MESON PRODUCTION IN BARYON NUMBER=2 SYSTEMS*

T. UEDA

Faculty of Science, Ehime University Matsuyama, Ehime, Japan, 790

(Received October 9, 1996)

The πNN dynamics generates a strong and narrow structure in the cross section of three-body processes in the I=0, $J^P=0^ \pi NN$ system at mass M=2.06-2.09 GeV with width 30-50 MeV. The origin is the three-body interaction due to the NN^1S_0 and πNS_{11} interactions in the subsystems.

PACS numbers: 13.60. Le, 21.45. +v

1. 1. Introduction

An interesting subject on πNN system is whether the system has any resonance or quasi-bound state [1,2]. The experimental evidences have been reported by Argonne and other groups [3]. We ask whether they need explicitly subhadronic degree to be explained. So far we have studied this problem in the πNN dynamics [2,4], where we take into account the three-body channels of both πN interacting pair with N spectator and NN interacting pair with π spectator and also the two nucleon channels in a unified and unitary framework.

In 1982, we investigated the analytic structure on the complex energy plane for the NN partial wave amplitudes due to the πNN dynamics [4]. We find a pole at the mass 2116-i61 MeV for $I=1,J^P=2^+$ amplitude and a pole at the mass 2155-i60 MeV for $I=1,J^P=3^-$ amplitude. Thus it is concluded that the genuine resonances are there. Furthermore, the structures observed in the energy dependence of the $\Delta\sigma_L$ data are reproduced [2].

More recently Bilger et al has reported an evidence for a narrow width πNN resonance near pion threshold in pionic double charge exchange nuclear reactions [5]. They suggest that it is in the $I=0,\ J^P=0^-$ channel which decouples with the NN channel.

^{*} Presented at the "Meson 96" Workshop, Cracow, Poland, May 10–14, 1996.

2876 T. UEDA

In this paper we investigate whether the πNN dynamics generates a resonance in the I=0, $J^P=0^-$ channel. Near the pion threshold two configurations dominate in the I=0, $J^P=0^ \pi NN$ system: One involves NN interacting pair of the 1S_0 state with the remaining pion in the S state with respect to the NN pair. The other involves πN interacting pair of the S_{11} state with the remaining nucleon in the S state with respect to the πN pair. Let us label the former and latter configurations as $\pi(NN)$ 1S_0 and $N(\pi N)$ S_{11} .

2. Formulation

The AGS equation for the πNN system is written for anti-symmetrized amplitudes $X_{\alpha\beta}$ as follows.

$$X_{\alpha\beta} = Z_{\alpha\beta} + \sum_{\gamma} Z_{\alpha\gamma} \tau_{\gamma} X_{\gamma\beta}, \tag{1}$$

where $Z_{\alpha\beta}$ is the particle rearrangement terms and τ_{γ} is the propagater terms. The α, β and γ denote particle channels: Presently $\pi(NN)^{-1}S_0$ and $N(\pi N) S_{11}$.

For πN S_{11} interaction we use a separable potential which has rank one and one channel form and works enough well for the incident pion laboratory energies, $E_L^{\pi} \leq 400$ MeV. For the $NN^{-1}S_0$ interaction we use the 1S_0 interaction due to OBEP which is converted to rank two separable form by keeping the same off-shell structure as the original OBEP [6].

 $Z_{\alpha\beta}$ in Eq. (1) involves the arguments of $\vec{q}_{\alpha}(\vec{q}_{\beta})$ and E where $\vec{q}_{\alpha}(\vec{q}_{\beta})$ is the relative momentum between an interacting pair and a remaining particle in channel $\alpha(\beta)$ and E is the total three-body kinetic energy. The relative momentum $\vec{p}_{\alpha}(\vec{p}_{\beta})$ between the particles making a pair in channel $\alpha(\beta)$ is fixed by \vec{q}_{α} and \vec{q}_{β} in the term $Z_{\alpha\beta}$ for the full off-energy shell case.

We will investigate the energy dependent structure of the half off-energy shell amplitudes where the final πNN state is on energy shell: $E = E_{\pi}(k_{\pi}) + E_{1}(k_{1}) + E_{2}(k_{2})$, while the initial state is off energy shell. A partial wave amplitude for a three-body eigenstate is derived from Eq. (1) as follows.

$$X_{\alpha\beta}(q_{\alpha},q_{\beta},E) = Z_{\alpha\beta}(q_{\alpha},q_{\beta},E) + \sum_{n=1}^{\infty} Z_{\alpha1}(q_{\alpha},q_{1},E)\tau(w(q_{1}))$$

$$Z_{12}(q_1, q_2, E)\tau(w(q_2))Z_{23}(q_2, q_3, E)\dots\tau(w(q_n))Z_{n\beta}(q_n, q_\beta, E),$$
 (2)

where the integrations are understood with respect to the variables q_1, \ldots, q_n . The relative momentum \vec{q}_{α} in the final state is put on energy shell, while

the relative momentum \vec{q}_{β} is put off energy shell. Since in Eq. (1) the integration with respect to the relative momentum \vec{q} in the intermediate state is made along a deformed path for complex variable $q = |q|e^{-i\phi}$, we put also q_{β} in Eq. (2) as a complex variable: $q_{\beta} = |q_{\beta}|e^{-i\phi}$.

