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We provide a schematic view to some general aspects of chiral symme-
try in matter using mean-field arguments. We use a simplified version of
the Nambu—Jona~-Lasinio model to formulate the ideas behind the thermo-
dynamics at work in a variety of models with spontaneously broken chiral
symmetry but without confinement. This version of the model is mapped
onto chiral random matrix models, with some emphasis on the bulk behav-
ior of the corresponding Dirac spectrum. Phase changes in the simplified
model show up in the form of a rearrangement in the Dirac spectrum, with
edge singularities that follow from mean-field exponents. The results are
shared by a variety of models, and seem to be in quantitative agreement
with some QCD lattice simulations. We comment on the relevance of mi-
croscopic and macroscopic universality in random matrix models, and the
possible motivation for these models from QCD.

PACS numbers: 11.30.-j, 12.38.-t, 12.38.Aw, 12.90.4+b

1. Introduction

Chiral symmetry is one of the most fundamental properties of strong in-
teractions. Major experiments in the near future will hopefully help clarify
this issue — HADES (GSI), RHIC (BNL), LHC (CERN). Several encourag-
ing results are available even now — experiments like CERES and HELIOS3
are suggesting that finite density /tempetature effects applied to the vacuum
state of QCD do seem to change the composition of hadrons [1]. Despite
these exciting experimental endeavors, an explanation for why chiral sym-
metry is spontaneously broken in the QCD vacuum from first principles is
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still not unanimous. A number of tools and ideas have been devised to
try to understand this issue and assess its phenomenological implications :
Lattice calculations [2], variational models (e.g. instantons [3]), sum rules
[4], chiral perturbation theory [5], Nambu-Jona—Lasinio (NJL) models [6],
Walecka models [7], random matrix models [8], to mention a few [9].

In this lecture we will expose a certain point of view where the mean-field
description plays a prominent role in the discussion of a variety of questions.
While not unanimous, this description captures the essentials of a variety of
models (NJL models, instanton models, random matrix models) with their
inherent advantages and disadvantages. It is fair to say, that this point of
view has been the motto of Gerry Brown for many years. This paper is a
small tribute to his seventieth birthday.

In Section 2 we formulate a schematic version of the NJL model, fo-
cusing on the constituent quark spectrum and its ensuing thermodynamics,
ignoring the issue of confinement. In Section 3 we review the Banks—Casher
formula and suggest that the quark spectrum may be important in address-
ing the issue of spontaneous chiral symmetry breaking both in vacuum and
matter. In Section 4, we map the schematic version of the NJL model onto
chiral random matrix models. The general lore of determinism versus chance
in the infrared is discussed. In Section 5, a generic classification of the Dirac
spectra is proposed in the mean-field approximation using algebraic equa-
tions. In Section 6, some of these ideas are applied to the Columbia lattice
data at finite temperature. In Section 7, we show that the mean-field analy-
sis at finite density is upset by fluctuations, exposing some difficulties both
in the models and in the lattice simulations. In Section 8, we put forward
some speculative arguments on the relationship between chiral random ma-
trix models and fundamental QCD. In Section 9 we discuss the relevance
of microscopic and macroscopic universality in random matrix models. Our
conclusions and recommendations are given in Section 10.

2. Two-level NJL model

Consider a single flavor version of the NJL model in four dimensional
Euclidean space [9, 10],

2
La=liy-0+imtimw+ & (W7 + Wlos?) @)
or equivalently

L4 = +Ph(iy -0+ ipya)vr + ¥L(iv - 0 + ipve)vr
0P+ m) bt $Li(P! + m)r + 5 PP (2)
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in the chiral quark basis ¢ = (¢g, ¥1) with the right and left projectors (1+
7v5)/2. Here P, P! stand for independent auxiliary fields, g is a fixed coupling
and p is a real chemical potential. Note that the Minkowski fields follow
from the Euclidean fields through (%%, %) — (¥, %). In particular, mipty
is the mass term in Euclidean space compared to mw in Minkowski space.
This form of the mass term is enforced by the fact that the Lorentz group
is SO(4) in Euclidean space and SO(3,1) in Minkowski space. This means
that the chirality breaking terms in Euclidean space are rather LTL and
R'R than R'L and LR as in Minkowski space. With these conventions, the
kinetic term in Minkowski space preserves chirality but flips it in Euclidean
space. Equation (2) is defined on the strip 8 x V3 in Euclidean space, with
P(r + B,z) = P(r,z), and ¥(7 + 8,2) = —¢(7,z).

For our purposes, further simplifications are needed. The anti-periodicity
of the quark fields yields

P(r,2) Z et n T, 3)

n=—oo

where w, = (2n + 1)#T are the Matsubara frequencies (T’ = 1/3), and = =
1,2,..., N label discrete points in three dimensional space. Space is here
a grid of dimension N, where each point contains quarks of frequency w,
and chirality L (left-handed) and R (right-handed). If we further assume
that the auxiliary fields P, Pt are constant in space and time, the action
in (2) reduces dimensionally to a 0-dimensional one with infinitely many
Matsubara modes. The corresponding partition function can be readily
found in the form

t o~NBEPP! i(m+P)  wntip )
Z[T, u] = /deP n_l__[oodt (wnH# i) @
following the rescaling ¢F = +/Va3y® and ¥ = V3/2¢%, where ¢5 are now
dimensionless Grassmann (anticommuting) variables. The determinant in
(4) is over 2 x 2 matrices. For completeness we observe that (4) corresponds
also to the 0-dimensional Lagrangian density

