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A dense and hot pion system with a dynamically fixed particle num-
ber and an arbitrary charge is investigated with respect to ultra-relativistic
heavy-ion collisions. The Lagrangian for describing such a system is derived
from Weinberg’s chiral Lagrangian for the pion-pion interaction. Pion po-
larization operators are calculated within the Hartree approximation. The
pion spectrum in the isospin symmetrical gas is presented. The effective in-
medium pion gap depends sensitively on the density and the temperature,
and it is found to exceed both the free pion mass and the corresponding
value for the pion gas in chemical equilibrium. The possibility of a Bose-
Einstein condensation is also discussed.

PACS numbers: 25.75. -q, 25.75. Dw

1. Meson-enriched systems can be created in ultra-relativistic heavy-ion
collisions (URHIC) due to the kinematic separation of the light meson com-
ponent (as assumed in Bjorken’s model) or in the processes of hadronization
and decay of the quark-gluon plasma possibly formed in the mid-rapidity
region. The heavy meson resonances decay thereby to pions, and at sub-
sequent time one deals with an expanding pion enriched gas with some
admixture of other light mesons [1].

Relying on the number of produced pions in URHIC and the typical
radius of the pion system evaluated from the =7 correlation data [1], the
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pion gas density can be estimated as p ~ (1 — 6)po, where pg = 0.17 fm~3 is
the nuclear saturation density. At such densities the pion gas is obviously
highly imperfect and the proper account of the strong pion-pion interaction
is required.

In Ref. [2] the Weinberg Lagrangian [3] has been employed for the de-
scription of the pion gas. To its advantage, allowing for analytical calcula-
tions with the self-consistent treatment of the intermediate in—-medium pion
states, Weinberg’s Lagrangian reflects properly the genuine chiral nature of
the pionic excitations. The corresponding w7 interaction satisfies the low-
energy theorems following from the current algebra and reproduces well the
experimental pion scattering lengths at rather low pion energies.

In Ref. [2] the chemically and thermally equilibrated pion gas has been
considered. However, according to estimates of Ref. [4], at temperatures
T 5 (0.8 — 1.2)m, the rate of the pion absorption (Wyss) is substantially
suppressed in contrast to the rate of the elastic pion rescattering (Wies).
Then one arrives at the scenario wherein the pion system cools down, on
the one hand, rather rapidly, so that the typical cooling time 7., is much
less than 745, = Wa_bi, whereas, on the other hand, 7., time still essentially
exceeds the rescattering time Tres = Wos. As a result, while expanding,
the pion gas has enough time to be driven out of the chemical equilibrium,
remaining in the thermal quasi-equilibrium. This inspires us to study the
properties of the strongly interacting pion gas with a dynamically fixed total
number of particles, i.e., with a finite pion chemical potential.

2. The Lagrangian, proposed by Weinberg [3] for the description of the
7 interaction in the first-order of the coupling constant, has the form

L= / %z [1(09)% - Im25? + Im2Ag* - A(09) %57, (1)

where A = 1/(2f)? is the pion self-interaction constant, and f = 93 MeV
stands for the pion decay constant. The isospin vector @ = (1, 2, ¥3) is
associated with the fields of the positive (%), negative (=) and neutral
(n°) pions by relations 7% = -—lﬁ(cpl + ip3), and 7% = @3. The positive
and the negative pions, being introduced as particles and anti-particles, are
described by the one complex field, (=)} = 7+, where (...)! means the
Hermitian conjugation. The neutral pions as the self-conjugated particles
are represented by the real field (%)t = #°.

In a system with fixed and, in principle, different numbers of pions
of each species the particle-anti-particle symmetry is lost. Therefore, we
turn in the Lagrangian (1) to the new fields ¢_, ¢, ¢q, corresponding to
the pions with the positive frequencies, 7% = 1o + <p:fF o- Now we have

Y- # <p§_, and ¢g is described by a complex field. Replacing the new fields
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in the Lagrangian (1), we are able to separate the terms corresponding to
the conserved particle number. ,
In terms of new fields the Lagrangian (1) renders L = [ d*z(Leyea + L)
with
Cﬁxed - £+ + L + CO + Erese (2)
L' = La02+ L3001,

where L10 = |@p+0|? — m2|p40|? is the free pion Lagrangian density and
the pion elastic rescattering is described by

Lres = 22m2|o]? (Ip£]® + 2lox|? + |9ol?)

+ Am2|pol® (2le4|* + 2le-|* + 3|wol?)
ANBupr - 1) (00 - o) — AN (048,01 ) (9801 ) — A(Bpo - 0)*
— Mepodph)? = 4 (100-[* + 00+ 1? + |9¢0l?) (lp-I* + |4 + leol?).

