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These pedagogical lectures contain some motivation for the study of
guantum groups; a definition of “quasitriangular Hopf algebra” with ex-
planations of all the concepts required to build it up; descriptions of quan-
tised universal enveloping algebras and the quantum double; and an ac-
count of quantised function algebras and the action of quantum groups
on quantum spaces.

PACS numbers: 03.65. Fd

1. Origins and ingredients

The theory of quantum groups stands at a multiple crossroads, with
paths connecting it to many widely scattered areas of mathematics and
physics. Roads leading to it come from:

e Connes’s non-commutative geometry [2];

Yang’s investigations on factorisable one-dimensional S-matrices [26];
Baxter’s solvable vertex models [1];

Integrable nonlinear differential equations [6];

Jones’s construction of invariants of knots and braids [12];

On the other side, roads lead from quantum group theory to:

Conformal field theory [8];

Anyons (with applications to high-T, superconductivity?) [24];
Possible new mechanisms of symmetry breaking [25, 18];
Group representation theory [17];

Knots and 3-manifolds [14, 23].

* Presented at the II German-Polish Symposium “New Ideas in the Theory of
Fundamental Interactions”, Zakopane, Poland, September 1995
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2778 A. SUDBERY

As a preparation for the study of quantum groups, I will briefly describe
a few of these related topics.

Factorisable S-matriz

Consider three particles scattering successively as shown in the two
diagrams below:

1 time 1

N AN

R1aR13Ras3 Ry3Ri3Ry

Fig. 1.

If each of the particles has the state space V', the three-particle scattering
is described by an S-matrix mapping the three-particle space VQ V@V
to itself, constructed out of a two-particle S-matrix R: V@V - VRV
as shown below the diagrams. In these equations R;; denotes the operator
on V®YV ®YV which acts as R in factors ¢ and j of the tensor product
and as the identity in the third. Yang was interested in the possibility that
both sequences of interactions would give the same overall three-particle
S-matrix:

Ri2R13R23 = Ra3Ri3R;2 . (1)

This is the Yang-Bazter equation. It is often written with R depending on
a parameter, the relative velocity or rapidity of the two particles, as

R]Q(U)ng(u + U)R23(v) = R23(U)R13(u + v)ng(u)

but in this lecture I will only consider the constant form (1). Another form
is obtained by putting R = RP where P is the exchange operatoron V@V
then R satisfies A A

Ri2R23R12 = Ro3R12Ras . (2)

This is the braid relation.
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The braid group

The elements of Artin’s braid group on n strings are the topologically
distinct ways of joining two sets of n points in three-dimensional space. To
be more formal, it consists of all homotopy classes of one-to-one continuous
maps from S x I to R® where S is a discrete set of n elements, I is the
unit interval [0, 1], and the images of S x {0, 1} are specified (say, as sets
of equally spaced points on two parallel lines). The group operation, whose
formal definition I leave as an exercise, is that of joining strings at their
end-points as illustrated by the following diagram:

a=

Fig. 2.

This group is generated by 7,...,7,—1 where 7; is the braid in which
the 7th and (¢ 4+ 1)th strings simply cross over. These satisfy the relations

TiTi+1Ti = Tit1TiTit1 (3)
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and, it can be shown, no others. The resemblance of these relations to
the three-particle scattering considered by Yang is obvious. In fact, any
solution R: V®V — V @V of the braid relation (2) yields representations
of the braid groups for all n: on the vector space ®"V one takes the group
generator 7; to be represented by ﬁi,i+1. This is similar to the way in
which permutations act on tensor products. The group of permutations of
n letters is generated by the transpositions 71,...,7,—1 of adjacent letters
, which satisfy the relations (3) and also 72 = 1; it can be represented on
tensor products by taking R to be the exchange operator, }?(x QYY) =yDe.
In quantum mechanics the action of the permutation group on a tensor
product of the form ®"V is familiar from the theory of identical parti-
cles, leading to the classification of particles into fermions or bosons. A
re-examination of this theory, however, suggests that it is only valid for
particles moving in three or more dimensions; in two dimensions the per-
mutation group should be replaced by the braid group, and instead of being
restricted to the two familiar possibilities, particles can be anyons.

Statistics in two dimensions

Consider the quantisation of a classical system of n identical hard parti-
cles in d-dimensional space. The configuration space of the classical system
of distinguishable particles is R?"; for identical particles we must factor out
by the action of the permutation group, and for impenetrable particles we
must first remove the diagonal subspace of n-particle configurations in which
two or more particles occupy the same point (which has the advantage of
making the factor space a manifold). The resulting configuration space Ch,
the set of unordered subsets {z1,...,2,} C R", is not simply-connected,
so that when we quantise we must allow the wave function ¥ ({z1,...,2n})
to be many-valued. It will be derived from a true one-valued function on
the universal covering space of C},, the distinct values at each point of Cy
being given by a one-dimensional representation of the fundamental group
of Cp,.