In order to see the energy dependence, we define the two amplitudes averaged over the magnitude of the final relative momentum q_{α} :

$$\bar{X}_1(\alpha,\beta;q_\beta;E) = K(E) \ q_m^{-1} \int_0^{q_m} dq_\alpha X_{\alpha\beta}(q_\alpha,q_\beta,E), \tag{3}$$

$$\bar{X}_2(\alpha,\beta;q_\beta;E) = K(E) \ q_m^{-1} \int_0^{q_m} dq_\alpha \ g_\alpha(p_\alpha) \ \tau(w_\alpha(q_\alpha)) \ X_{\alpha\beta}(q_\alpha,q_\beta,E), \quad (4)$$

where \bar{X}_1 and \bar{X}_2 are the averaged amplitudes without and with the final state interaction respectively; q_m in Eqs. (3) and (4) is the maximum magnitude of the relative momentum q_{α} ; $g_{\alpha}(p_{\alpha})$ in the right-hand side in Eq. (4) is the form factor. A kinematical factor due to the phase space, K(E), is multiplied in the right-hand side in Eqs. (3) and (4), where K(E) = E.

Let us define a pseudo partial cross section corresponding to the partial wave amplitude $\bar{X}_2(\alpha, \beta; q_{\beta}; E)$ as follows,

$$\sigma(\alpha, \beta; q_{\beta}; E) = |\tilde{X}_{2}(\alpha, \beta; q_{\beta}; E)|^{2}. \tag{5}$$

3. Numerical results and conclusion

We have investigated the partial wave-amplitudes $\bar{X}_i(\alpha,\beta;q_\beta;E)$ of $I=0,\ J^P=0^-,$ where α and β are taken over $N(\pi N)\ S_{11}$ and $\pi(NN)\ ^1S_0$ three-body channels. We find that major amplitudes are the ones for the two transitions from $\beta=N(\pi N)\ S_{11}$ to $\alpha=N(\pi N)\ S_{11}$ and $\alpha=\pi(NN)\ ^1S_0$. Let us denote these amplitudes as $\bar{X}_i(S_{11};q_\beta;E)$ and $\bar{X}_i(^1S_0;q_\beta;E)$ with i=1 and 2.

We made Argand plots of these amplitudes at $q_{\beta} = 0.92 - i0.18$ fm⁻¹ and at E = 10 - 160 MeV. We find that all the amplitudes make anti-clock wise looping.

We show the pseudo partial cross sections in Fig. 1. We find a strong and narrow structure in both $\sigma(S_{11}; E)$ and $\sigma(^1S_0; E)$.

In conclusion we have found that the πNN dynamics generates a strong and narrow structure in the I=0, $J^P=0^ \pi NN$ amplitude with width 30-50 MeV at E=40-70 MeV (M=2.06-2.09 GeV). The structure is generated by the NN 1S_0 and πN S_{11} interactions in the πNN system.

2878 T. UEDA

Fig. 1. The pseudo partial cross sections for the transitions from $N(\pi N)S_{11}$ to $N(\pi N)S_{11}$ and $\pi(NN)^{1}S_{0}$ are shown by solid and dotted curves respectively. The abscissa indicates the total kinetic energy E in CMS in units of MeV.

It is likely that the dibaryon evidence suggested by Bilger et al is closely related with the structure found in this paper.

REFERENCES

- [1] T. Ueda, Phys. Lett. **B79**, 487 (1978).
- [2] T. Ueda, Nucl. Phys. A463, 69c (1987); Nucl. Phys. A573, 511 (1994).
- [3] A. Yokosawa, Phys. Rep. 64, 47 (1980).
- [4] T. Ueda, Phys. Lett. B119, 281 (1982); Phys. Lett. B141, 157 (1984).
- [5] R. Bilger, H. Clement, M. Schepkin, Phys. Rev. Lett. 71, 42 (1993).
- [6] T. Ueda, et al., Few-Body Systems Suppl. 9, 177 (1995).