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1. Introduction and conclusions

In relativistic heavy-ion collisions a zone of hot and dense hadronic mat-
ter is created. At beam energies of the order of 1 AGeV or higher, hadron
resonances play an important role in the dynamics of such collisions. Some
of these resonances (e.g. A and p) have large widths, comparable to or larger
than the typical temperature of the interaction zone. Since the correspond-
ing life-times are smaller than the life-time of the hot and dense zone, one
expects several generations of these resonances. Consequently, it is inter-
esting to study the thermodynamics of many-body systems with short-lived
resonances, taking the width of the resonances into account.

At beam energies around 1 AGeV, the most abundant particles in the
hot and dense zone are the nucleon, the pion and the P33 mN resonance
A(1232). The thermodynamics of such systems has been studied by many
authors. In such calculations, the width of the A-isobar is either neglected
or treated in an ad hoc manner. In the following we present results of a
general approach to thermodynamics, where the widths of resonances are
treated consistently, applied to a system of interacting nucleons, pions and
A-isobars [1]. The thermodynamic weight function of the resonance can
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be written as the sum of two distinct parts: The first part depends on the
spectral function and counts the A-isobars, whereas the second takes into
account correlated w N pairs as they occur in 7N loops of the A selfenergy.
The weight function can also be expressed as twice the energy derivative of
the phase shift and may be interpreted as a time scale of the 7V interaction
as a function of energy.

In order to study the consequences of a consistent treatment of the
resonance width in heavy-ion collisions, we consider a simple fireball model.
The system freezes out when the mean free paths of the constituents exceed
the fireball radius. In this model the pions observed in a heavy-ion collision
are of three different origins: there are thermal pions, which are present
at freeze-out, and there are pions, created after freeze-out in decays of A-
isobars and of correlated 7 N pairs. Clearly all contributions must be taken
into account when comparing to experimental results. The correlated 7N
pairs are found to give an important, hitherto neglected, contribution to
the pion spectrum at low energies. At the present stage, the freeze-out
parameters deduced from comparison to data are still preliminary. We note
that higher resonances, in particular N*(1440), as well as collective flow
may change the numerical values obtained so far. However, we expect the
qualitative features of the present analysis to remain valid.

2. Baryon density

Our starting point for computing the thermodynamical potential
2(T,pu,V) is the self-consistent Green-function method of Kadanoff and
Baym [2]. The advantage of this method is that the resulting thermody-
namic potential is free of double-counting problems and consistent with
conservation laws. However, a fully self-consistent treatment is extremely
involved even in the simplest non-trivial approximation. Therefore, we re-
lax the self-consistency for the nucleon and the pion and approximate their
propagators by the free ones. The expression for the thermodynamical po-
tential then reads as

2 = FTe{nl=(0) )~ el (GR) )= Teln {05 ~Tr{Ea0a) +2.

1
where @ denotes a functional from where all selfenergies are derived. In
our case only the A selfenergy is left. Choosing @ as shown in Fig. 1(a),
the A selfenergy consists of a 7V loop and the last two contributions in
Eq. (1) cancel. In a low-density limit medium effects like ‘Pauli-blocking’
or ‘Bose-enhancement’ can be neglected. Consequently, in this limit, the A
selfenergy is equal to its vacuum form. In that case, the baryon density is
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found as

_1o9e(TuV)

ng (T, p) = v o

=an (T,p)+ 74 (T, p), (2)
TV

where n) denotes the contribution of the thermal nucleons and 7 the
contribution due to the mV interaction. The former is given by the Fermi-
Dirac distribution with a degeneracy factor four integrated over momentum
while the latter is of the form

3 T dm
fia(T,u) := 16 / (:7:;3 / dZ—ﬂ_ABA (ma)

my+mn
< [explly/5? + i -1+ 1] ®)

The weight function B4 in Eq. (3) is given by

Ba (ma) = Aa (ma) + 2Im {gn% (ma)Ga (mA)} =2 d33 (ma) ,(4)