If d > 3, the fundamental group of C,, is the permutation group S,
and its universal covering space is the distinguishable-particle configura-
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tion space R (with the diagonal removed) which we started with. It
has generators 7;, corresponding to the interchange of particles ¢ and i + 1,
which satisfy 72 = 1. It follows that the identical-particle wave functions
¥({z1,...,2a}), which are many-valued functions of unordered sets of posi-
tions, can be regarded as single-valued functions of ordered sets of positions
satisfying

Y(z2,21,...) = £YP(z1,22,...).

Thus we obtain the usual conclusion that in quantum mechanics identical
particles must be either bosons or fermions. On second quantisation the
wave functions become commuting or anticommuting fields.

But if d = 2 the fundamental group of C, is the braid group, with
generators of infinite order. The basic closed loops 7; in Cy,, which describe
two particles changing places, are no longer contractible when they are
repeated to return the two particles to their original positions. To see this,
consider the motion of the relative position vector z;41—z; as particles ¢ and
t+1 move around the path 7;. This is a vector in the plane with diametrically
opposite points identified and with 0 removed (since the particles cannot
occupy the same position). The repeated loop 7‘1-2 is a loop around the
origin, which obviously cannot be shrunk to a point without crossing 0:

. J

* Tig1 — Ti

(a) (b) )

Fig. 4. {(a) — the curve 7y in Cy; {(b) — the curve 7; in terms of z;4; — 25 {¢) —
the curve 77 in terms of z;4; — z;.

It follows that in a one-dimensional representation the number representing
7; is not restricted to £1, but could be any number ¢. This situation cannot
be simply described in terms of wave function, but in terms of quantum fields
it has the consequence [9] that in a two-dimensional quantum field theory
the fields may satisfy

P(z2)P(z1) = q¥(z1)P(22) (4)
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for any value of q. The particles may be neither bosons nor fermions but
anyons.

Statistics of local fields

Why should the representation of the fundamental group of the con-
figuration space be one-dimensional? In dimensions d > 3, where the fun-
damental group is the permutation group, this is the same as the question
why particles should not obey parastatistics. The answer is that if they did
they could always be reinterpreted as fermions or bosons with an internal
quantum number like colour. This is a rigorous theorem due to Doplicher,
Haag and Roberts [3, 4], who showed that in space-time dimension d+1 > 4
a local relativistic quantum field theory must describe fermions or bosons
with a compact internal symmetry group.

What is the corresponding statement in space-time dimension 2 or 37 It
would be nice to have a statement like the Doplicher-Haag-Roberts theorem
with fermions and bosons replaced by anyons, and the symmetry group
replaced by a quantum group. The situation is not quite as simple as that
[7], but this does give an intuitive idea of what sort of thing a quantum
group is and what it might do.

2. Definitions and simple examples

So what is a quantum group?

— It (or maybe its dual) is a quasitriangular Hopf algebra.
— Oh. What’s a Hopf algebra?

— It is a bialgebra with an antipode.

— Oh. What’s a bialgebra?

Well, for a start it is an algebra; that is, it is a vector space H with
a multiplication, which (because of the distributive law) can be regarded
as a bilinear map from H x H to H, or a linear map u : H & H — H.
This automatically gives a dual map u* between the dual spaces H* and
(H ® H)*. The latter space may not (if H is infinite-dimensional) coincide
with H* ® H*, but it always contains it. Thus with a bit of luck (and
certainly if H is finite-dimensional), we will have a map u* : H* - H*@H*.
A bialgebra is an algebra H which has a structure of this type not on the
dual H* but on H itself: it has a coproduct A : H — H @ H (and therefore
a multiplication A* : H*® H* — H* on the dual of H). This has to satisfy
two axioms. First, the dual multiplication A* must be associative. In terms
of the coproduct A itself, this requirement is

(id@A)ocA={A®id)oA.
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Such a A is said to be coassociative. Secondly, A is a map between two
algebras, multiplication in H ® H being defined by

(a®b)(c®d)=ac®bd.
It is therefore natural to require A to be an algebra homomorphism:
Afzy) = A(z)A(y)
=D 2)¥0) © T2)¥2)
where Az) = Zx(l) @3, Aly)= Zy(l) D Y(2) - (5)

The notation introduced in the last line is standard for coproducts, as is the
convention of omitting the summation sign. From now on we will use this
notation and convention freely.