The Lagrangian density Lgyxeq describes the processes which conserve the
total number of particles and separately the number of pions of each sort.
These are the interaction of pions of a certain sort and the reactions of the
different pion species with each other, e.g., 777~ & 7tr~ and n%7° &
7tx0. The part Ly; of the Lagrangian density corresponds to the pro-
cesses 797% & n+r~ which, while keeping the total number of pions fixed,
change the relative fractions of the pion species. Such processes impose the
restriction on the chemical potentials of pions 2ug = g4+ +p- and determine
the final isospin composition of the pion system.

The pion self-interaction contained in the terms (2) gives the contri-
bution to the pion polarization operator already in the first order in the
coupling constant A. Such a contribution can be depicted by the tadpole

graph __Q_, where the fat pion line corresponds to the full in-medium
pion propagator.

The last part of the Lagrangian density, L3, contains the terms with
non-equal numbers of the creation and annihilation operators. It corre-
sponds to the processes m <> wwm with a change of the pion number. These
processes drive the system towards chemical equilibrium.

The terms L22 and L3, contribute to the pion polarization operator
only in the second order in the coupling constant and are given by the

sandwich diagram of the type ‘@ with different possibilities for the
pion species in the internal lines allowed by the charge conservation. The
direction of the internal lines takes also into account the distinct processes
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7w < 77 (two lines are directed to the one side and one line to the other
side) and 7 «> 7om (all lines go from the left to the right).

We evaluated the contribution of the sandwich diagram to the real part
of the pion polarization operator and showed that it is substantially sup-
pressed in comparison with the contribution of the tadpole graph at tem-
peratures " $ (1 — 1.5)m,. The symbol m, denotes here the vacuum pion
mass. The higher-order vertex corrections are estimated as small at temper-
atures of interest. In the calculation of the real part of the pion polarization
operator this allows us to stick furthermore to the Hartree approximation,
accounting only for the tadpole diagram (with the in-medium pion propa-
gator).

The imaginary part of the sandwich diagram determines the probabilities
of the rescattering and absorbative processes Waps res- We have evaluated
these quantities and obtained for the isospin symmetrical pion gas that
Tabs/Tres =~ 17 for T = 200 MeV and at the pion density p = 3pg and
Tabs/Tres ~ 7 for T = 150 MeV and p = po. These evaluations support
earlier estimates [4] and our former suggestion on the lack of the chemical
equilibrium in the pion gas in URHIC. Thus, for the description of the pion
gas with a fixed number of particles we shall furthermore use the Lagrangian
(2), dropping the term £  and introducing instead the non-vanishing pionic
chemical potentials connected by condition 2ug = p4 + p—.

3. Varying the Lagrangian (2) with respect to c,of}_, ol gog, we obtain
three coupled non-linear equations of motion for the corresponding fields.
We solve this system within the Hartree approximation. By this approach
the behaviour of a certain pion is determined by the averaged interaction
with surrounding particles which form a thermal bath. The properties of
particles in the bath are, in turn, determined by the same equation of motion
as that for the considered pion.

Formally, we represent the fields @49 as a superposition of some picked-
out field P19 and environmental fields €19, w10 = P10 + &+o. Then, in
equations of motion we keep only these terms that are linear in the fields
@+0 and quadratic in the fields £ (other terms vanish by averaging). After
averaging over the fields £4¢ with the Gibbs’ weight factor, for the retarded
pion Green’s function in the momentum representation we obtain

(63w, k)}“ =w? —k? - ml - IFw,k)+i0, j=+-,0, (3)

with the polarization operator II;(w, k) of a certain pion species j = £,0
given by

M, k)= — 4Am? [2d +2dg +d] +4Am2 [df +d; +d] (4)
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+ 4X [df + dg + dB] (W? — k?) £ 4X penc,
0§ (w, k) = — 2xm? [2d +2dg + 6d3] + 4 m? [df + d5 + d3)
+ 4X [df +dg + dY] (¥ — K?). (5)

Taking into account that in the Hartree approximation the polarization
operators have vanishing imaginary parts, and, therefore, the pion spectra

-1
wj(k) are well determined by the dispersion equation [G?(w, lc)] =0, we
can write the d functions as

3 3
= [T sy, i =[S ) = KT R )

