TWO-STEP MECHANISM OF MESON PRODUCTION IN $pd \rightarrow^3 \text{He } X \text{ REACTION}^*$

L.A. KONDRATYUK

Institute of Theoretical and Experimental Physics B.Cheremushynskaya 25, Moscow 117259, Russia

AND

Yu.N. Uzikov

Laboratory of Nuclear Problems
Joint Institute for Nuclear Research, Dubna
Moscow reg. 141980, Russia

e-mail address: uzikov@nusun.jinr.dubna.su

(Received October 9, 1996)

It is shown that the two-step model of the reaction $pd \to^3 \text{He } X$ $(X=\eta,\ \eta'\ ,\omega,\ \phi)$, involving the subprocesses $pp\to d\pi^+$ and $\pi^+n\to Xp$ allows to explain the form of energy dependence of experimental cross sections above the thresholds under assumption that the singlet part of the $pp\to d\pi^+$ amplitude dominates in collinear kinematics. The spin-spin asymmetry for the reaction $d\vec{p}\to^3 \text{He} X$ has been found to be ~ -1 in the forward-backward approximation.

PACS numbers: 25.10. +s, 25.40. Qa, 13.60. Le, 14.40. Aq

Reactions $pd \to^3 \text{He}X$, where X means a meson heavier than the pion, are of great interest for several reasons. Firstly, high momentum transfer $(\sim 1~\text{GeV/}c)$ to the nucleons takes place in these processes [1]. Secondly, the possible existence of quasi-bound states in the η - ^3He system is discussed in the literature [2, 3]. Thirdly, production of the η , η' , ϕ mesons, whose wave functions contain valence strange quarks, raises a question concerning strangeness of the nucleon and the mechanism of Okubo-Zweig-Iizuka rule violation [4]. The experimental investigation of the reaction $d\vec{p} \to^3 \text{He}\phi$ is proposed [5] in Dubna to check the hypothesis of polarized strangeness

^{*} Presented at the "Meson 96" Workshop, Cracow, Poland, May 10–14, 1996.

content of nucleon [4]. The investigation of conventional (nonexotic) mechanisms of this reactions seems to be of great importance.

The two-step model of the $pd \to^3$ He η reaction including two subprocesses $pp \to d\pi^+$ and $\pi^+ n \to \eta p$ was developed in Refs. [3, 6, 7]. In Ref. [8] the cross section of the reaction $pd \to^3 H_\Lambda K^+$ was predicted in the two-step model in spinless approximation.

Fig. 1. Differential cross sections of the $pd \to^3 He\eta(\omega, \eta', \phi)$ reactions as a function of lab. kinetic energy of proton T_p . The curves show the results of calculations for different angles $\theta_{\rm c.m.}$ multiplied by the appropriate normalization factor N. a $-pd \to^3 He\eta$: 180° (full line, N=3), 60° (dashed curve, N=3), circles are experimental data: $\circ -\theta_{\rm c.m.}=180^{\rm 0}$ Ref.[1]; $\bullet -\theta_{\rm c.m.}=60^{\rm 0}$ Ref.[10]; b $-pd \to^3 He\eta'$ at $\theta_{\rm c.m.}=180^{\rm 0}$ (full, N=3) and $\theta_{\rm c.m.}=60^{\rm 0}$ (dashed, N=3); the circles are experimental data for the η' production: $\circ -\theta_{\rm c.m.}=180^{\rm 0}$ Ref. [11]; $\bullet -\theta_{\rm c.m.}=60^{\rm 0}$ Ref. [10]; the dotted line shows the results of calculation for the $pd \to^3 He\phi$ reaction at $\theta_{\rm c.m.}=180^{\rm o}$ normalized by factor N=6.6 to the experimental point (\triangle) from Ref.[11].