In algebraic work a bialgebra (considered as an algebra) is usually taken
to have an identity. This can be regarded as a map 1 : K — H, where K
is the field of scalars. The dual of this is a map 1* : H* — K. Again, in a
bialgebra we require such an object in H itself, i.e. a map ¢ : H — K. This
is the counit of H. It is required to be an algebra homomorphism, and its
dual € : K — H* is required to be an identity for the dual multiplication
A*. This second axiom is

(e®id) o A(x) =x = (ild®¢€) 0 A(x),
i.e.
s(m(l))m(z) = = .1‘(1)6(1‘(2)) .

A Hopf algebra is to a bialgebra as a group is to a semigroup. Corre-
sponding to the inverse in a group, a Hopf algebra H has a further linear
map S : H — H called the antipode satisfying

po(id®@S)oA(x)=¢e(x)l=puo(S®@id) o A(x),

i.e.
The antipode is not an inverse — you would not expect inversion to be
a linear map — but there is a sense in which both S and S* are partial

inverses, .S for the multiplication in H and S* for the dual multiplication
A* in H*. In what sense this is true will become clear when we consider
examples. First, however, let us define the final element of structure which
makes a Hopf algebra a quantum group.

A quasitriangular Hopf algebra is a Hopf algebra H together with an
element R € H @ H (called the universal R-matriz of H) which satisfies:
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RA(z)R™! = PA(z),
where P is the exchange operator on H @ H;

(A &® id)R = R13R23,
(id ® A)R = R13R12,

where R;; is the element of H @ H ® H which is R in factors ¢ and j
with 1 in the third factor;

@ 1)(R)=1=(d®e)(R),
(S®id)(R) =R~ = (id®S)(R) .

An element R with these properties gives rise to a solution of the Yang—
Baxter equation (1) in any representation of the algebra H.

Classical Hopf algebras

As an instructive (and prototypical) example of a Hopf algebra, let G
be a finite group and let H = KG be the group algebra of G' over the
field K (so H is the set of formal linear combinations of elements of G with
coefficients in K). Then the dual H* is the set of functions on G with values
in K, and is also an algebra with the obvious (pointwise) multiplication of
functions. From the algebra structure on H* we get a coproduct on H which
is given by the simple formula

Alg)=9g®yg forall g € G. (6)

(Note that this formula only applies to-the subset G C H, which is a basis
of the vector space H. In any bialgebra an element g whose coproduct is
given by this equation is said to be grouplike.) It is easy to see that this
satisfies the conditions for H to be a bialgebra. The identity of the function
algebra H* is the constant function on G whose value is 1; thus the counit
of the bialgebra is given by

e(g)=1 forall g € G. (7)
This bialgebra is made into a Hopf algebra by defining the antipode as
S(g)=g¢g"! forallgeG. (8)

This is extended linearly to the rest of H, so it only coincides with the
inverse on the special subset G C H.
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Looking at this example from a dual standpoint, we get a Hopf algebra
structure on the space H* = F(G) of functions on G. The coproduct on
this implied by the multiplication in H can be described by identifying
F(G) ® F(G) with the space of functions from G x G to K; then the
coproduct Af of a function f is the function of two variables given by

Af(g.h)=flgh)  (f,9€G)

and the counit and antipode are given by

e(f)=fle)y, Sfle)=¢7",

where e is the identity element of G.

A way of extending this example from finite groups to Lie groups is to
take H = U(g) to be the universal enveloping algebra of a Lie algebra g.
Intuitively, we think of this as containing exponentials eX of Lie algebra
elements X, i.e. Lie group elements, and we think of Lie algebra elements
as obtained by differentiating Lie group elements, so that they are (limits
of) linear combinations of group elements. Formally differentiating the ex-
pression (6) for the coproduct of a group element gives the coproduct of a
Lie algebra element as

AX) =13 X+X®1 forall X € ¢ (9)

(conversely, exponentiating this and using the homomorphism property of
the coproduct gives A(eX) = eX @ eX). This only holds for the subset
g C U(g), but since g generates U(g) as an algebra the homomorphism
property of A enables us to extend the definition to the rest of U(g). (In any
bialgebra an element X with coproduct given by (9) is said to be primitive.)

Differentiating the expressions for th€ counit and antipode in a group
algebra give

e(l)y=1, e(X)=0 for X cg, (10)
S(1)=1, S(X)=-X forXeg. (11)
which are sufficient to define ¢ and S on all of U(g) by the homomor-

phism and antihomomorphism properties (and which imply z-:(eX) =1 and
S(eX) =e~X asin a group algebra).