Here n;(w) are the Bose distributions with the chemical potentials u;, con-
nected by the above balance equation and determined by the total pion
density psor = 3_; p; and the charge density pcp = py — p—, where

d3k
pi= [ G2 RT3 (Ens e (8))

amiy  _

4. We employ the derived Eqs. (4,5) to the isospin symmetrical pion
gas which probably arises in the mid-rapidity region of URHIC. Then, the
pions of all three sorts are described by the polarization operator

TR (w, k) = —20A m2 do + 12A m2 dy + 12X do (W% — k?). (6)

For p = 0 this expression coincides with that obtained in Ref. [2] for the
pion gas in the chemical equilibrium. In our case, however, the functions dy
and d; essentially depend on the value of the chemical potential y = p; =
f- = po # 0. Making use of the relation between dg and d; we obtain the
dispersion relation

2 %2 2 *2
wik) =m AR, M = M iy

(M)
where the quantity m}, is the effective pion mass.

Fig. 1 displays the effective pion masses (7) (solid lines) and the chem-
ical potentials (dashed lines) as functions of the temperature for the pion
densities p = pg and 3pp. Dotted lines indicate the chemical potential of
the ideal pion gas. The dash-dotted line in Fig. 1 depicts the effective pion
mass for u = 0 which recovers the result of Ref. [2]. We observe a principal
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Fig. 1. The pion mass and the chemical potential of an isospin symmetrical pion
gas vs. the temperature. See text for explanations.

difference in the behaviour of the effective pion mass m}(u # 0) from that
for 4 = 0. For a fixed number of pions the value m}(px # 0) decreases
with increasing temperature, whereas the value m} (¢ = 0) remains approx-
imately constant staying nearby m, for T < 175 MeV and grows rapidly
for larger temperatures.

Fig. 1 also enables us to discuss the possibility of a Bose-Einstein con-
densation (c.f. [6]). The crossing points of the solid and dashed lines de-
termine the critical temperatures Ti"d of an ‘induced’ Bose condensation
caused by the singularity in the pionic momentum distribution at y = mj.
The critical point of the Bose condensation T:% in the ideal gas corresponds
to temperatures at which the chemical potential u*® (dotted lines in Fig. 1)
reaches the value of the vacuum pion mass. When the chemical potential of
the interacting pion gas reaches this value, then there exists the principal
possibility of a first-order phase transition from the interacting gas phase
to a condensate one. At such temperatures the Bose condensate becomes
energetically favorable.

The density dependences of Ti* = T'(u = m%), T(4 = m,) and T% =
T(p' = m,) are shown in Fig. 2 (dashed, solid and the dash-dotted lines,
respectively) together with the solution of the equation u(7', p) = 0 depicted
by the dotted line. The latter curve shows the density in the pion gas being
in chemical equilibrium at given temperature.

We observe a remarkable behaviour of the value 7i"d. In contrast to the
ideal gas case, for interacting pions the value 7" decreases with a growing
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Fig. 2. The dependence of Ti"¢ (dashed line), T'(1 = m;) (solid line), Ti¢ (dashed-
dotted line) and T'( = 0) (dotted line) on the density.

density for p > po. The values of T4 are smaller than the characteristic val-
ues of the experimental inverse slope factors measured in URHIC. Therefore
one could argue that the induced Bose condensation is unlikely to occur in
the quasi-equilibrium pion gas state. As one observes from Fig. 2, the values
of the critical temperatures for a first-order phase transition T'(x = my) are
large enough to be reached in URHIC. Thus there is a principal possibility
of the occurrence of a first-order phase transition at least in some heavy-ion
collisions.

5. Above we utilized the Weinberg Lagrangian for the pion-pion in-
teraction. Although it allows for describing reasonably well the pion-pion
scattering data in the energy region 280 MeV < /s < 500 MeV, at higher
energies the account of the p meson degrees of freedom is required. We
have found that the mp interaction, introduced with preserving the chiral
symmetry [3], causes a contribution to the pion polarization operator, which
is rather small at temperatures T' <« m,, where m, is the p meson mass.
Thus our findings do not substantially change when including the p meson
contribution.

6. In summary, in the framework of the Lagrange formalism we have
considered the pionic modification in a pion gas with a fixed particle number
using Weinberg’s interaction. We have calculated self-consistently the pion
spectrum within the Hartree approximation. The in-medium pion gap is
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found to be essentially larger than the vacuum pion mass, and it dependents
sensitively on the density, temperature and isotopical composition. The
present analysis might serve as a first step towards detailed modeling of a
strongly interacting meson gas composed of various light mesons like 7, p,
w, K, n etc. Of particular interest is thereby the p ¢+ 77 reaction, which is
important for the dilepton signals measured by CERES.
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