In this work (see Ref. [9]) the two-step model [3] is extended for the production of η, ω, η' and ϕ mesons above the thresholds and spin observables are calculated [9]. The results of calculations performed under assumption that singlet part \mathcal{A} of forward-backward amplitude of $pp \to d\pi^+$ dominates and triplet part, \mathcal{B} , is negligible ($|\mathcal{A}| \gg |\mathcal{B}|$), are presented in Figs.1 and 2 in comparison with the experimental data. One can see that the two-step model (i) describes the shape of the energy dependence of the observed cross sections for the η, η', ω meson production (see Figs.1, 2); (ii) predicts the ratio of modules of the threshold amplitudes squared $R(\phi/\omega) = |f(pd \to^3 \text{He}\phi)|^2/|f(pd \to^3 \text{He}\omega)|^2 = 0.52$ in agreement with the experimental value $R^{exp} = 0.07 \pm 0.02$; (iii) does not contradict within the experimental errors

Fig. 2. The modulus squared of the amplitude of the $pd \to^3 He\omega$ reaction as a function of the c.m.s. momentum of the ω meson, p^* . The curve is the result of calculation at $R_1 = \frac{1}{3}$ multiplied by factor N = 9.6, the circles (o) are experimental data [12].

to the experimental data [10] on the absolute value of the cross section of η' production at $T_p = 3$ GeV, $\theta_{\rm c.m.} = 60^{0}$ (this kinematical region corresponds to the matching condition).

Under the same assumption $|\mathcal{A}| \gg |\mathcal{B}|$ we give the definite prediction for spin-spin correlations in the reaction $\vec{p}\vec{d} \to^3 \text{He}X$ with polarized deuteron and proton defined as $\Sigma_X = d\sigma(\uparrow\uparrow) - d\sigma(\uparrow\downarrow)/d\sigma(\uparrow\uparrow) + d\sigma(\uparrow\downarrow)$ where $d\sigma(\uparrow\uparrow)$ and $d\sigma(\uparrow\downarrow)$ are the cross sections for parallel and antiparallel orientation of the polarization vectors of the proton and deuteron. We have found numerically that near the threshold $\Sigma_{\phi,\omega} \sim -0.95$ and $\Sigma_{\phi,\omega}$ very fast goes to -1 above the threshold. The positive value for Σ_{ϕ} is expected on the basis of $s\bar{s}$ hypothesis [4].

In conclusion, keeping in mind that the cross section of η' and ϕ meson production differs from that for $\eta-$ meson by three orders of magnitude we can conclude that the two-step model in collinear approximation allows to understand the main features of the reactions $pd \to^3 He\eta(\eta',\omega,\phi)$. Nevertheless absolute value of the cross section for vector mesons is too small in comparison with the experimental data. To describe the absolute magnitude of the cross section of $\omega-$ meson production in the range of 100 MeV/ $c \le p^* \le 400$ MeV/c one needs the normalization factor N=9.6 that is essentially larger than the corresponding value for pseudoscalar mesons $N_{\eta,\eta'}=3$ or $N_\omega=2.4$ found in Ref. [7] at the threshold. The experimental data on spin structure of the $pN\to NN\pi$ amplitude are necessary to resolve this problem.

This work was supported in part by grant N^o 96-02-17458 of the Russian Foundation for Fundamental Researches.

REFERENCES

- J. Berger et al., Phys. Rev. Lett. 61, 919 (1988); P. Berthet et al., Nucl. Phys. A443, 589(1985).
- [2] C. Wilkin, Phys. Rev. C47, R938 (1993).
- [3] L.A. Kondratyuk, A.V. Lado, Yu.N. Uzikov, Yad. Fiz. 58, 524 (1995) (Phys. At. Nucl. 58, 473 (1995)).
- [4] J.Ellis, M.Karliner, D.E.Kharzeev, M.G.Sapozhnikov, Phys. Lett. B353, 319 (1995).
- [5] B. Khachaturov et al., Talk in Int. Symp. DEUTERON-95, Dubna, July 4-7, 1995.
- [6] G. Fäldt, C. Wilkin, Nucl. Phys. A587, 769 (1995).
- [7] G. Fäldt, C. Wilkin, Phys. Lett. **B354**, 20 (1995).
- [8] V.I. Komarov, A.V. Lado, Yu.N. Uzikov, J. Phys. G 21, L122 (1995).
- [9] L.A. Kondratyuk, Yu.N. Uzikov, Pis'ma Zh. Eksp. Teor. Fiz. 63, 3 (1996) (JETP Lett. 63 1 (1996)).
- [10] H.Brody et al.., Phys. Rev. D9, 1917 (1974).
- [11] R. Bertini et al., Preprint LNS/Ph/94-16.
- [12] R.Wurzinger et al., Phys. Rev. C51, R443 (1995).