Go forth and comultiply

Comultiplication may look quite new, but in fact it codifies and extends
a number of familiar ideas. For a start, the coproduct in a bialgebra H allows
us to construct the tensor product of two representations of the algebra H.
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If p1 and p, are representations of H on vector spaces V; and V3, the tensor
product representation pis acting on Vi ® V; is defined by

p12(z) = p1(z(1)) ® p2(z(2)) ,
t.e. from p; : H — EndV; and p; : H —» EndV3 we form
p12 = (p1 ® p2) o A : H - EndV; @ EndVy = End(V; ® V3)

and the homomorphism property of A guarantees that this is a representa-
tion of H. If H is the group algebra of a group G, with A(g) = ¢ ® g, this
gives the usual rule that in the tensor product a group element acts on both
vectors simultaneously,

p12(9) (v1 ® v2) = p1(g)v1 ® p2(g)ve;

if H is the universal enveloping algebra of a Lie algebra L, with A(X) =
X®1+1® X, it tells us to make a Lie algebra element act on a tensor
product by acting on each vector separately and adding the results:

p12(X)(v1 ® v2) = p1(X)v1 @ v2 + v1 ® p2(X)v2.

In quantum mechanics, where the Lie algebra elements can be inter-
preted as momenta, this coproduct can be interpreted as telling us that
the total momentum of a system is the sum of the momenta of its con-
stituents. More generally, the mathematical notion of a coproduct captures
a basic idea in both classical and quantum mechanics, that of expressing
a property of a collection of particles in terms of the same property of the
individual particles. For non-additive properties, such as the kinetic energy
of interacting particles, this raises the interesting possibility of describing
interactions in terms of coproducts.

A second application of comultiplication which unifies familiar concepts
in group theory and Lie algebra theory arises from considering an action of
a bialgebra H on another algebra. We consider a representation of H on
a vector space A which also has a multiplication, and ask how an element
x € H acts on the product of two elements of A. The representation is said
to consist of generalised derivations if

p(2)(ab) = [p(z(1))a]lp(z(2))] (12)
(using the summation convention of (5)). For a grouplike element g this

becomes
p(z)(ab) = [p(z)a][p(x)b],
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so p(z) is an automorphism of A; for a primitive (Lie algebra-like) element

X it becomes
p(z)(ab) = [p(z)alb + a[p(z)b],

so p(z) is a derivation of A.

The notion of invariance in a representation is different for groups and
Lie algebras, but can be formulated in a unified way using the coproduct
and the counit. In a representation of a group, an invariant element is one
which is kept the same by all group elements; in a representation of a Lie
algebra, an invariant element is one which is annihilated by all Lie algebra
elements. These two statements are both included in

plz)v=c¢(z)v. (13)

A final example of this kind of unification of concepts uses both the
coproduct and the antipode in a Hopf algebra. The adjoint representation of
a Hopf algebra H is an action on H itself in which each z € H is represented
by the operator adz given by

adz(y) = z(1)yS(z(2)) - (14)

Then

1

adz(y) = zyz™ if z is grouplike,

adz(y) = zy —yz  if z is primitive.

The set of invariant elements of the adjoint representation is just the centre
of H, i.e. the set {y : zy = yz for all + € H}. (The reader who is new to
Hopf algebras should prove this as an exercise.)

Quantised enveloping algebras

All the Hopf algebras that we have seen so far have been either com-
mutative or cocommutative (meaning that the dual multiplication A* is
commutative, the condition for which is that A(z) should be a symmet-
ric tensor for all ). The interesting quantum groups are those which are
neither commutative nor cocommutative. The word ”quantum” refers to
this replacement of commuting objects by non-commuting ones (though in
my definition quantum includes classical). The first example was given by
Jimbo [10]: it is a Hopf algebra generated by three elements Jy, J4 and J_
with relations

[Jo,J+] = J4 (15)
[Jo, -] =—J= (16)
SRR P e (17)

q9—-4q
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comultiplication
A(Jo) =1®Jo+Jo®1 (18)
AUg) =g @It +Jr@q ™, (19)
counit
e)=1, e(Jo)=¢(Jg)=0, (20)
and antipodes
S(Jo) = —Jo, S(Us)=—-¢ s (21)

To define this algebra properly, avoiding problems with infinite series, we
should use generators K% = ¢%J; instead of Jy and replace (18) by

KJo K™ =q%Jy,, (22)

but the above form is intuitively more illuminating since it shows the relation
to the classical universal enveloping algebra of the Lie algebra su(2), which
can be seen as the limit of the above Hopf algebra as ¢ — 1. We can
put ¢ = e where A is Planck’s constant, and regard the above algebra as
a quantisation of the classical Hopf algebra U(su(2)). It is the quantised
enveloping algebra Ug(su(2)).

