (56)

where j denotes the level, a is the degeneracy-index, D; := {1,...,d;}, and
dj is the degeneracy of the j-th eigenvalue E? of Hy:

o o]
Hy =Y > |i)a0E (jla0. (57)
1=1 QGDJ'
HO
By construction (see (53)) H_f( o) commutes with HJ, hence

— (HD?
H} = HJ + er( o) (58)
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can be diagonalized in the same basis B. Having done this we note that
—(Hp) —=(H})

again by construction Hj} and HJl commute with Hj, hence
—(H}) —(H})
HE=H} + 2H1 +§H31 (59)
can be diagonalized in the same basis B. Suppose now that Hgl_l is diagonal
———(H™)
in B. By construction (see again (53)) all Hy ™' with 2771 < p <
2" — 1 commute with H}' ™' and thus
2"—1 n—1i
——1(Hg ™)
n 1 —1 0
p=2n— 1
can be diagonalized in B.
Note that
H™e) =®"(e)*o---0d (e)*H (e)
=o"(e)' -2 (e)TH (e)0' () -+ - 8" (e) (61)

implies that H™(e) and our original perturbed Hamiltonian H(e) = H?(e)
are unitarily equivalent:

H™e) = U™ (e) HO (U™ (e). (62)
where U™ (e) is the unitary transformation
Ule) =P (e)---d"(e). (63)
Moreover, one has
H"(e) = H} + O(e*") (64)

which implies that HJ unitarily approximates the original perturbed Hamil-
tonian:

H(e) = H%(e) = U™ (e)HFU™(e)t + O(e2"). (65)

Consequently, since H can be diagonalized in B as shown above, we can
read off its eigenvalues which coincide with those of our original perturbed
Hamiltonian H (e) up to O(e? ). In formulae:

o Let E7 (e) be an eigenvalue of Hg with eigenvector |j) anfe):

Hg'(e) |j) an(e) = E7(e) 7) an(e) (66)
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and let Ej 4(e) be an eigenvalue of H%(e) = H(e) with eigenvector

|7) a(e):

H(e) i) a(e) = Ejale) lj) a(e) (67)

then
Eja(e) = Elq(e) + O(e?"), (68)
15) a(e) = U™(e) Ij) an(e) + O(e?") . (69)

Eq. (68) gives the desired approximation of the eigenvalues of H(e) and
for the approximation of its eigenvectors one can determine U™(e) up
to O(e?") in terms of the W from (5), (6), and (63).

The quantum PT resulting from Kolmogorov’s construction is new and

yields expansions in powers of ¢ where the expansion coeflicients are func-
tions of ¢ as well. The difference to the usual Rayleigh-Schrodinger PT, how-
ever, shows up only in fourth and higher orders. F.g. for the non-degenerate
system considered in Egs. (26), (27) one finds with Kolmogorov’s algorithm
for the fourth order coefficient [3]

E(4)_24Z !Vlgl Vu Vi;)?

6

92(E! - EY)
V]l"lkvkmvmj
1 _ 1
JEIEkEjEMAR Ej - Ej

1 1 1 1
X —_ —
(E;?—E? E?—Eg) (Eg—EQn E,Q,—E;’)

Vi — Vi
VaVie Vi s
Z Vi kj{ EO_EO)(E?—Eg)(Eg_E?)

JRIERE] (
Vu - 1

! (E - ( ~ EY EO)

(EY - EO) E1 EY El —-E?

1 1

+ Z VitVieVim m{ O 0 <E° 0 g0 2)
k#l#jEAmAR Ej - E) \Fy— B Ej - E
N 1

(E? - Eg)(E,‘g - E%) \ EY - E}’ EY, - EY
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which contains denominators of the form EJI- -E;p = E? —ER+e(Vij~ Vi)
which are functions of €.

For the quantum version of Kolmogorov’s method the same statements
about semiclassical limits as for the Poincaré-von Zeipel apply.