Lo= q'(2 +ikhs + im)g+ s(ahom) (dfar) (5)

with 2 = w,1, ® 1;. We note that a constant P implies that only certain
combinations of the Matsubara modes are allowed to interact with each
other. Other choices are also possible. At high temperature, all ensembles
become the same since they are dominated by the two lowest Matsubara
modes wp = +7T and w_; = —nT (see below).
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To discuss the thermodynamics of the above model, it is more intuitive
to use (4) in large N with n = N/V; fixed. The effective potential associated
to (4) reads

+oo
H=NZPPt-NT Y Inf? (w? + (wn + in)?) (6)
where
w=1/(P+m)(Pt+m). (M)

The sum in (6) can be done using standard methods [11}, and the answer is
H=NXPP'-N (w +Th JJ(1+ e_(‘”:F“)/T)> : (8)
*

The first term is a simple version of the vacuum energy, while the second
term combines the contribution from the “Dirac sea” and matter. In this
schematic model, the Dirac spectrum is simplified to two-levels in frequency
space (tw) for each = 1,2,..., N, and for each handedness L, R. Recall
that Ng = 1. This model will be referred to as a two-level NJL model.
There is no kinetic energy associated to the quarks in (4). The pressure at
high temperature reads

dlnZz
0Vs

1
)

P=T = 2nTIn2 — nZPP! + O( (9)
The first term is the thermal pressure of free constituent quarks, while the
second term is a vacuum energy. At these temperatures, the pion contri-
bution is dwarfed by the constituent quark contribution (1 : N), a point
that is largely due to the lack of confinement. Does it make sense at all?
In a way, if we were to think about (9) as a way to describe a chiral phase
transition from the high temperature side. Clearly (9) is inappropriate for
discussing the low temperature phase of confining theories. In large N, the
extremum of the effective potential (8) yields a gap equation for P, (we
restrict here the solutions to the case P = P%)

2P.X=1-n-T, (10)

where n = (elvs=#)/T 11)~1 for particles and 7@ = (e(w»+#)/T 1)1 for an-
tiparticles. The constituent quark density is

TolnZ  TOH _

pQ=i<¢?74'§b>:%W——"'/‘;%—n(n”ﬁ)a (11)
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while the quark condensate is

19mz _10H
VEJ, om o V33m

i(ply) = = -2n XP,. (12)
A non-vanishing P implies a non-vanishing quark condensate, hence a spon-
taneous breaking of chiral symmetry. The relations (10-12) are just schematic
versions of the usual gap, density and condensate relations in the NJL mod-
els [6].

For zero current mass m, the gap equation (10) admits solutions only for
T <T.=1/(4X). For non-zero current mass m there is always a solution,
albeit with P ~ m for T ~ T. and m ~ 0. At high temperature and for
T =~ T the gap equation (10) simplifies to

1
g(Pe 4+ m)® + p*(P. + m) —h:O(-f) (13)
with h = m, p? = (T — T.)/T. and g = (12T2%)~!. Eq. (13) has the generic
form of a cubic equation, as expected from mean-field treatments of chiral
phase transitions [12]. Indeed, (13) is just the gap equation generated from
the effective potential [12]

[

Lo(T,¢) = —h® + LpP? — o

A (14)
where in the present case ¢ = 0.

The high temperature expansion through (13) provides an accurate de-
scription of the chiral phase transition in our model (4) that is consistent
with mean-field universality. Indeed, from (13) it follows that at T' = T,
and for a weak external field A (current mass), P ~ h'/3, and hence the
critical exponent § = 3. For h = 0 but T # T,, P ~ (T — T.)/%. Since the
chiral condensate i{(1)!y)) ~ P, the next critical exponent 8 = 1/2. More-
over, from (9) the pressure P ~ T, so that the specific heat C ~ (T — T..)°
with a critical exponent o = 0. The scalar quark susceptibility

X(T) = (vt - @he)", (15)

measures the correlation length produced by the exchange of a constant
scalar in the model. It is saturated by the scalar mass, x ~ 1/m2. The
latter follows from (4) by shifting P = P, + o around the saddle point
solution. In the Gaussian approximation m, = 2P,. Thus x ~ (T — T.)™!
with a critical exponent ¥ = 1. Finally, since the model considered does not
have any space-time dependence, it is not possible to use it to analyze the v
and 7 critical exponents. It is however straightforward to understand that in
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the NJL model, we expect that in the pion-channel 7 with P = P, + o +iw,
the asymptotics is

T

Colz,T) ~ ﬁ e-me(D)1e (16)

Thus the spatial correlation length at T is

11
m(T)  i(yty)

with critical exponents v = 1, and = 0. The set of all critical exponents
derived so far (o, 8,7, 6, v,7) = (0,%%,1, 3,2, 0) is known as the set of mean-
field exponents. They are universal and characterize a phase transition that
is second-order and of the type discussed by Landau and Ginzburg.

The role of the chemical potential in the present description can be best
seen by specializing to T = 0. In this case, n = ©(u — w) and 7@ = 0, where
O is a step function. Clearly, pg # 0 only when the chemical potential
# > w, in which case P = 0 and hence a vanishing quark condensate.
The space independent quark modes have a Fermi surface that is sitting
precisely at the level +w. Any finite quark density causes a restoration
of chiral symmetry, since the latter is caused by the asymmetry in the
spectrum obtained by populating the mode —w. To achieve more one has
to take into account the space-variation of the quark wave-function, which
leads to a field-theory rather than a matrix model. In this case, we are
back to the NJL descriptions or QCD itself. The situation 0 < u < w
does not support any finite density (Fermi-level in the Dirac gap). Since w
plays in our case, the role of a (shifted) constituent mass, chiral symmetry
is restored for u ~ w ~ my /3, where the nucleon mass my is qualitatively
set equal to three times the constituent quark mass w. From our discussion,
the transition is sharply first order and occurs at zero baryon density.