This construction was generalised from su(2) to any semisimple Lie al-
gebra g by Jimbo [11] and Drinfel’d [5]. Classically, a Lie algebra of rank r
can be generated by 3r elements: the fundamental roots hy,..., Ay, which
form a basis of the Cartan subalgebra; positive root elements e, ..., e, asso-
ciated with these roots; and the negative root elements fi, ..., f, associated
with —hy,..., —h,. The elements associated with the other positive roots
of the Cartan subalgebra can be obtained by forming repeated Lie brackets
of the e;, and those associated with the negative roots can be obtained from
repeated Lie brackets of the f;. Classically, as was discovered by Serre,
these are subject only to the relations

lei,[eiy. .- [eaes) .. J=0=[fi,[fi,.. ., [fi, 5] s (23)

where the number of brackets is the number of times the root h; can be
added to h; while remaining in the root system of L. This number is 1 —a;;

where
(hi, hj)
= (hi, hi)

is a negative integer, an element of the Cartan matrix of g. The angle
brackets denote the Killing form in the Cartan subalgebra H.
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The quantised enveloping algebra of g is also generated by elements
ei, fi,hi (1 =1,...,7); each triple (e;, f;, h;) generates a copy of Uy, (su(2))
with parameter ¢; = ¢'/2(h;, h;). The full set of relations is

[hi, e5] = (his hj)ej,
[his £5] = —(his k) £

[ei,fj] = ﬁ-&'j,
i —
[6i, [eia ey [eia ej]q;n+1]qu-n+3 i ']q;l—l = 0, (24)

where
[2,9]g = g2y — ¢y

and n = 1 — a;; as in the classical Serre relations. The coproducts, counit
and antipode are as in Uy (su(2)). For this to be a valid definition, it must
be checked that the definitions (18), (20) and (21) are consistent with the
quantised Serre relations (24) — a decidedly non-trivial requirement (for an
illuminating treatment, see [13]). Then the quantised Serre relations can be
written in terms of the Hopf-algebra adjoint representation as

(adej)™e; = 0. (25)

The quantum double

The final ingredient needed to make the quantised enveloping algebra
U, (L) into a quantum group is a universal R-matrix. Drinfel’d showed that
this could be obtained as an application ef the following general construc-
tion. Let H and H* be dual Hopf algebras, so that there is a non-degenerate
bilinear function: H x H* — K, which we denote by angle brackets, satis-

fying

(€, z) = €@ n, Alz)), (26)
and (A, z@y)=(2y) (v,y€H, {neHY) (27)

(using A to denote the coproduct in both H and H*). The quantum double
is D = H* ® H with multiplication

€@ 2)(M®Y) = (N1), ST(1)) N2)€ ® T(2)¥ (N(3): T(3)) (28)

and comultiplication

Alf®z) = (§1)® 1)) B (€2) @ 2(2)) (29)
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counit given by multiplying the counits in H and H*, and antipode given
by the tensor product of the antipodes in H and H*. Drinfel’d showed that
this quantum double was quasitriangular, the universal R-matrix R being
simply the identity operator on H regarded as an element of H*® H. More
explicitly, if {b;} is a basis of H and {$"} is the dual basis of H* under the
pairing (, ), then

R=) p'&b;.

In the application of Drinfel’d’s construction to U, (g), the Hopf algebra
H is taken to be the subalgebra of U, (g) generated by hy,...,hr,e1,... €p,
and the dual H* is taken to be the subalgebra generated by hq,...,
by, f1,..., fr. The resulting quantum double is bigger than U,(g) because
of the duplication of hq,..., h,, so one has to take a quotient of it; and it is
hard work to construct the dual bases {f?,b;}, but the result is an elegant
explicit formula for R [16, 15].

3. Quantum spaces and quantum symmetry

In the final section of this talk I will take a dual look at quantum
groups, considering a quantisation not of the classical group algebra but of
the classical algebra of functions on a group. This will give us a way of
talking about the action of a quantum group on a quantum space.

The quantised function algebra Fp (M (2))

We start with an elementary example of an algebra, from which, by

considering the dual, we will construct another example of a classical bial-
gebra. Let M(2) be the algebra of 2 x 2 matrices M = (Z Z) The dual

of this as a vector space is the four-dimensional vector space H = M (2)*
spanned by the functions a,b, ¢, d which assign to each matrix M its top
left, top right, bottom left and bottom right entries. The multiplication on
M (2) gives rise to a comultiplication on M(2)* given by

(368 8@)=(¢ §)=(2 2) 0
ie. Ale)=a®a+b@®c etc (31)

which we can write as

A(a) = ajaz + bics where a1 =a®l, az=1®a, etc. (32)
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Thus the dual of matrix multiplication is the formula for matrix multiplica-
tion. We will call this matriz comultiplication. The matrix counit is defined
similarly by the formula for the identity matrix:

e(a) B _(1 0

gle) edy) —\0o 1)~
The four-dimensional vector space M (2)* generates a commutative algebra
F(M(2)) = Kla,b, c,d], the algebra of polynomial functions on M(2). The

comuitiplication (30) can be extended to this infinite-dimensional algebra
by the homomorphism property, i.e. by defining

A(a*b'c™d™) = A(a)*A (D) A(c)™A(d)".