BmA

where the quantity A, denotes the spectral function of the A-isobar, ¥4
the A selfenergy, G4 the full Green function of the A-isobar and 433 the
7w N scattering phase shifts in the Ps;3 channel. It is now obvious that the
interaction contribution to the baryon density 74 is made up of two different
parts. The first one, involving the A spectral function, is the contribution
of the A-isobars to the baryon density. The second part, which has not
been considered in most previous calculations, is the contribution of the
interacting nucleons as they occur in the #/V loops of the A selfenergy.
Fig.1(b) visualizes the three contributions to the baryon density in terms
of diagrams, corresponding to the contributions of nucleons, A-isobars and
correlated m N pairs, respectively. A popular ad hoc prescription has been
to use the spectral function A, instead of Ba, thus neglecting the second
term in Eq. (4) or in other words the third diagram of Fig. 1(b). In order to
get a thermodynamically consistent description of the baryon density, not
only the contributions of the nucleons and A-isobars but also that of the
correlated 7N pairs has to be included.

A complementary interpretation of the function B, is obtained by con-
sidering the second equality in Eq. (4). This form of B, is the well known
Beth-Uhlenbeck result [3] and coincides with that obtained in the S-matrix
approach to statistical physics [4]. The energy derivative of the phase shift
defines a time scale, which in elastic scattering is interpreted as the time
delay or the interaction time. Hence, an appealing interpretation emerges,
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Fig. 1. (a) Functional @; (b) Different contributions to the baryon density. Here
a double line denotes G4, a solid line G% and a dashed line DY. The gray circle
indicates the baryon number operator. See the text for details.

namely that the contribution of a resonance to thermodynamic potentials is
proportional to the time spent in the resonant state. Furthermore, Eq. (4)
implies that — neglecting medium effects — the thermodynamical poten-
tial and the baryon density can be computed in a model independent way,
directly from the empirical phase shifts. As shown in the inset of Fig. 2 the
second term in Bx shifts the strength towards lower masses.

The following results are computed using a model describing the 7N
scattering process in the Ps3 channel by considering the direct A Born-
diagram and the crossed nucleon Born-diagram. The parameters, the bare
mass of the A-isobar, the # N A coupling constant and a cut-off parameter
at the 7N A vertex, are fixed by fitting the corresponding phase shifts.

3. Pion spectrum

Given the population of resonant states, Eq. (3), which after freeze-out
decay into a nucleon and a pion, it is straightforward to compute the result-
ing pion spectrum. The shape of the spectrum, including the contribution
of thermal pions, is then fitted to the experimental data. This fixes the
freeze-out temperature and density.

In Fig. 2 we show such a fit to the 7t spectrum of the reaction Au+Au
at 1 AGeV measured at GSI [5]. The spectrum is shown, as a function of
the kinetic energy of the pions at midrapidity, in the so called Boltzmann
representation, where a Boltzmann distribution would appear as a straight
line with slope —7~1. In the model, the high energy regime is dominated
by the thermal pions. The influence of pions resulting from decays is no-
ticeable only for pion kinetic energies below 350 MeV. We find that the
contribution of the correlated # N pairs is decisive for the agreement at the
lowest energies. The resulting values for the freeze-out temperature and
density are T = 76 MeV and ng = 0.2 pg, respectively. Here po denotes
normal nuclear matter density. The fraction of A-isobars at freeze-out is
na/ng = 0.07 and that of A’s and 7N pairs ia/ng = 0.13. Assuming an
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Fig. 2. (a) Fit to 7+ spectrum. The dashed curve shows the contribution of thermal
pions, the dotted curve one that of thermal pions plus pions resulting from A-isobar
decays. Finally, the solid line corresponds to the full spectrum including thermal
pions, pions from A-isobar decays as well as pions from decays of correlated # N
pairs. Part (b) shows a comparison of the weight function B4 with respect to the
spectral function A,. See the text for details.

adiabatic expansion we can compute the corresponding fractions at preced-
ing stages of the reaction. We find na/npg = 0.28 and fig/ng = 0.43 at a
density ng = 2pp.
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