To summarize: in the two-level version of the NJL model described
here, the naive low-lying spectrum is composed of constituent quarks and
mesons. In the ground state, the quark-antiquark interaction is attractive in
the singlet-isosinglet channel, providing a simple mechanism for the sponta-
neous breakdown of chiral symmetry, through the condensation of quarks.
With increasing density or temperature, the constituent quarks in the heat
bath (temperature) or Fermi level (density) overcome the “asymmetry” pro-
duced by the quarks in the Dirac sea, thereby restoring chiral symmetry at
a critical temperature or density. The transition is mean-field in nature,
and mostly driven by entropy. In so far, we have kept silent about the
thermodynamical relevance of the multiquark states since the model lacks
confinement. This point will be discussed below.

~ (T =T, '? (17)

fr\/
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3. Banks-Casher relation and the Dirac spectrum

Since chiral symmetry is a property of the quark wave-functions, to what
extent a chiral phase transition reflects itself on the quark spectrum? Im-
portant insights to this question can be gained by recalling the basic relation
derived by Banks and Casher [13]. In four Euclidean space dimensions, the
quark propagator in a fixed gluon background A reads

S(z,y, A) = (0l¢(2)4(y)|0) = (0I(=iXA) — im)~*|0). (18)

The spectral representation for the propagator gives

S(ay, 4)= 3 RN 2olD)ealt) (19)

where ¢,, A, are eigenvectors and eigenvalues of the Dirac equation

Thus the fermion condensate in Euclidean space is
(¢'q) = - ;ﬂ(Q(ﬁ)qf(y))A =—(TrS(z,z,A))a, (21)

where (...)4 denotes the averaging over all the gluonic configurations A
using the QCD action. In the limit where the four-volume Vj goes to infinity,
the spectrum becomes dense and we may replace the sum over the states
by an integration over the mean spectral density

= <Z 5(\ — ,\n)> : (22)
n A

In terms of (22) the fermion condensate (21) becomes

(dha) = ~(Te(-ipa) —im)ha = o [ar22l e

In the chiral limit, m — 0, the Dirac operator ) anticommutes with s, so
the non-zero eigenvalues come in pairs (A, —A) and the spectral function is
symmetric. Inserting

. 1 1 .
A SEem - La T M (24)
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into (23) and using the fact that the principle-value part drops out for even-
spectra, we obtain

(gla) =~ 7010 (25)

A Wick rotation to Minkowski space (¢',¢q) — (i, q) gives! [13]
T
§q) = —— . 26
(q9) 7 v(0) (26)

This relation states that for chiral symmetry to be broken in four dimen-
sions, the number of quark eigenmodes near zero virtuality has to grow like
V4 in contrast to +/Vj in free space. For this argument to hold, it is very
important that the chiral limit m — 0 is taken after the thermodynamical
limit V; - oo, for otherwise the result would be zero. The spontaneous
breakdown of a continuous symmetry cannot take place in finite volumes,
unless the condition m(gq)Vy <« 1 is fulfilled.

Various possibilities for the Dirac spectrum near zero virtuality can be
entertained in light of (26). Three typical behaviors are shown in Fig. 1.
Fig. 1a exhibits a bounded mean eigenvalue distribution with a number at
zero virtuality that is of the order of V4, thus a non-vanishing quark conden-
sate. This is typical of a ground state with a spontaneously broken chiral
symmetry. Fig. 1b shows a bounded spectrum with a dip at zero virtuality,
that is wider than 1/Vj, thus a vanishing quark condensate. This is typical
of a state with unbroken chiral symmetry. Fig. 1c shows an unbounded but
typical spectrum for the QCD ground state. The dip at the origin is caused
by Airy oscillations (quenched) and fermionic level-repulsion (unquenched),
and disappears in the thermodynamical limit.

V{R) V() VIA)
k /\ /\ x l
@) (b) «©)

Fig. 1. Typical Dirac spectra.

What causes the mean spectral density »(A) to be non-vanishing at zero
virtuality? In their seminal paper, Banks and Casher [13] have argued that
in the first quantized version of QCD, the quarks in four dimensions undergo

! We note that the quark condensate is complex in Euclidean space and real in
Minkowski space.
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random walks scattering on the gauge fields, that should turn quasi-one-
dimensional because of confinement. A convincing case was made in strong
coupling and quenched lattice QCD. In what follows, we will entertain an
alternative suggestion in the second quantized version of phenomenologically
inspired models (instanton models, NJL models), in which the quark states
undergo delocalization near zero virtuality. This idea was originally due to
Casher and Neuberger [14]. A quantitative assessment of this idea can only
be made if we were to further assume that in the Dirac spectrum typical
of QCD (see for instance Fig. 1c above), there is a scale separation between
the soft and hard modes, all the way to the transition point, that is

v(A) = va(A) +vs(A) (27)

with typically vg(A) ~ Nc|A|3/47% in the chiral limit, and vs(A) a bounded
function. Wilson lattice spectra simulations by Kalkreuter [15] suggest such
a possibility, although the cubic growth from the hard modes is not really
visible, given the character of the quark dispersion relation on the lattice.
A clear test of this assumption would be to repeat the same calculations
with cooled lattice configurations. The separation (27) would be assumed
throughout even at the transition point, and the analysis will be carried out
for the soft part vs(A) or v(A) for short.