The matrix counit can be extended similarly. This makes F(M (2)) into a
bialgebra which is commutative but not cocommutative (since matrix mul-
tiplication is not commutative). If we adjoin an inverse of the determinant
element ad — bc, we can define an antipode by the formula for the inverse
of a 2 x 2 matrix,

S(a) S(b)\ _ 1(d -b
(S(C) s(@) ) =lad=b)"{ _. o)
making F (M (2)) into a Hopf algebra.
We now quantise this classical Hopf algebra. Let p and ¢ be any two
scalars, and let 7, ,(GL(2)) be the algebra generated by four elements
a,b, c,d with relations

ba = pab, db = gbd ,
ca = gac, dec = ped (33)

peb = gbe,
da —ad = (g —p~1be.
This becomes a bialgebra with the same matrix comultiplication and counit
as in the classical case. If we introduce an inverse for the quantum determi-

nant
D=ad-plbc=da—-q lcb, (34)

then F, ,(GL(2)) becomes a Hopf algebra with the antipode

(5 8- (2 )= 7)o o
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Properties of Fp, ¢(GL(2))

The simple-looking statement that the above multiplication, comulti-
plication, counit and antipode make F = F, (G L(2)) into a Hopf algebra
includes a number of non-trivial (indeed, rather unlikely) propositions:

1. The definition (30) of the comultiplication can be consistently extended
from the generators a, b, ¢,d to any polynomial function of them so as
to give a homomorphism: ¥ @ F — F.
The potential inconsistency is that applying A to the two sides of (33),
assuming the homomorphism property, might give different results. The
fact that it does not is the fact that A(a), A(b), A(c). A(d) satisfy the same
relations (30) as a,b,c,d. In view of (32), it is tempting to state this like
the closure property of a group:

If the matrices A; and A» both have elements satisfying the relations
of Fp (GL(2)). and if the elements of A; commute with those of A3, then
the elements of A; A, satisfy the relations.

2. The antipode S defined on the generators by (35) extends to an anti-
homomorphism: F — F.

A major part in the proof of this property is played by the following prop-
erties of the quantum homomorphism D:

3. The quantum determinant D is normal in F, ((GL(2)), i.e.

Df =o(f)D for all f € Fp (GL(2)), (36)

where o is an automorphism of F, 4(GL(2)). Explicitly,
Da = aD, Db=qp~ 6D, (37)
Dc=pg~teD, Dd =dD. (38)

(Note that if p = ¢ the determinant D commutes with every element of
the algebra and can therefore be put equal to 1. This gives the quantum
special linear group F4(SL(2)).)

4. D is multiplicative in the sense that

A(Dy=D®D (39)

which is a bialgebra version of the multiplicative property of the classical

determinant, viz. det(A; Az) =detA;detA;.

Finally, we note a property of F, o(GL(2)) which says that it is the
same size as the classical (commutative) algebra Kla,b, ¢, d]:

5. The ordered monomials a*b'c™d™ (where k, I, m, n are non-negative in-
tegers) form a basis of ¥, ,(GL(2)).
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This is the Poincaré-Birkhoff-Witt theorem for F, o(GL(2)).

These four properties are so unlikely that we are led to look for an
explanation of them in terms of some special features of the original relations
(33).

Why does Fp o(GL(2)) work?

At one level, an explanation of the properties of the relations (33) can
be given by noting that they can be put into a particular form, namely

REper = t5thR (40)
or, in the same notation as for the Yang-Baxter equation (1),
Ri2Th Ty = T Ty R12, (41)

where T' = (tf) is the matrix of generators of the algebra and R is a matrix
of scalars which satisfies the braid relation:

g O 0 0
a b = 0 0 1 0

T= (C d) ’ R = 0 qp-l q - p——l 0 ’ (42)
0 0 0 q

the rows and columns of R being ordered as (ij) =(11), (12), (21), (22).
In this notation the matrix comultiplication is given by

AT =TeT, ie AWM)=thetl. (43)
The “closure” property of Fp ¢(GL(2)) follows very easily:

RiaA(T1)A(T2) = Ri2(Ty @ T1) (T2 © Ta)
= Ri2(hT> & T T2)
=T1T2 ® RioaT1 T
= (T'T2 © T1 T») Ri2
= A(T1)A(T2)Ry2 .
There is a connection between the relations (41) and the fifth property of
Fp,q(GL(2)), the independence of the ordered monomials in @, b, ¢, d, though
the connection is not as direct as is often supposed. The 51g111ﬁcance of this

property is that no new relations between products of three generators are
introduced by the associative law. One might expect that there would be
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such extra relations, because there are two ways of reducing a product such
as cba to a multiple of abc using the relations (33), and it is not obvious that
these will coincide. If they did not, we would have an extra and undesirable
relation abc = 0; but we find that they do. The relevance of the braid
relation to this happy accident can be seen by doing an analogous calculation
in matrix form, using (41):

T1(T2T3) = T1(Ry3 T2T3 Ros
= Ry R} T1 T2 R12T3Ra3
= Ry Ryy Roy TiToTs Res Ria Ras
whereas ~ N
(T1T2)T3 = Ry; T1Ta R12T3
= R;;T]R;;TéTgRZ:;RIQ
= Ry, Ry Ry TiT2TsRi2Ros Raz
so, if the braid relation (2) is satisfied the two calculations give the same
result. This suggests that the braid relation is a sufficient condition for
independence of monomials. It is not completely clear, however, that this
sequence of manipulations is the same as that involved in reordering a simple
monomial like cba; and it is certainly not true that the braid relation by itself
is sufficient to guarantee the PBW theorem for an algebra defined by the
RTT relations (41), because not every R-matrix will give enough relations
between a, b, ¢ and d to allow one to reduce all products of them to ordered
form. To get the precise relation between the PBW theorem and the braid
relation {20, 19] one must consider the origin of the algebra generated by
matrix elements in more elementary algebras generated by the coordinates
on which the matrix acts.

Action and coaction

The bialgebra F, 4(GL(2)) is generated by matrix elements; what maps
are these the matrix elements of? Whatever these maps are, their compo-
sition will be described not by the multiplication of matrices but by the
matrix comultiplication (30). To understand this, we first look at the clas-
sical situation.

Consider a representation p of an algebra E on a vector space V. This
can be regarded as a map p: E® V — V satisfying

plab® v) = p(a @ p(bQ v)) (a,be E, veV),

or
po(p®id) =po(id®p):EQREQV =V,
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where y : E® F — F is the multiplication in E. Now if F is a finite-
dimensional algebra, its dual E* is a coalgebra, i.e. it has a comultiplication
A=p*: E* - FE*® E*. The dual of the representation p: EQV — V is
amap 6 =p*: V* o E* ® V* satisfying

(ARid)ob = (id®6)o4. (44)

A map satisfying (44) is a corepresentation or coaction of the coalgebra E*
on the vector space V*. The simplest example of such a coaction is the case
where E' = EndV is the algebra of all linear maps of V to itself, and the
representation p is the defining one:

p(T®v)="Tv.

Then V* has a basis of coordinates z; with respect to a basis of V, E* has a
basis of matrix elements ¢! with respect to the same basis, and the coaction
of E* on V* is given by _

8(z;) ::tg ;. (45)

Thus the coaction of E* is given by the formula for the action of E.
The quantum plane

In the classical case we can always extend the coaction (45) to the
algebra of all polynomial functions on V, i.e. the commutative algebra A
with generators z;, to get an algebra homomorphism § : A - F @ A where
F' is the algebra of polynomial functions on £ — the commutative algebra
generated by the matrix elements ¢]. If the algebras A and F are not
commutative, however, extending the map (45) is more problematical; there
has to be some consistency between the two algebras.

The algebra of functions on the quantim plane (or just quantum plane
for short) is the algebra A4 generated by two elements z,y which satisfy

yr = qzy, (46)

where ¢ is an element of the ground field K. (Compare the anyon field
equation (4).)Itis a remarkable fact that this coordinate algebra is consistent
with the matrix-element algebra F}, ¢ = Fp 4(GL(2)),in the sense that there
is an algebra homomorphism 6 : 4; = F} ¢ ® A, given by

(5) - (¢ 2)=(5) o)

In other words, if # and y satisfy yz = qzy and a, b, ¢, d satisfy the relations

(33) while commuting with z and y, then (ﬁ) = (Z Z) (z) satisfy
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vu = quv. Thus (i b) can be regarded as the matrix of a transformation

d
of the quantum plane which preserves the relation (46). In the same sense,

the matrix coaction
()= (€ a)=() a9

also preserves the relations
E=n"=0, nf=-p &y (49)

(the quantum superplane).
Conversely, it can be shown that if (;) — (z Z) & (;) preserves

the relation yz = gzy and (g) — (i 2) & (g) preserves the relations
€2 =n? = 0,6n= —p~1n¢, then a, b, ¢, d satisfy the relations of Fp,q(M(2)).
Thus the invariance of the quantum plane and the quantum superplane can
be seen as the origin of the relations of this quantum group, in somewhat
the same way as the property of preserving a Euclidean inner product is the
origin of the equation satisfied by an orthogonal matrix. This is the basis
of a general definition of quantum groups in their dual (function-algebra)
form.