4. Example: anharmonic oscillator

4.1. Poincaré-von Zeipel

We shall illustrate the method in the example of the harmonic oscillator

2 .
Hy = ~d7 + 2%, First we illustrate how the new way of construction
by itself tells when a result is exact. For this we consider a perturbation

4
Hy =z, H, =0, p > 2 where the exact solution Ej(e) = 2j +1~- 5 is
easy to find. All calculations are straightforward if we use the operators

1 (d c_ 1 ( d _

for which one finds

Sp,(~t)*a=e?a by (-t)*al = e Ml (71)
such that
Hy = % (a“ + a) PH,(—t)* Hy = ——1—2— (e"z“a? + ezita>
Wy, = 2171/5 (uJr - a) Ki=0
K, = i[Wy, Hy] = 21 W,=0 Vp>2
K,=0 Vp>3 K(e)=ata + (1 - ;) 1 (72)

which reproduces the exact result but because of the last line also immedi-
ately shows that this perturbative result is ezact.

As a second example we consider the perturbation H; = z*, H, =
0, p > 2 (anharmonic oscillator with A = 1) where the quantum Poincaré-
von Zeipel method will permit us to compute the sums over intermediate
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states and the corrections up to O(c?) without much effort. Now we have

Py, (—t)* Hy :% («38’.%4 + e 8t (aN? 4 2¢* "t aHya + 26"4“@:‘}{0(1*)
+ % ((Ho)* +1) ,
1 =3 ((Ho)* +1) ,
Wi =$ ((alf)4 ~ a* +4a'Hpa' - 4aH0a) ,
Py, (-t)* Wy :% (e's"t(a%)4 eBitat + de T Hoal - 42t(ngd) ,
K, :6% ([(af)‘i, a*] + 8[a’ Hoa', aHOa]) ,

3., 3. 3 34 51 59 21
E2(e) =27 D.2,9. 9) 2(9%3 2 1)
(e)=2j+1+¢ (2] +2]+4) e\ 16 +16] + = 16 +16

Calculating up to fourth order one finds e.g.for the ground state energy

EN=4(e) s —1+3e~?—1-2 333 5 30885

7
16 64 C 1024 (73)

As already pointed out this is identical to the standard the standard
Rayleigh-Schrédinger result, hence the subscript RS.

4.2. Kolmogorov’s PT

The superconvergent method gives for the ground state of the anhar-
monic oscillator considered in Sect. 4.1
Ef=%(e)xo =1+ 3e—- %15 + 3633 3
3(1317760+ 12935472e + 36433368e* + 25183305e3) o

2048(4 + 9e)(4 + 15e)(4 + 21e)
3 21, 333 ; 30885 ot 354249 o5

=l e 6 e T 1022 T ez ©

This is the result after two iterations n = 2, which approximates to or-

der O(e22 = e) but does contain all powers of e in its expansion. As it
should be, the two perturbation methods do however give the same asymp-
totic expansions (73) and (75) when expanded in pure powers of €. Hence
Kolmogorov’s method may be viewed as a resummation of the divergent
Rayleigh-Schrédinger PT. Comparison with numerically calculated eigen-
values shows that Kolmogorov’s method does indeed improve on the usual

(74)

+.... (79)
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Rayleigh-Schrodinger PT. This is expected to be even more pronounced in
higher orders since the first different term is of order four. Convergence of
the new series has not been established yet but it is known from classical
mechanics that Kolmogorov’s method does lead to convergent expansions
even if the usual Poincaré-von Zeipel PT is divergent.

5. Conclusion

The method of averaging has allowed us to construct quantum analogues
of the PTs used in classical mechanics. These PTs are either reproductions
of a known PT (i.e. Poincaré-von Zeipel yields Rayleigh-Schrédinger) or
new a new PT where the expansion comes in terms of functions of the
perturbation parameter.

It should be noted that the constructions presented here are (at least
formally) applicable to any self-adjoint operator and give approximations
to the spectrum and the eigenvectors for all type of spectra (degenerate,
continuous).

The averaging constructions are at the heart of the algorithms and the
conditions on the operators under which rigorous validity of the averaging
equations (12)-(14) can be established are thus of great importance to the
theory. Work on this is in progress.

Moreover, it is also possible to construct time-dependent PTs with the
averaging method [7]. In this case it turns out that already the quantum
analogue of Poincaré-von Zeipel yields a PT different from the standard
Dyson expansion. As in any theory using averaging the new time-dependent
PT is free of secular terms.
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