4, Two-level NJL model: randomness vs determinism

The relation between the quark condensate and the Dirac spectrum as
unraveled by (26) can be discussed in the context of the two-level NJL model
by rewriting the model in random bosonic variables. For that, consider the
new auxiliary matrix AZ'¥ with entries both in ordinary space z, y and fre-
quency space n,m. A is a doubly banded, complex matrix with dimensions
(N x N)® (0o x 00). In contrast with P, the matrix A bosonizes pairs of
quarks of opposite chirality. For the lowest two Matsubara frequencies it is
simply (N x N) ® (2 x 2) matrix . In terms of A, Eq. (5) becomes

Lo = +¢'((2 + iu)ys + im)g + NETr, o(AAY) + ¢l Agr + g} Algr ,(28)

where the trace in (28) is over @ and n. The partition function associated
to (28) is simply

Z[T,pu) = (dety .. Q) , (29)

where the averaging is meant to be

(.)= / dA ...e"NETren(AAT) (30)
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with the medium Dirac operator in a random background,

im 2+ 0 A\ _
Q:(n+m m“)+(m 0):D+R. (31)
The determinant in (29) is over chirality (2), space (z), and frequency space
(n). This is an example of a chiral random matrix model. When restricted
to n = 0 with wp = 0 and u = 0, this is just the chiral random matrix
discussed in [16] for one flavor.

With the transcription (29-31) the translation of the bulk arguments
whether in vacuum (ground state) or matter (thermodynamics) can be made
using the resolvent (one-point function) and its moments (multiple-point
functions). Specifically, let

~ 1

G(z) N

(Te(z - @)7) (32)
for the simple case @ = R (purely random), where the averaging is carried
over the Gaussian ensemble (30). Using the methods discussed in [17], the
answer is found to be

G(z)=1(z-Vz2-4). (33)

The Dirac spectral density follows from

1 1
v = =7 By, Gl =

(6(A-Q)), (34)

where we have used (24) and definition of average spectral density (last
line). Hence .

y(A) = 51;\/4 Y (35)
in agreement with the numerical calculation using a set of 200 100 x 100
matrices with matrix elements randomly drawn from a Gaussian distribu-
tion, as shown in Fig. 2. At A = 0, the spectral density v(0) # 0, and chiral
symmetry is spontaneously broken.

In the presence of a deterministic part D (mass, temperature, chemical
potential, 6 angle, twist, etc) the Dirac spectrum is modified. Since the
scale in the purely random case is of order one (Wigner semi-circle) a struc-
tural change in the Dirac spectrum (phase transition) is usually expected
when the deterministic part becomes large. Such is the fate of the chiral
phase transition in the random matrix analog of the two-level NJL model.
This point can be made more quantitative, by considering how the random
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v(A)

5 3 0 . 2

A
Fig. 2. Mean spectral distribution {dashed line) versus random drawings (solid
line) — see text.

spectrum changes under the addition of the deterministic part. In the case
of the pure random Gaussian plus deterministic this problem was solved
years ago by Pastur [18]. In the case of non-Gaussian ensembles (not dis-
cussed here) more sophisticated methods are needed (R-transformation or,
equivalently, Blue’s function methods [19}).

Pastur equation states that

G(z) =Gp(z — G(2)), (36)

where G(z) is the Green’s function for the random plus deterministic system
and Gp is the Green function for the deterministic system only. For the

case wg = —w_1 = 7T, p = 0 and m = 0 the deterministic Green’s function
Gp corresponding to the deterministic part of (31), is by definition
1 1
Gp(z)=1 ) 37
p(z) Z(Z—WT+Z+7TT (37)

since the spectral function is vp(A) = YL (8(A —nT)+8(A+7T)). Therefore

. 1 1
G(z)=f(z—nT—G(z)+z+7rT——G(z)> ' (38)

This particular cubic equation was first obtained by Brézin, Hikami and
Zee [20] in a general context, and used by others [21-25]. The imaginary
part of the normalizable solution to this cubic equation gives the spectral
distribution shown in Fig. 3.

For zero temperature we recover the semicircle shown at Fig. 2. For finite
T the levels start to repel each other, building a dip around the origin. The
thermal localization starts to show up, weakening the overall randomness
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Fig. 3. Spectral distribution (C class) as a function of A and ¢ = #T

at zero temperature. For T, = 1/7 (in units X = 1) the average spectral
density reaches zero, thereby restoring chiral symmetry by the Banks-Casher
formula. Further increase in the temperature results in splitting the spectra
into two disconnected arcs. We call the phase transition P; — P, type. The
phase P, corresponds to a chirally symmetric phase. Although the present
description of the phase transition in terms of the Dirac spectrum sounds
a bit exotic, we recall from our thermodynamical description of the two-
level NJL. model that it has a direct correspondence with the conventional
wisdom. In particular, the thermal transition described here is mean-field in
character. Mean-field exponents control the behavior of the spectral density
near the edge of the spectrum.

5. Cardano, Ferrari and Quinto classes

It is clear that the character of the Dirac spectrum near a phase transi-
tion depends on the number of competing scales carried in the deterministic
part. In the large N limit, a simple classification can be reached from Pas-
tur’s equation (provided that the transition is not upset by fluctuations).
Generically:

e Quadratic equation (Quadratic (K) class)
In this case (pure random) Pastur equation reads

G (2) - 2G(z)+1=0. (39)
The normalizable solution is just (33). The spectral density is a semi-
circular and chiral symmetry is always broken.
e Cubic equation (Cardano (C) class)
Pastur equation (38) reads

G?(2) - 22G*(2)+ (2 -+ 1)G(2) — 2= 0. (40)
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The normalizable solution is shown in Fig. 3. A phase transition sets
in at € = 1. Equation (40) has various realizations:

1. Identifying ¢ with 7T yields a model for the chiral phase transition
[21].

2. Identifying € with #T — P (P is the Z3 phase) probes in addition
triality [22].

3. Identifying € with m models lattice Wilson spectra [24].

4. Identifying € with v/m?2 + 7272 models lattice Kogut-Susskind spec-
tra [23].

6. Identifying € with £1/2 models e~ scattering in quantum Hall lig-
uids [19].

e Quartic equation (Ferrari (F) class)
1. An example is the two-random matrix model [26] as motivated by
the two-component instanton model [27]. Pastur’s equation in this case
reads [25]

1 z— G(z)

CO=en e enr-a

(41)

where (1 — @) is the percentage of molecules in the instanton vacuum
and d is a measure of the quark-hopping strength between an instanton
and an antiinstanton. Fig. 4 shows a typical behavior for the spectral
density. The figure on the left displays a cohabitation phase between
instantons and instanton-molecules. The figure in the middle shows the
point when the molecules compete with the instantons (critical point).
The figure on the right corresponds to the case where the molecules
are not important. All critical exponents can be assessed analytically.