Quantum groups as invariance groups

We consider the general situation of a finite-dimensional space V and
the algebra F = EndV of linear endomorphisms of V, together with their
dual spaces V* (spanned by coordinates z; on V) and E* (spanned by
matrix elements tf) Then we have the natural action: EQ V — V and its
dual, the natural coaction &y : V* —» E* @ V* given by 2; — tf ®z;. A
coordinate algebra on V is any algebra generated by V*, i.e. a quotient of
the tensor algebra T(V*). A coordinate algebra is quadratic if its relations
are quadratic, i.e. if it is the quotient of T(V*) by an ideal generated by
a subspace S C V* @ V* (the relation subspace of the quadratic algebra).
A coordinate algebra M on V is compatible with a coordinate algebra C on
EndV if the natural coaction &y extends to a homomorphism & : ¢ - M®&C,
i.e. if z; satisfy the relations of C and tf satisfy the relations of M, then

a{ ® x; satisfy the relations of C.
The basic theorem on such coordinate algebras is

Theorem (Takeuchi) [22, 20] Let C1,Ca,...,Cr be coordinate algebras on
the vector space V. Then
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. There is a unique coordinate algebra M on EndV which is compatible
with C1,Cs,...,C, and which is universal in the sense that any other
algebra with this property is a quotient of M (i.e. the relations of M
are necessary for compatibility).

. M is a bialgebra with matrix comultiplication and counit.

. If C1,Cy,...,C, are quadratic algebras, so is M. Let S; C V* @ V* be
the relation subspace of C;; then the relation subspace of M is

2=510St+---+5- S+ (50)
C(V*QVY®(VeV)(EndV)* ® (EndV)*. (51)

IfV*QV* =S, @@ Sy, then M is defined by an R-matrix R =

A Il +- - -4+ A II, where the ); are distinct scalars, II; is the projection
onto S;, in the sense that the relation subspace of M is

Y ={[R,X]: X € End(V® V)}.
This means that the relations in M are given by (41).
The quantum orthogonal group

I will finish by describing the quantum orthogonal group in the man-

ner of Takeuchi’s theorem. There is a similar description of the quantum
symplectic group [21].

The g-deformation of SO(N) is the algebra M generated by matrix

elements which preserves each of the following three algebras generated by
coordinates T,,Z—_m(m =1,...,I where /s the integer part of N/2):

1. 1.A deformation of the algebra of functions of N commuting coordi-

nates:
TpZTm = Ty (m < n, m#—n),

k
1 _ (b _
A Z (qk M —m — G (k m)x_mxm) _(q1/2_q 1/2)41% =0,

3
]

. ok — g F

q—q!
(the last term in the second equation being absent if N is even). The

corresponding relation subspace is a deformation of the antisymmetric
subspace of V* @ V*.



2798 A. SUDBERY

2. A deformation of the exterior algebra on N anticommuting coordinates,
but with one relation missing, the relation subspace being a deformation
of the symmetric traceless subspace of V* @ V*:

22, =0 (m#0),

TnTm = —qTmTn (m <n, m#-n),
1 k
[—] Z (qk_m+ll'm$*m + q—(k—m+1)$_mzm)
ma==1

= constant (k=1,...,1)
=¢'/2 44712 if Nisodd.

3. An algebra with a single relation, a deformation of the equation of a
sphere:

l
Z (qm+1/2$m$~m +qm_1/2x_m$m) =+ .’E% =1, (52)

m=1

the term z3 being absent if N is even.

Because the third of these algebras is not quadratic, the relation (52) not
being homogeneous, this does not fit into the R-matrix framework provided
by the last two parts of Takeuchi’s theorem. To make it do so, we can
replace the g-sphere relation (52) by a homogeneous relation with 0 on the
right-hand side. This yields an algebra generated by matrix elements with
RTT relations, which is a deformation of the algebra of functions on the
classical similarity group — the orthogonal group together with multiples
of the identity. To obtain the g-orthogonal group, these relations must
be supplemented by a further relation putting equal to 1 a certain central
quadratic element whose classical limit is tr(TTT)/N (just as one obtains
Fq(SL(N)) from Fy ¢(GL(N)) by putting the quantum determinant equal
to 1).
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