A

A

3T

Fig. 4. Spectral distribution (F class) as a function of A and € = o {concentration
of molecules)

2. Another example of the F class is the random walk of a non-
relativistic particle of spin 0 or 1/2 in D-dimensions [28].

In general, the F classification allows for three phases, P;, P, P;.
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¢ Fifth order equation (Quinto? (Q) class)
A nontrivial example of this class is a model with two lowest pairs of
Matsubara frequencies mixed coherently by the interaction [29]. Pastur
equation reads in this case:

G5 + (14G4 + a3G3 -+ a2G2 + alG + ag = 0 (42)
with the coefficients

ay = —4z,

az = 1 — (M?+ M}) + 622,

ag = —423 — 324 22(MZ + M}),

a = (M3 - MP) - M3(1 - M?) + 22 [3 — (ME + M)] +2*,

ao = z[MZ - a(ME - M?) - %] ,

where MZ = m? + n?T?, M} = m? + 97?T?. The Quinto class al-
lows for a rich phase structure, with in general four possible phases
Py, Py, P;, Py defined by the number of disconnected arcs providing
the support for the eigenvalue distribution. Fig. 5 (left) shows the dis-
tribution of eigenvalues as a function of temperature for the case of a
single light flavor.

Fig. 5. Spectral distribution (Q class) as a function of A and ¢ for two pairs of
Matsubara modes

At zero temperature, the spectral function is peaked around zero, pro-
viding a non-zero condensate. The distribution of eigenvalues is given
by Wigner’s semicircle, the system is in the P, phase. As the tem-
perature is increased, two effects happen. The rising temperature
destroys the disorder, diminishing the value of the spectral function

2 We use for short the name Quinto for the class of solutions of this equation, as a
tribute to XVI century Italian mathematicians (Tartaglia, Cardano, Ferrari, Bombelli
and others) working on the solutions to cubic and quartic equations.
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at zero and leading finally to the restoration of the chiral symmetry
(¢(0) = 0). Simultaneously, the rising temperature starts splitting the
Matsubara frequencies. Therefore the phase structure diagrams are:
Py, — Py - Pyor PL - P; = P, or P, — Py, depending if the restora-
tion of chiral symmetry precedes, follows or parallels the splitting of
the frequencies, respectively. Fig. 5 (right) shows the distribution for
the case of a single heavy (above critical value of mass) flavor. The
disorder is always destroyed, independently of the temperature which
can only split the Matsubara frequencies. The phase structure in this
case is always P, — Fj.

Since the general solutions of the fifth order algebraic equation do not
exist in analytical form, the results shown in Figs 5 were obtained nu-
merically. The four unphysical remaining roots of the equation are
ruled out by the failure to reproduce required spectral properties (nor-
malizability and positivity), so the displayed solutions are unique. All
critical exponents are mean-field, as shown in Section 2.

The present arguments clearly generalize to higher polynomial equations
showing both the richness and complexity of a phase transition when dis-
cussed using the Dirac spectrum. Higher polynomial equations are only
tractable numerically as we have shown for the case of the Quinto class.

6. Finite temperature lattice results

Recent lattice simulations by the Columbia group [30] using staggered
fermions have unraveled interesting aspects of the Dirac spectrum of two-
flavor QCD in the semi-quenched approximation on a 163 x 4 and 323 x 4
lattices. If we were to denote by ( the valence quarks with mass m¢, then
the valence quark condensate [30]

v(\)

) me) = 2me [ x50, (43)
0

where v(A) is the Dirac eigenvalue distributions associated to ¢ for two-
flavor and massive QCD. The third flavor ¢ is not included while averaging
over the sea fermions. The dependence on the sea mass m, (not to be
confused with strangeness) and the number of flavors in v(), stem from the
random averaging over the gauge configurations in the presence of the two-
flavor fermion determinant [30]. For two degenerate flavors with msa = 0.01,
the behavior of (43) versus m¢ on a 163 x4 lattice is shown in Fig. 6 (left), for
eight temperatures 3 = 6/¢?% around the critical temperature 3. = 5.275.
The transition in this case is believed to be second order, with a critical
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temperature T, = 1/4a ~ 150 MeV [31]. In physical units, the lattice
spacing at the critical temperature is a ~ .33 fm, and the sea quark mass is
ms = 6 MeV.

In Fig. 6 (right), we show the behavior of the valence quark condensate
for a sea quark mass of 0.1, and various § (temperature) values as obtained
from the Cardano solution for Pastur equation with ¢ = \/mZ 4+ 7272, The
plotted curves were obtained analytically. In physical units the sea quark
mass equals 10 MeV. We have identified § with T,

(T —Te) = (8- Bc) (44)

with the critical temperature T, in the chiral random matrix model and
Bc = 5.275 as suggested by the lattice calculations [30]. The transition
in the chiral random matrix model is mean-field in character (large N).
For a small mass m; = 0.1 (10 MeV) the random matrix model seems to
follow qualitatively well the lattice results for msa = 0.01 (6 MeV), except
for m¢ < 1075, where the spectrum becomes sensitive to the finite size of
the lattice, as illustrated by the bending of the upper curves. Finite size
effects set in when the pion Compton wavelength becomes comparable to the
lattice size. Using the PCAC relation this implies that m¢((¢) > 1/N V4.
For V4 = 4 x 163, this puts a lower bound on the valence mass me > 1074,
which is about consistent with the lattice results.

The quantitative agreement between the lattice simulations and the two-
level NJL model or the chiral random matrix model, is surprising to say the
least. Does it confirm the assumption made above about scale separations?
Does it imply that the temperature is indeed high enough to motivate a
constituent quark description with few Matsubara modes? Is the chiral
restoration insensitive to the issue of confinement? These are all important
questions that require further analysis. In this sense, it would be helpful if
the lattice results were also available after cooling.

Having said this, we note that the reading of the critical temperature f.
depends sensitively on the value of the sea quark mass. In matrix models,
for my; = 0, the critical temperature is 3 = 5.275, whereas for m; = 0.1,
the critical value is § = 5.27 (the fourth line from the top on right figure).
In the random matrix model (Cardano solution), the shift in the critical
temperature on the sea quark mass comes simply from Ag, = /1 — m2—1.
This behavior agrees with lattice data. The critical line has mean-field
exponent § = 3 (mean-field): for 8 = 5.275, (({) ~ m¢®®. This value is
to be contrasted with the one quoted by Chandrasekharan and Christ [30],
namely ((¢) ~ m2'6 for § = 5.275. We recall that a two-flavor simulation
of QCD using finite-temperature cumulants yields 1/4 in the range 0.21-
0.26 [32], hence closer to the mean-field result. The value for 1/§ cited by
[32] is very close to suspected from universality values 0.206(9) (for O(4)
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Fig. 6. Semi-quenched condensate (43) versus the valence quark mass m, for two-
flavor QCD. Left are the lattice results from [30]. Right are the Cardano results
with m, = 0.1.

three dimensional Heisenberg model) and 0.2072(3) (for O(2) model). Other
critical exponents calculated by [32] are however in disagreement with both
universality classes. So the value of § for QCD and its relation to mean-field
is still a debated issue.

The other critical exponent from the Columbia data, (C¢) ~ mg*® for

B = 5.34, agrees with the mean-field value ((¢) ~ m%'oo. The closeness
of the last exponent to the random matrix result, suggests perhaps an un-
derestimation of the critical exponent 1/§ = 0.6 [30] in comparison with
the mean-field one 1/8 = 0.333, possibly due to the large finite sizes effects
mentioned above as visible in Fig. 6 (dropping plateau’s for small masses).
Other quantitative features, like the U(1) jump, show also some similarity
to the random matrix model results:

The present analysis involves one pair of Matsubara frequencies {Car-
dano Class). While this is expected to be dominant at high temperature,
the comparison with the Columbia data at the critical temperature, requires
that the role of more Matsubara modes be investigated. The case of two
Matsubara modes can be studied using similar techniques [29]. In this case,
we note that the character of Pastur’s equation depends on the way the
Matsubara frequencies are coupled. In the free case, the resulting equation
is a superposition of two Cardano’s, each for each Matsubara frequency. In
the case where they are mixed, they result into a Quinto equation. Both sce-
narios are distinguishable by the ratios of their critical parameters. Indeed,
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in the Quinto class the critical temperature is expected to set in at
A ERT? = 2(1-25%m?)
+y/ (1= 253m2)? — 852m2(22m2 —1).  (45)

For zero quark mass (45) gives 7272 = 5/9 Zé, where Xq is the spread in
the Gaussian ensemble. The critical mass (denoted by star), at which the
condensate vanishes (zero temperature) is mi = 1 /.23(22 A comparison of

these results (mixing) to the ones following from the superposition of two
Cardano’s (non-mixing) follows from the identification 22}3 =X =1. For
the Cardano class

m2T2 =1 — m? (46)

so that T. = 1/m in the massless case, and m, = 1 in the zero temperature
case. The ratio of the critical parameters in the two scenarios is

1 for Cardano class
7T, { (47)

\/gt for Quinto class

- =
mg

7. Finite density lattice results

From the two-level NJL model we expect a chiral restoring transition to
take place when the chemical potential reaches the value of the constituent
quark mass mg (zero baryon density), in agreement with the mean-field
analysis. This transition is also confirmed in a large N analysis of the
singularities associated to Pastur’s equation (C class) with € = iu. Indeed
an elementary study of the singularities, show a first order transition at
pX = /1/8 = mgX [10] using the free energy in the fermionic variables *

Quenched QCD lattice simulations suggest a first order transition at
p = 0 in the chiral limit [34]. Is this a way to infirm the above models?
Not really, since a chiral transition at 4 = 0 is unphysical in the first place.
So what is going on? To understand the subtleties behind the quenched
lattice simulations, and also the present large N arguments, let us consider
the unquenched generating function with 2Ny quarks and finite p,

Z(2,2Ny,p) = (det?™ (z - Q) (48)

® In Ref. [33] this transition was deemed second order at u? = 0.278 using the free
energy in the bosonic variables. The discrepancy is, however, irrelevant since both
mean-field analyses are upset by fluctuations.
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with Van, = —log Z/2N; playing the role of a complex potential. Since
(z — Q) is non-hermitean for finite chemical potential, we can split it into a
phase and a modulus through

z-Q
z-Qf

In terms of (48)—(49), the symmetric spectral density in the quenched ap-
proximation reads for finite N and Ny (chiral limit)

(z-Q)*=lz-QJ* x ( ). (49)

_ 1
v(z,3) = 5 (8:0-Vaw, + azafvw,) . (50)
The contribution of the modulus is
5\ _ Ny _ -1 s _nh-1
vi(z,2) = v(2) —-—27I_N(Tr(z Q) ' Tr(z-QN) e+ -..., (51)

while the contribution of the phase is
ve(z2,2z) = -—NL(Tr(z -Q) Mr(z-QNH Do +.... (52)
' 2rN

Here the subscript c¢ is for connected. The density v(z, 2) is the sum of
(51) and (52) modulo an extra contributions from the crossed terms. The
connected two-point function

N?C(2,3) = (Tr(z — Q)7 Te(2 - Q) ™), (53)

appears with opposite signs in the modulus and the phase, and cancels in
the sum.

For finite N and Ny — 0 (quenched approximation), the symmetric den-
sity reduces to v(z). In the large NV limit, the latter follows from the discon-
tinuities of the one-point Green’s function in the mean-field approximation.
For u% < 1/8 chiral symmetry was found to be broken. The mismatch of
this result with the quenched lattice calculations, suggests that the large
N limit does not necessarily commute with the quenched limit Ny — 0.
This important point was first made by Stephanov[33] using mean-field ar-
guments, in agreement with earlier results [35]. In our case, it follows from
the singularities of (53). Using the random matrix model, (53) reads [36, 37]

N?C(z,2) = ~30:0:Log{[(H - 4*)* - |z - G|')/H"} (54)

where H = |z — G|?/|G|? and G(z) is a solution to Pastur’s equation (40)
with € = iu. From (54) we observe that the two-point correlation function
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diverges in the eigenvalue-plane in the domain prescribed by the zero of the
logarithm,

2 - G()P(1 - 1G(2)*) - w*|G(2)]* = 0. (55)

Fig. 7 shows the envelope in dashed line for which the condition (55) is met
in the w = iz plane, for several values of the chemical potential y. The
dots show the simulated results for an ensemble of 200 complex matrices
100 x 100. The solid bars are the mean-field solution following from Pastur
equation. A structural change takes place at u? = 1 which is to be compared
with 2 = 1/8 in the naive quenched approximation. The onset of the
mean-field transition is seen by an inward folding (vertical direction) in the
dashed curve. At large u? (essentially u? ~ 8), the envelope surrounds the
cuts very closely. We have checked analytically that the general condition
(55) is in agreement with the result of Ref. [33]. The universal form of the
correlator (54) allows a generalization of the present results to finite mass
and temperature, as well as non-Gaussian weights. Figs 8 and 9 display some
sample analytical results compared to numerical simulations (dots) [37].

2 Y
’ . u2=0.125

Fig. 7. Envelope (dashed lines) from Eq. (55) in the plane w = iz while the cuts
{solid lines) are from Pastur equation, for different x. The dots are the results of
a numerical calculation.

The above arguments show that the 1/N fluctuations upset the mean-
field result on the envelope of Fig. 7 : there is a phase change. If we were
to note that v(z, z) is a measure of the quenched quark condensate (¢'q) or
its conjugate (Q1Q) as z — 0, then

N?C(z,2) = (¢"¢ Q'Q).. (56)
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Fig. 8. Same as Fig. 7 but for p? = 2 and various masses in the z-plane.
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Fig. 9. Same as Fig. 7 but for u? = 0.4 and different temperatures in the z-plane.
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In the usual vacuum with spontaneously broken chiral symmetry and ¢ = 0,
{¢'q) and (Q'Q) are nonzero. Hence, the leading N contribution to (56)
vanishes, and by the central limit theorem (56) is of order v/N or less. As

a result, the contribution of the correlator is of order Nf/\/ﬁ or less. The
expansion in Ny for the Green’s function is asymptotic in the full z-plane
minus the cut on the real axis, and the quenched limit commutes with the
thermodynamical limit N — oc.

For small u the fermion determinant develops a complex part. In the
complex eigenvalue plane, (56) through (55) diverges when closing on the
dashed curve of Fig. 7 from the outside. This is a signal that (56) is receiving
increasingly large contributions from the mixed condensates (¢'Q) and their
conjugates (Qtg) (other “vacuum”). Hence (56) is qualitatively of order N
in the domain encircled by the dashed curve in Fig. 6. As a result the
correlation function contributes a term of order NyN°. The expansion in
Ny for the Green’s function is asymptotic in the z-plane minus the shaded
domains encircled by the dashed curves in Fig. 6.

The conjugate quarks @ carry the same quantum numbers as the original
quarks ¢ except that they have opposite baryon number. By the Gell-
Mann-Nishijima relation, they would carry fractional charges, and hence are
just theoretical constructs. So should we take seriously the above results?
In a way yes, since they seem to tell us that any finite u causes large
fluctuations in the lattice and model Dirac spectra. So something ought to
be wrong with the hadronic spectrum in both cases.

For two-color QCD, baryons are “Goldstone” modes. They carry the
analog of the pion mass. Any finite chemical potential causes them to
condense in the chiral limit, so it is logical that a chiral phase transition
sets in at g = 0. But what about three-color QCD? Before we attempt to
answer this question, we note that in the two-level NJL model described
above, of which the chiral random matrix model is just a version, we have
omitted from the above thermodynamical arguments the contribution of
the multiquark excitations. Since the model does not confine, they may
contribute substantially to the pressure thereby explaining the failure of
the large N argument with only the naive constituent quark spectrum.
A simple analysis of the model of Section 2 shows that the scalar-isoscalar
diquark is indeed massless! Hence, the low u phase is dominated by diquarks
instead of constituent quarks. The transition sets in at 4 = 0, in agreement
with the above results *. We note that in conventional NJL models diquarks
are in general massive [38], due to the internal kinetic energy of the two
quarks, so the problem may not arise.

* Since the finite temperature arguments discussed above were carried from the high
temperature side of the chiral phase transition, the contribution of the diquark-
antidiquark modes is suppressed owing to entropy.
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For the quenched lattice simulations, confinement is not really an issue,
or is it? The fact that the quenched simulations show a similar behavior
as a function of u, suggests similar problems in the hadronic spectrum of
quenched QCD. Indeed, it was pointed out by Kogut and his collaborators
[39], that while confinement is a property of the ensemble average it is not
of each sampled gauge configuration. Due to the periodic character of the
lattice, the light quark configurations that wind several times around the
lattice, are only suppressed in the large volume limit on the average. At
finite chemical potential, an unbalance is triggered between the forward and
backward going loops that may not necessarily balance in the large volume
limit, as exemplified by the behavior of the “baryonic” pion correlation
function. Although we do not know how these winding modes show up in
a hadronic spectrum in Minkowski-space-time, we suspect that they may
be close cousins of the multiquark states! Perhaps the only way to enforce
confinement properly on the lattice at finite chemical potential is to resort
to a canonical simulation instead of the grand-canonical one currently in
use {39].

8. Random matrix models and QCD

The few examples presented above provide some interesting insights to
complex lattice simulations in the region of the phase transition (finite tem-
perature). They seem to embody also the same inherent subtleties observed
on the lattice (finite chemical potential). So why if at all, a two-level NJL,
model or chiral random matrix models bear at all on QCD, in the mean-field
approximation?

The qualitative answer to this question in a way lies in the type of
observables we have chosen to present and the intrinsic assumption we have
made. Indeed, we have assumed that chiral symmetry is spontaneously
broken from the start, by choosing the number of constant quark modes
to be commensurate with the volume of the system. In such an ensemble,
the fine details of the interaction between the constant quark states become
irrelevant, provided that they obey the strictures of chiral symmetry. The
distribution of these modes is controlled by the general lore of randomness
and symmetry in the vacuum.

In QCD, these soft modes are likely to set in around instanton con-
figurations or any of their topological relatives. Since cooling on the lat-
tice has been shown to maintain the gross features of QCD in the infrared
[40], it is not surprising that a simplified approach of the type we have
discussed works for the bulk structure of the QCD Dirac spectrum. The
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random matrix model can be seen as a schematic description of the quark
zero modes in a random instanton vacuum. In fact it was originally con-
cocted after that model.

In the presence of some external parameters, such as the mass, temper-
ature or density, the dynamics of these constant modes follows the general
competition between randomness and determinism : a give and take be-
tween delocalization (randomness) and localization (determinism). A phase
transition takes place at the breaking point in the distribution of eigenval-
ues, under the unspelled assumption that the hard modes remain decou-
pled. This assumption is particularly important to check on the lattice by
addressing the issue of the phase transition before and after cooling. The
above analysis shows that the gross features of the phase transition are
equally well addressed using the Dirac spectrum or conventional mean-field
arguments, both of which seem to be consistent with the lattice simulations
quantitatively. This point suggests that the chiral phase transition in
QCD is largely mean-field in character, with a narrow Ginzburg window.

Clearly the schematic models discussed here have nothing to say on
the detail distributions of quarks in hadrons, their space-time variation in
color singlet configurations, nor they bear on the gluonic content of the vac-
uum and the behavior of the Polyakov line. Such questions involve detailed
knowledge of the quark and gluon wave-functions, and pertain to the fem-
toworld of dynamical QCD. So under what specific assumptions in QCD
could we get back a two-level NJL. model? We can only guess. For instance,
if the instanton model to the QCD vacuum could be made more quantitative
by resolving the issue of the short range instanton-antiinstanton interaction
and through lattice comparisons, then we may think of the present models
as a schematic description of the zero-mode sector of semi-classical QCD in
the large volume limit. More speculatively, we may also think of random
matrix models as the embodiment of the master field in large N. (number
of colors) QCD [41]. Indeed, the set of master fields in QCD reduces to
four space-time independent N, x N, matrices plus an external momentum
[42]. In the presence of quarks, it may be enough to think of these fields as
purely random.

9. Random matrix models and universality

Since chiral random matrix models are an efficient way to quantify the
universal role of noise in spectra, we may finally ask which of the above
results obey microscopic universality? The answer is none. Most of our
discussion has focused on the bulk distribution of the spectrum, hence non-
universal. Universality in the sense of Wigner and Dyson is realized in the
form of spectral oscillations at the level of one-level spacing [16]. How it may



Chiral Symmetry in Matter 3295

show up in physical observables is in so far unclear to us, especially in light
of the differences between the oscillations and the fermion realizations on
the lattice. Continuum, macroscopic QCD appears to be deaf to the univer-
sal noise of the microscopic limit. What about macroscopic universality in
random matrix models? The level correlation discussed in (53)-(54) obeys
macroscopic universality [43]. Independently of the measure used (provided
that it is local), the form of the correlation depends only on the character
of the random matrix model. We suspect that this macroscopic univer-
sality may be tied to some underlying Ward identities that are shared by
macroscopic QCD in some limit.

10. Summary

Using a schematic version of the NJL model, we have discussed some
elementary aspects of the thermodynamics and their relation to the chiral
phase transition and universality (mean-field) arguments. We have shown
how a chiral random matrix model follows from this schematic form of
the NJL model, thereby translating the character of the phase transition
to the Dirac spectrum. Some interesting comparisons to the bulk lattice
simulations were made. As a truncated version of QCD to space-time inde-
pendent quark modes, the model presented here has obvious shortcomings.
This notwithstanding, since the model embodies symmetries, randomness
and some basic scales, it can serve as a reference point for more serious
approaches to the finite temperature/density phase transition in QCD. In
particular, it can be used to sort out the issue of dynamics from that of
symmetries and noise.
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